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Moduli Theory is one of those areas of Mathematics that has fascinated minds from classical 
to modern times. This has been so because it reveals beautiful Geometry naturally hidden 
in questions involving classification of geometric objects and because of the profound use 
of the methods of several areas of Mathematics like Algebra, Number Theory, Topology and 
Analysis to achieve this revelation. A study of Moduli Theory would therefore give senior 
undergraduate and graduate students an integrated view of Mathematics. The present book 
is a humble introduction to some aspects of Moduli Theory.
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Poincaré Family . . . . . . . . . . . . . . . . . . . . 163
4.6.7 Fine Moduli for Line Bundles . . . . . . . . . . . . . 165

4.7 The Necessity of the Concept of a Coarse Moduli Space: The
Example of Elliptic Curves . . . . . . . . . . . . . . . . . . 168
4.7.1 Local Moduli for Elliptic Curves . . . . . . . . . . . 169
4.7.2 The Elliptic Modular Function JFJFJF Associated to a

Family FFF . . . . . . . . . . . . . . . . . . . . . . . . 170
4.7.3 The Coarse Moduli Space for Elliptic Curves . . . . 172

4.8 The Non-existence of Fine Moduli for Elliptic Curves . . . . 177
4.8.1 Local Obstructions to Existence of a Tautological

Family . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.8.2 Global Obstructions to Existence of a Fine Moduli

Space . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Appendix: Analytic Spaces, Schemes and Cohomology 183
A.1 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.2 Locally Ringed Spaces . . . . . . . . . . . . . . . . . . . . . 186
A.3 Pullbacks and Pushforwards of Sheaves of Modules . . . . . 186
A.4 Examples of Locally Ringed Spaces . . . . . . . . . . . . . . 187

A.4.1 The Local Model for Differentiable Manifolds . . . . 188
A.4.2 The Local Model for Complex Manifolds . . . . . . . 188
A.4.3 The Local Model for Schemes . . . . . . . . . . . . . 188
A.4.4 The Local Model for Complex Analytic Spaces . . . 188

A.5 Manifolds, Analytic Spaces and Schemes as Locally Ringed
Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.5.1 Definition of Differentiable Manifold of Class C∞C∞C∞ . . 189
A.5.2 Definition of Complex Manifold . . . . . . . . . . . . 189
A.5.3 Definition of Scheme . . . . . . . . . . . . . . . . . . 189
A.5.4 Definition of Complex Analytic Space . . . . . . . . 189

A.6 Some Definitions from Scheme Theory . . . . . . . . . . . . 190
A.6.1 Affine Schemes and Commutative Rings . . . . . . . 190
A.6.2 Integral Schemes . . . . . . . . . . . . . . . . . . . . 190
A.6.3 Schemes of Finite Type over CCC, Open and Closed

Subschemes . . . . . . . . . . . . . . . . . . . . . . . 191
A.6.4 Local Structure of Closed Subschemes . . . . . . . . 191
A.6.5 Fiber Products . . . . . . . . . . . . . . . . . . . . . 191
A.6.6 Separated Schemes . . . . . . . . . . . . . . . . . . . 192



viii CONTENTS

A.6.7 Proper Morphisms and Projective Schemes . . . . . 192
A.6.8 Smooth Schemes of Finite Type over CCC . . . . . . . 193
A.6.9 Quasi-coherent and Coherent Algebraic Sheaves . . . 193

A.7 Some Definitions from Complex Analytic Space Theory . . 194
A.7.2 Proper Morphisms . . . . . . . . . . . . . . . . . . . 194
A.7.3 Fiber Products . . . . . . . . . . . . . . . . . . . . . 195
A.7.5 Coherent Analytic Sheaves . . . . . . . . . . . . . . 195

A.8 Sheaf Cohomology . . . . . . . . . . . . . . . . . . . . . . . 195
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Preface

Broadly speaking, Moduli Theory involves the discovery of rich geometric
structures on the set of isomorphism (or suitable equivalence) classes of
familiar objects from Geometry, such as manifolds, varieties and bundles
over them. This book is a humble and basic introduction to the funda-
mental notions of family and deformation, together with their role in the
construction of moduli spaces. The attempt is to capture the genesis of
the main definitions and results of the theory from heuristic ideas. This is
done by fostering a mathematical intuition that is grounded in some basic
(though nontrivial) motivating examples. These examples serve not only
to point to the kind of results one can expect, but also to pathologies that
commonly arise in the construction of moduli spaces.

Structure of the Book. A more detailed introduction begins in page xi.
An objective and detailed list of the goals of this book is given in page xxi,
followed by a brief history of the initial developments in Moduli Theory from
page xxiii. There are 4 chapters followed by an Appendix and References.

Target Audience and Prerequisites. This book is addressed to an
audience between the Masters level and the Graduate level. One of its
guiding principles is to attempt to show that algebra, topology and analysis
work together to reveal beautiful geometry, thus giving an integrated view
of Mathematics to students at the senior Masters level. More specifically,
this book is aimed at the reader who has had some exposure to algebraic
geometry, algebraic topology and complex manifold theory. The material
from this book has formed the basis for introductory courses on Moduli
for doctoral students at the Chennai Mathematical Institute (CMI) and at
the Indian Institute of Technology Madras (IIT-M). The material can be
covered in two three-month semesters of teaching meeting 4 hours a week
with two extra weekly hours for seminars by students.

Exercises and Supplements. The vigilant reader may take up as
exercises the verifications of statements whose proofs are claimed to be

ix



x Preface

straightforward or routine. Since the author would like to keep the size of
the book to a minimum, there are several results in the book whose proofs
are referred to other books or articles. The interested reader could take up
the study of such material as supplementary reading. A classroom instruc-
tor using this book for a course may assign the study of such material
to student-groups for discussion and subsequent presentation in seminar
sessions running concurrently with the course.

Suggestions for Further Reading. The reader who wishes to further
study Classification Theory, Deformation Theory and Moduli Theory may
refer to the more advanced texts listed under the References.

Acknowledgements. The author is grateful to the Golden Jubilee Book
Writing Scheme of IIT-Madras for its support in the preparation of this
book. He is indebted to Prof. Dr. Ulrich Stuhler, Prof. Dr. Ralf Meyer and
the Mathematics Institute at the University of Goettingen, Germany, for
their encouragement and for supporting the publication of the book. The
author is also much thankful to Prof. Dr. Ulf Rehmann of the Department
of Mathematics at the University of Bielefeld, Germany, for his encourage-
ment, for forwarding an anonymous review of the first draft of the book
and for suggesting that the book be published by the University Press of
Goettingen.

November 2009, Chennai T. E. Venkata Balaji.



Introduction

This exposition is presented in four chapters. Each of these chapters begins
with an overview of the main topics and results discussed in that chapter.
Nevertheless, the purpose of the following discussion is twofold: to serve as
a general introduction and also to present the main ideas of each chapter.

Suppose we are given a set of objects in geometry of a certain type i.e.,
all the objects of this given set are endowed with a fixed type of mathe-
matical structure. Suppose further that it is possible to put an additional
mathematical structure on each of these objects; in order to distinguish this
additional structure from the structure already present, we will refer to the
latter as the underlying structure. The additional structure may have to
satisfy some compatibility conditions relative to the underlying structure.

It often happens that there may exist non-isomorphic additional struc-
tures on an object i.e., its underlying structure may “admit more than one
additional structure”. The set-theoretic classification problem is to describe
all possible non-isomorphic additional structures that can be imposed on
a given underlying structure. This is usually achieved by constructing a
natural set-theoretic bijection from the set S of isomorphism classes of
additional structures (on the same underlying structure) to a well-known
set.

Once this has been achieved, the classification problem may be called a
structural classification problem, if we can discover on the set S and on the
well-known set, abstract mathematical structures which get identified via
the bijection.

For example, consider the underlying structure to be the differentiable
manifold S1×S1 ⊂ R3, which is the familiar torus. This torus can be given
the additional structure of a compact complex manifold which makes it
into a compact Riemann surface of genus 1, called an elliptic curve. There
exist infinitely many non-isomorphic elliptic curves, so that the problem of
set-theoretic classification is to describe the set S of isomorphism classes of
elliptic curves.

xi



xii Introduction

A bijective mapping called the elliptic modular function J̃ can be defined
on this set S and the values of this function include every possible com-
plex number. Thus, the set S of isomorphism classes of elliptic curves is
bijective to the set C of complex numbers. Given an elliptic curve E, the
complex number J̃([E]) associated to its isomorphism class [E] via the ellip-
tic modular function J̃ , is called its j-invariant and this number therefore
completely characterizes the isomorphism class of the elliptic curve. Next,
all the natural mathematical structure on C, (its topology, real and com-
plex manifold structure, scheme structure etc.,) can be transported to the
set S via J̃ , but this seems to be artificial.

What happens actually is that there exists a natural structure of
Riemann surface S̃ on S, relative to which J̃ : S̃ −→ C becomes a biholo-
morphic mapping! In fact, the elliptic modular function J̃ : S̃ −→ C
descends from an elliptic modular function J : U −→ C (associated to
a natural family of elliptic curves over U , where U is the upper half-
plane in C) because the quotient Riemann surface S̃ of U by PSL (2,Z)
is set-theoretically the same as S and J is invariant under this action of
PSL (2,Z). Hence, as it turns out, there is nothing artificial in transporting
the structure on C to S via J̃ ! This is the main theme of chapter 1.

Now let us return to the general discussion i.e., of the classification of
nonisomorphic additional structures on a given underlying structure.

If there is a way to make sense of a “variation of the additional struc-
ture”, then one may investigate if such a variation is continuous or if it is
a discrete variation.

If the variation of the additional structure is continuous, (this is usu-
ally achieved using the notion of a “family” — we will elaborate later in
this introduction, the role of families in the formulation of a classification
problem) then we may call the problem of classification as a problem of
moduli of the additional structure. Such a problem of moduli poses the
following questions: Can the various additional structures (imposed on the
same underlying structure) be parametrized by elements of a topological
space? Does the parameter topological space have any natural mathemat-
ical structure (like that of a manifold, analytic space, scheme etc.,)? If so,
how does this structure relate to the variation of the additional structures?
How many minimum “independent” parameters are required to completely
achieve the parametrization? It is possible to “arrive at” one additional
structure from another in a “continuous manner”? What are the additional
structures that occur “sufficiently close” to a fixed additional structure?

The study of the local properties around a point of the parameter space
is called a local moduli problem and the study of the global properties of
the parameter space is called a global moduli problem.
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To illustrate the ideas of the above discussion, let us look at the following
situation naturally arising in Geometry. Consider the set of isomorphism
classes of compact connected oriented real differentiable 2-dimensional
manifolds (surfaces). Any representative surface of an element of this set
may be given a system of local complex coordinates which make it into
a compact Riemann surface. Thus, the underlying structure is that of a
compact connected oriented real differentiable 2-dimensional manifold (sur-
face), and the additional structure that may be imposed is that of a compact
Riemann surface.

So, the problem of classification in this situation is to investigate the
various distinct structures of compact Riemann surface that can be imposed
on a given compact oriented real surface. Of course, the additional struc-
ture of Riemann surface imposed must be compatible with the underlying
structure of real manifold i.e., any choice of local complex coordinates, giv-
ing the additional structure, should also serve as C∞ coordinates.

By a standard theorem for the classification of compact connected
oriented real 2-dimensional surfaces, any such surface is topologically iso-
morphic to a (hollow) sphere attached with a fixed number of (hollow)
cylindrical handles. This fixed number is called the genus of the surface.
For example, the sphere has genus 0, and the torus has genus 1. Therefore
the present problem of classification reduces to the study of the various
distinct structures of compact Riemann surface that can be imposed on a
surface of fixed genus g. Any integer invariant of the underlying structure,
such as the genus, must obviously be fixed for further classification.

The next question relevant to the present classification problem is
whether we can make sense of a variation of complex structures on the
same underlying surface of fixed genus. More generally, we may ask what a
variation of complex structures on the same underlying real differentiable
compact connected manifold could mean.

Recall that a compact complex manifold of dimension n is obtained
by glueing (i.e., identifying) open subsets of a finite number of domains
in n-dimensional complex space by biholomorphic maps called transition
functions. These functions are injective holomorphic maps depending on n
independent complex variables and take values in n-dimensional complex
space. It is intuitively clear that, if we allow the transition functions to vary
according to an extra variable called the parameter, then corresponding to
different values of this parameter we may hope to obtain different compact
complex manifolds (in spite of the fact that we are glueing the same finite
set of domains, since the nature of the identifications, which depend on the
transition functions, would change according to the parameter). Thus, as
the parameter varies, say the parameter is a variable point on a param-
eter space — a complex or differentiable manifold — we would obtain a
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collection of compact complex manifolds, one for each point of the param-
eter space. Then this collection can be thought of as a family of compact
complex manifolds varying with a parameter. We may call the family a dif-
ferentiable family (respectively a complex analytic family) if the transition
functions depend on the parameter differentiably (respectively holomorphi-
cally). But the question now is whether all the compact complex manifolds
of such a family have (up to isomorphism) the same underlying differen-
tiable manifold structure — for only then can we think of this family as a
family of varying complex structures on the same underlying differentiable
manifold.

Hence we reduce to the following question: how do we formulate the
notion of a family so as to make the ideas of the above paragraph precise?
To begin with, it is natural to think of the various compact complex mani-
folds of a family as fibers of a differentiable (respectively holomorphic) map
from a differentiable (respectively complex) manifold (whose local coordi-
nates induce complex structures on the fibers) into a parameter manifold
which is also a differentiable (respectively complex) manifold.

But then, what is the condition on this differentiable (respectively holo-
morphic) map, which will ensure that the underlying differentiable manifold
structures of all the fibers are mutually diffeomorphic i.e., to ensure that the
fibers are various complex structures on the same underlying differentiable
manifold?

This is where the beautiful idea of K.Kodaira and D.C.Spencer comes
in. They realized that the only condition on the map that is necessary is
that its Jacobian matrix at each point of the source manifold must be of
maximal rank. With this condition, they show that for a family of compact
connected complex manifolds, not only are the underlying differentiable
manifolds of the fibers of this family mutually diffeomorphic, but also that
fibers sufficiently close to a given fiber are all compact complex manifolds
obtained by glueing the same finite set of domains in complex n-dimensional
space but by different transition functions which depend on a variable point
on the parameter manifold.

This discovery of Kodaira-Spencer is the starting point for their Theory
of Deformations of Complex Structures and is the main theme of chapter 2.

Suppose we are given a family of complex structures parametrized by
a base manifold. Given a point of the base, we know that the complex
structure on the fiber over this point depends on the transition functions
corresponding to this point. Therefore, it is natural to expect that, given
a tangent direction at this point, the derivatives of these transition func-
tions along that direction should “measure the rate of change of complex
structure” of the fiber with respect to the parameter at that point. This
is how the infinitesimal deformation of the complex structure of a fiber of



Introduction xv

a family along a prescribed tangent direction on the base arises, and when
it is expressed in an intrinsic form free of the local coordinates on the base
and those on the fiber, gives an element of the first cohomology group of
the fiber (as compact connected complex manifold) with values in its sheaf
of germs of holomorphic vector fields. The study of this formulation and
its properties is the main theme of chapter 3.

The main theme of chapter 4 is to construct examples of two kinds of
global moduli space: fine moduli space and coarse moduli space. The method
of construction used to obtain such global moduli spaces may be called a
passage from the local moduli spaces to a global moduli space, which involves
“glueing of various local moduli spaces”. We illustrate some of the main
ideas of chapter 4 in the following discussion on the problem of moduli of
compact Riemann surfaces of fixed genus.

We first explain the Teichmüller-Bers construction. LetMg denote the
set of isomorphism classes of compact Riemann surfaces of genus g ≥ 2.
Since the underlying differentiable manifolds, of any two compact Riemann
surfaces of the same genus, are isomorphic, the problem of classification is
to describe the various distinct additional structures of compact Riemann
surface that can be imposed on the underlying structure of differentiable
manifold of any compact Riemann surface of genus g.

As a preliminary step towards converting this classification problem
into a moduli problem, we first give the structure of a topological space
to the set Mg. It is in this step that the notion of a family is cru-
cially used. To explain how, let (F, T, p) be a complex analytic fam-
ily of compact Riemann surfaces of genus g parametrized by a complex
analytic space T . Thus p : F −→ T is a proper morphism of com-
plex analytic spaces whose Jacobian is of maximal rank at each point
of F , and each fiber Ft := p−1(t), t ∈ T , is a compact Riemann surface
of genus g. Given such a family, we can define the following classifying
map:

ν(F,T,p) : T −→Mg, t 7→ [Ft],

where [Ft] denotes the isomorphism class of the compact Riemann surface
Ft of genus g. It is now natural to expect that any “good” structure of
topological space that we may want to impose onMg should make ν(F,T,p)

into a continuous map. Using this as a guideline, we define the topology
on Mg to be the strongest (i.e., the finest) such that the classifying maps
corresponding to every possible family are all continuous. This topology
is called the topology defined by families and the corresponding topological
space structure on Mg will be denoted by MTOP

g . Note the following
universal property on MTOP

g : if M′g is any topological space structure
on Mg such that the classifying maps corresponding to each family are all
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continuous, then the set-theoretic identity mapping 1Mg onMg includes a
continuous map MTOP

g −→M′g.
Now that we have topologized Mg, we may pose the following moduli-

theoretic questions which may be divided into two major categories: ques-
tions pertaining to the problem of global moduli of compact Riemann
surfaces of genus g, and questions pertaining to the problem of local moduli
of a given compact Riemann surface of genus g.

The questions pertaining to the global moduli problem are: What is the
fundamental group ofMTOP

g ? What are its higher homotopy groups? Is it
a noetherian topological space, and if so, what is its dimension? What are
the homology groups of MTOP

g with co-efficients in Z,R or C, and what
are the cohomology groups of MTOP

g with values in naturally occurring
sheaves of abelian groups onMTOP

g ? Is there a natural compactification of
MTOP

g , and if so, what is the nature of each of the boundary points? Does
MTOP

g admit the structure of an analytic space or scheme? If so, what
are the properties of this structure and how do these relate to families?
In particular, if there exist singular points, does there exist a canonical
explicit desingularization which also occurs as a moduli space for a more
general moduli problem?

Given a compact Riemann surface X of genus g, let m ∈Mg denote its
isomorphism class. Then the problem of local moduli of X poses the follow-
ing questions: What is the structure of a sufficiently small neighborhood of
m? (Note that each point occurring in a sufficiently small neighborhood of
m can be regarded as a local deformation of the complex structure of X.)
IfMTOP

g admits an analytic space structure, atleast in some neighborhood
of m, then is m a singular point? If so, what is the type of singularity at
m? (This is the same as asking for a local model for the singularity at m.)
Can the tangent space at m be described explicitly? Can the dimension of
this tangent space be computed? What is the relationship of the structure
in a neighborhood of m to families of deformations of X?

Having posed the above questions, let us see the kind of answers we are
able to get.

Let C be a compact Riemann surface of genus g. Then its fundamental
group is independent of its complex structure, so we will let π1,g denote the
fundamental group of any compact Riemann surface of genus g.

The Theorem of Uniformization of Riemann surfaces asserts that there
exists a subgroup GU , of automorphisms of the upper half-plane U in C,
isomorphic to π1,g, which acts without fixed points and properly discontin-
uously on U so that the set-theoretic quotient U/GU can be given a natural
complex structure of a compact Riemann surface of genus g isomorphic to
C, and such that the canonical map U −→ U/GU becomes a holomorphic
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covering map. Of course, U may be replaced by a domain D ⊂ P 1
C which

is biholomorphic to U via an automorphism of the extended complex plane
P 1

C, and GU may be identified with the corresponding subgroup GD of
automorphisms of D isomorphic to π1,g, so that we again have D/GD ∼= C.

There exists a bounded domain Tg ⊂ C3g−3, called the Teichmüller
Space of genus g, which was constructed originally by Teichmüller as an
abstract metric space and was shown by him to be homeomorphic to R6g−6.
To each t ∈ Tg, there is attached a domain Dt ⊂ P 1

C, such that the union
∪t∈Tg{t} × Dt is an open set Ωg in the product Tg × P 1

C, and since the
projection map p1 : Tg × P 1

C −→ Tg is of maximal rank everywhere, so is
the induced map p : Ωg −→ Tg, so that (Ωg,Tg, p) is actually a complex
analytic family of domains in P 1

C parametrized by the Teichmüller space.
Further, for each t ∈ Tg, there is a subgroup Gt of automorphisms of Dt

consisting of Möbius transformations (i.e., automorphisms of P 1
C) and which

is isomorphic to π1,g, which also acts properly discontinuously and without
fixed points on Dt so that the quotient Dt/Gt is a compact Riemann surface
Ct of genus g and every compact Riemann surface of genus g occurs as such
a quotient for a suitable t ∈ Tg. The crucial point now is that there exists a
subgroup G of automorphisms of Ωg, which is isomorphic to π1,g, and which
acts properly discontinuously and without fixed points on Ωg in such a way
that it leaves each fiber {t} × Dt of the family p : Ωg −→ Tg invariant
and further, the action on any such fiber {t} × Dt identified with Dt is
nothing but the action of Gt on Dt. Thus, the quotient Cg := Ωg/G exists
as a complex manifold, and the map p : Ωg −→ Tg induces a holomorphic
map π : Cg −→ Tg, whose Jacobian is of maximal rank everywhere, and
each of whose fibers π−1(t) = p−1(t)/G=̃Dt/Gt = Ct is a compact Riemann
surface of genus g, so that (Cg,Tg, π) is a complex analytic family of compact
Riemann surfaces of genus g called the Teichmüller-Bers family. Actually,
the quotient map Ωg −→ Cg is a holomorphic covering map and is hence
locally biholomorphic, so that the map π is locally given by a biholomorphic
map Cg 99K Ωg followed by the projection p, from which it is obvious that
π is of maximal rank at each point of Ωg.

It now happens that the Teichmüller space Tg contains “redundant
parameters” i.e., there are many points of Tg over which the fibers of π are
isomorphic. Teichmüller discovered that the quotient group of the group of
automorphisms of π1,g by its normal subgroup of inner automorphisms of
π1,g i.e.,

Γg := Aut(π1,g)/Int(π1,g),

called the Teichmüller modular group of genus g or the mapping class group
of genus g, has a natural action on Tg, so that Ct ∼= Ct′ if and only if t
and t′ belong to the same Γg-orbit. Thus, there is a natural set-theoretic
bijection of the quotient Tg/Γg with Mg. Further, the properties of the
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action of Γg on Tg allow us to give a natural structure of complex analytic
space on this quotient, such that the canonical quotient map from Tg into
this quotient is a holomorphic map of complex analytic spaces. It is, in
fact, a ramified covering of the quotient, with the points of ramification
corresponding to points of Tg which have nontrivial stabilizers. For each
t ∈ Tg, the stabilizer subgroup Γg(t) is the subgroup of Γg consisting of
elements which fix t, and this stabilizer subgroup is a finite group isomorphic
in a natural way to the finite group of automorphisms of the compact
Riemann surface Ct. Since there exist fixed points for the action of Γg i.e.,
there exist points of Tg having nontrivial stabilizers, the quotient Tg/Γg
fails to be a manifold i.e., it has singular points. However, this quotient
is a Hausdorff connected topological space. Hence, we may give the set
Mg the structure of a Hausdorff connected complex analytic space i.e.,
that of Tg/Γg transported via the natural bijection of this quotient with
Mg. We shall denote this structure on Mg by MHOL

g . But what has this
structure got to do with MTOP

g ?
Let (F, T, p) be any complex analytic family of compact Riemann sur-

faces of genus g, so that we have the continuous classifying map ν(F,T,p) :
T −→MTOP

g as explained earlier. The Teichmüller-Bers family (Cg,Tg, π)
possesses the following locally-universal property : for each t ∈ T , there
exists a neighborhood Ut of t in T , and a holomorphic map νt : Ut −→ Tg
which when followed by the holomorphic projection map Tg −→ MHOL

g

is set-theoretically the same as the map ν(F,T,p) : T −→ Mg restricted to
Ut. Hence, we see that the set-theoretic map ν(F,T,p) : T −→Mg can also
be considered as a holomorphic map ν(F,T,p) : T −→ MHOL

g . But by the
universal property of MTOP

g explained earlier, it follows that the identity
map on Mg induces a continuous map from MTOP

g to MHOL
g .

Further, if V is an open subset of MTOP
g , since the classifying map for

the Teichmüller-Bers family is continuous, the inverse image Ṽ of V under
this map is an open set in Tg, and by the very definition of the quotient
topology, its image inMHOL

g is also an open subset. But the underlying set
of this image is simply V itself, and hence we see that the identity mapping
on Mg induces a continuous map from MHOL

g to MTOP
g . Combined with

the last line of the previous paragraph, we thus see that the underlying
topological structure ofMHOL

g is homeomorphic toMTOP
g . Thus, we may

think of MHOL
g as a complex analytic space structure on the underlying

topological spaceMTOP
g . This justifies the appropriateness of the topology

on Mg defined via families in the first place.
Hence, for each family (F, T, p) of compact Riemann surfaces of genus

g parametrized by a complex analytic space T , the classifying map can
be thought of as a holomorphic map into MHOL

g . This is expressed by
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saying that MHOL
g is a coarse moduli space for compact Riemann surfaces

of genus g.
Unfortunately, the Teichmüller family (Cg,Tg, π) does not descend to

give a family onMHOL
g . If such a thing had happened, then we would call

MHOL
g a fine moduli space (and the descended family a universal family),

which means that every morphism of complex analytic spaces T −→MHOL
g

is the classifying map associated to some family on T and further, the classi-
fying map corresponding to any family depends precisely on the equivalence
class of that family. It can be shown that there cannot exist a fine moduli
space for compact Riemann surfaces of genus g, or equivalently that there
does not exist a universal family of compact Riemann surfaces of genus g.

The study of the factors — global and local obstructions — responsi-
ble for the non-existence of a fine moduli space is also a related problem.
In chapter 4, we discuss the problem of moduli of compact Riemann sur-
faces of genus 1 (these are called elliptic curves), both from the complex
analytic viewpoint and the algebraic viewpoint, and we also describe the
nature of the global and local obstructions to the non-existence of a fine
moduli space for this problem.

As far as the properties of MTOP
g are concerned, J. Harer has proved

that the cohomology group H2(MTOP
g ,Z) ∼= Z, and the Stability Theorem

that
Hk(MTOP

g ,Z) ∼= Hk(MTOP
g+1 ,Z) if g ≥ 3k + 1.

He has also proved that MTOP
g is homotopy-equivalent to a simplicial

complex of dimension 4g − 4. Thus, we have the Cohomology Vanishing
Theorem that

Hi(MTOP
g ,Z) = 0 if i ≥ 4g − 4.

Since a compact Riemann surface of genus g corresponds to a smooth
algebraic curve of genus g by J.-P.Serre’s GAGA Theorem, Mg can also
be thought of as the set of algebraic isomorphism classes of curves of
genus g, and we could formulate an algebraic version of the moduli prob-
lem of compact Riemann surfaces of genus g, by considering only alge-
braic families. D.Mumford’s Geometric Invariant Theory allows us to con-
struct a coarse moduli space MALG

g for this algebraic moduli problem,
whose underlying complex analytic space is simply MHOL

g . MALG
g is

found to be irreducible and separated, and this is to be expected since
these properties are the counterparts of connectedness and Hausdorffness
of MHOL

g . This invariant-theoretic construction also gives a natural com-

pactification MALG

g of MALG
g , and the boundary points MALG

g \ MALG
g

are certain curves of genus g, called stable curves, which possess certain
well-defined singularities i.e., their underlying complex analytic spaces can
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be thought of as “Riemann surfaces with singularities”. It turns out that
MALG

g is also a coarse moduli space for a more general moduli problem
viz. that of stable curves of genus g.

C.S.Seshadri’s Geometric Invariant Theory Over Arbitrary Base extends
moduli constructions such as the one above to the case when the base field
C is replaced by any commutative ring, or more generally, by a locally
noetherian scheme.

Finally, let us remark that the problem of moduli of holomorphic line
bundles on any fixed compact Riemann surface (of arbitrary genus) always
admits a fine moduli space for its solution, and this is proved in chap-
ter 4. This result admits a generalisation called the Narasimhan-Seshadri
Theorem, references to which may be found in the bibliographies of
[7] or [31].



The Goals of this Book

The Goals of this Book are:

(1) to explain the notion of a family and construct nontrivial examples
of families;

(2) to explain the notion of an infinitesimal deformation of complex struc-
ture;

(3) to compute all the infinitesimal deformations of any complex torus
(of arbitrary dimension) and of any holomorphic line bundle of degree
zero on a compact Riemann surface;

(4) to explain the definitions and the major results of the Theory of
Local Moduli of Kodaira-Spencer and apply these results to justify
Riemann’s formula for the number of moduli of a compact Riemann
surface;

(5) to explain Kuranishi’s Theorem and to give some of its applications;
(6) to explain the notion of a local moduli space and give some examples;
(7) to explain the notion of a moduli problem, of a coarse moduli space

and of a fine moduli space;
(8) to construct the fine moduli space from local moduli spaces for the

problem of moduli of holomorphic line bundles of degree zero on a
compact Riemann surface;

(9) to construct the coarse moduli space from local moduli spaces for the
problem of moduli of elliptic curves over the field of complex numbers
and

(10) to present the Theory of Moduli as a topic whose study draws from
and enriches diverse areas of Mathematics.
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A Historical Note

The term moduli is due to Riemann, who heuristically justified his for-
mula for the dimension, of the “space” of isomorphism classes of compact
Riemann surfaces of genus g ≥ 2, as 3g − 3:

“hängt . . . von 3g − 3 stetig veränderlichen Grossen ab,
welche die moduln dieser Klasse genannt werden sollen.”

The above words are from Riemann’s famous paper on Abelian Func-
tions [16] in 1857. In modern mathematical terminology, Riemann’s result
can be stated as follows: the local moduli space of a compact Riemann sur-
face of genus g ≥ 2 is smooth of complex dimension 3g− 3. O.Teichmüller,
in the 30’s, gave the precise formulation of Riemann’s results, and estab-
lished some of these results using his Theory of Extremal Quasi-Conformal
Mappings [19].

The remaining statements formulated by Teichmüller were proved by
Lipman Bers in the 60’s [29]. The solution to the complex analytic version
of the problem of moduli of compact Reimann surfaces of fixed genus was
thus completed. In today’s mathematical language, the Teichmüller-Bers
Theorem may be stated as follows: there exists a coarse moduli space for
the problem of moduli of compact Riemann surfaces of any fixed genus
g; further, this moduli space is obtained naturally as the quotient of the
Teichmüller space of genus g by the Teichmüller modular group of genus g,
and there exists a locally-universal family of compact Riemann surfaces of
genus g on this Teichmüller space.

Meanwhile, the next important development in the theory of defor-
mations of complex structures was obtained in 1957 by Fröhlicher and
Nijenhuis [10]. Their result may be stated as follows: a compact com-
plex manifold, whose first cohomology group with values in its sheaf of
germs of holomorphic vector fields vanishes, does not undergo changes in
its complex structure under sufficiently small perturbations.

It was this result which inspired K.Kodaira and D.C.Spencer to pioneer
the study of the Theory of Deformations of Complex Structures [6]. They

xxiii
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developed this theory during the period 1958 through 1960. This theory
may be called the Theory of Local Moduli, and it focusses on the study of
arbitrarily small deformations of the complex structure of a compact com-
plex manifold. Such arbitrarily small deformations are called infinitesimal
deformations. These are by definition, certain first cohomology classes,
namely certain elements of the first cohomology group of the compact com-
plex manifold with values in its sheaf of germs of holomorphic vector fields.
Kodaira-Spencer Theory is able to show that every first cohomology class
of the above cohomology group corresponds to an infinitesimal deformation
only under the hypothesis that the second cohomology group of the com-
pact complex manifold, with values in its sheaf of germs of holomorphic
vector fields, vanishes.

An infinitesimal deformation may be thought of as a derivative of the
complex structure of the compact complex manifold, and hence under the
hypothesis just mentioned, we may say that every first cohomology class
may be integrated to obtain a smooth deformation (whose derivative of
complex structure is precisely the cohomology class we have integrated).
This theorem of Kodaira-Spencer is called the Theorem of Existence, and it
may be considered as a theorem for the integrability of formal infinitesimal
deformations.

The next important contribution to the Theory of Local Moduli is due to
Kuranishi in 1962. His deep theorem extends the Theorem of Existence of
Kodaira-Spencer mentioned above. Kuranishi’s Theorem [14] asserts that
every first cohomology class of a compact complex manifold (relative to its
sheaf of germs of holomorphic vector fields) can be integrated to obtain
a deformation, but in general the deformation so obtained need not be a
smooth deformation.

Finally, Kuranishi’s Theorem was extended by Grauert [15] to the case
of deformations of the complex structure on any complex analytic space.

So far, we have been considering the problem of moduli of a compact
complex analytic space from the complex analytic viewpoint. However,
when the compact complex analytic space is also algebraizable, since we
know that its algebraic structure is determined uniquely up to isomorphism,
we can formulate the problem of moduli of its algebraic structure also.

A.Grothendieck has reformulated the foundations of Algebraic
Geometry by developing his Theory of Schemes from the late 50’s and
since then, the language and tools developed by him have been indispens-
able in the formulation and solution of various moduli problems in Algebraic
Geometry.

The notion of a formal deformation of an algebraic object, such as a
scheme or a fiber bundle over a scheme, is due to A.Grothendieck.
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Next, in 1968, M.Schlessinger [20] proved an important theorem which
ensures the existence of a versal deformation for the algebraic structure of
an algebraic object, provided certain simple criteria are satisfied.

Some of the main contributors to the development of the Theory of
Global Moduli in Algebraic Geometry and their theories are: D.Mumford
for his Geometric Invariant Theory, Artin for his Theory of Algebraic Spaces
[30], C.S.Seshadri for his Geometric Invariant Theory over Arbitrary Base
and P.Griffiths for his Theory of Period Mappings.

For complete references to the works of the above mathematicians, and
for an ocean of references pertaining to developments in Moduli Theory,
see the bibliography in [31].



 
 
 



1. Classification of Annuli
and Elliptic Curves

1.1 Overview of this Chapter

In this chapter we classify conformal equivalence classes (i.e., holomor-
phic isomorphism classes) of annuli and elliptic curves (compact connected
Riemann surfaces of genus 1). This classification is achieved by applying the
Theory of Uniformization of Riemann surfaces. The classification of annuli
is done in section 1.4, and that of elliptic curves is done in section 1.5

Any Riemann surface can be uniformized in the sense that it is the
quotient of a simply connected domain in the extended complex plane by a
group of Möbius transformations. The quotient is a universal covering with
deck transformation group isomorphic to the fundamental group of the
given Riemann surface. This uniformization is introduced in section 1.3
alongwith a description of those Möbius transformations that give rise to
deck transformations in the universal covering.

The main aim of section 1.3 is to develop the complete structure of
universal coverings of annuli and elliptic curves and in the process we
describe the universal coverings of those Riemann surfaces whose funda-
mental groups are abelian. For this we introduce the notions of parabolic,
elliptic, hyperbolic and loxodromic Möbius transformations.

We get, as by-product of the discussion in section 1.3, some important
results such as the torsion-freeness of the fundamental group of a Riemann
surface; the absence of elliptic elements in the covering group of a Riemann
surface and that the complex 1-dimensional tori (elliptic curves) are the
only Riemann surfaces whose fundamental groups are free abelian groups
on two generators.

Before all this, the fundamental notions of topological and holomor-
phic covering, ramified covering, universal covering, deck transformation
group, covering group and Galois covering are reviewed in section 1.2. The

1
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relation between conjugacy classes of subgroups of the fundamental group
of a Riemann surface to the coverings it has is also recalled.

The main aim of subsection 1.5.2 is to develop the necessary theory
required to endow the quotient of the upper half-plane by the unimodular
group with the structure of an abstract Riemann surface and show that
this structure is biholomorphic to the complex plane. Thus it is indicated
there how the quotient of a Riemann surface by a group of biholomorphic
automorphisms is naturally again a Riemann surface. The group is assumed
to act properly discontinuously, though it may have fixed points. The case
of complex tori of arbitrary dimension is discussed in detail.

The notions of Kleinian, Fuchsian, discontinuous and discrete groups
are introduced in (1.5.2.3) and (1.5.2.4), and some relationships between
these notions are explained. The elliptic modular function is recalled in
(1.5.2.6) and it is required in the classification of elliptic curves. Its defini-
tion as usual is via the zeros of the derivative of the Weierstrass ℘-function.
The latter also justifies the name“elliptic curve” by identifying it with the
underlying compact Riemann surface of a smooth projective algebraic curve
of genus 1 embedded in two-dimensional complex projective space.

The set-theoretic classification achieved moots the question of a rela-
tionship between the natural geometry on the parameter space and the
geometry of the objects being classified. This leads to the study of “fami-
lies” — a concept explained in the next chapter.

1.2 Preliminaries

This section rapidly reviews fundamental results from the Theory of Cov-
erings of Riemann surfaces. For more details, see [1] and [2]. All the
topological spaces considered will be assumed to be path connected, locally
path connected, locally simply connected and Hausdorff. All these prop-
erties are for example satisfied by any locally-Euclidean space (topological
manifold).

1.2.1 Topological Coverings

1.2.1.1 The Definition of a Topological Covering

Let M be a topological space. A topological covering of M consists of a
topological space M̂ and a continuous map p : M̂ −→ M such that the
following condition holds: every point of M has an open neighborhood
whose inverse image under p is a disjoint union of open sets each of which
p maps homeomorphically onto the given neighborhood in M . Note in
particular that p is a surjective local homeomorphism. M̂ is called the
covering space and p the covering map associated to this topological covering.
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1.2.1.2 Properties of Local Homeomorphisms

Assume that p : M̂ −→M is a local homeomorphism. Let f : N −→M be
a continuous map admitting two liftings g1 and g2. This means that the gi
are continuous maps from N into M̂ such that p ◦ g1 = f = p ◦ g2. If g1

and g2 assume the same value at some point of N , then we can show that
they are equal.

Hence p being a local homeomorphism ensures uniqueness of lifting.
In particular, for a (continuous) curve or path f : [0, 1] ⊂ R −→ M , a

lifting g with g(0) prescribed is unique if it exists. We can further show
that if two such curves are homotopic with the same end points, and if
the liftings at each level of the homotopy exist (for a prescribed lift of the
initial point), then the liftings are themselves homotopic with the same end
points. In particular this means they have the same final points in M̂ .

1.2.1.3 The Curve Lifting Property

If we assume that p : M̂ −→ M is a topological covering, which is more
than assuming that p is a local homeomorphism, then we can show that
p has the curve lifting property: every curve in M can be uniquely lifted
to one in M̂ starting at a chosen initial point. Hence by the last line of
the previous paragraph homotopic curves can be lifted to homotopic curves
and we thus get the Monodromy Theorem for the covering p : M̂ −→ M .
Conversely, we can prove that a local homeomorphism p : M̂ −→ M with
the curve lifting property is a topological covering.

1.2.1.4 The Sheet Number of a Covering

If p : M̂ −→ M is a topological covering, then the set-theoretic fibers
p−1(m) of p for all m ∈ M have the same cardinality. This (cardinal)
number is called the number of sheets of the covering.

1.2.1.5 Coverings Determined by Discrete Proper Local
Homeomorphisms

We have seen above that if p : M̂ −→ M is a local homeomorphism with
the curve lifting property, then p is a topological covering. Alternatively, if
it is known that p is a local homeomorphism and is a proper, discrete map,
then we can conclude that p is a covering map.

Recall that a map of topological spaces is said to be discrete if each
of its fibers (inverse images of singleton subsets) is a topologically discrete
subspace of its domain. For example, any nonconstant holomorphic map
of Riemann surfaces is discrete (and open too). Also recall that a map of
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locally compact Hausdorff spaces is said to be proper if the preimage of every
compact set is compact. For example, every continuous map of a compact
locally Euclidean Hausdorff space into any locally compact Hausdorff space
is proper. It can be verified that the image of a closed set under a proper
map is closed.

Now let p : M̂ −→ M be a proper discrete local homeomorphism.
We quickly indicate how it is a covering map. Let m ∈M . Then p−1(m) is
discrete and compact, hence a finite set of points {m̂1, . . . , m̂n}. Since p is
a local homeomorphism, for each j = 1, . . . , n there exist an open neighbor-
hood Uj of m and an open neighborhood Wj of m̂j such that p maps Wj

homeomorphically onto Uj . We may assume Wj are pairwise disjoint. Now
∪nj=1Wj is an open neighborhood of p−1(m), so its complement F̂ in M̂ is
closed. Since p is proper, F := p(F̂ ) is closed in M. Then m is not in F and
V := (M−F )∩(∩nj=1Uj) is an open neighborhood of m whose inverse image
under p is a disjoint union of open neighborhoods each of which p maps
homeomorphically
onto V QED

1.2.2 Branched and Unbranched Coverings of Riemann
Surfaces

1.2.2.1 Complex Structure on the Covering Space

Let M be a Riemann surface. Let p : M̂ −→M be a topological covering of
M . Since p is a surjective local homeomorphism, we can transport the com-
plex structure on M to M̂ thereby making M̂ into a Riemann surface and
p into a holomorphic mapping. Since p is locally an injective holomorphic
map, it is also locally biholomorphic.

Suppose M̂ is equipped with another complex structure so that it is
again a Riemann surface relative to which p becomes a holomorphic map.
Then p is again locally biholomorphic relative to the new complex structure.
Thus the identity map on M̂ gives a holomorphic isomorphism between the
two complex structures on M̂.

Hence any topological covering space of a Riemann surface acquires nat-
urally a unique Riemann surface structure that makes the covering map
holomorphic.

With the above Riemann surface structure on M̂ , we call p : M̂ −→M
a holomorphic covering of the Riemann surface M.
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1.2.2.2 Simple Examples of Covering Maps of Riemann Surfaces

The following are some of the basic examples of coverings of Riemann sur-
faces:

1. pk : C∗ −→ C∗ where C∗ := C− {0} and pk(z) := zk, (k ∈ N);
2. the exponential map from C to C∗;
3. p : C −→ C/L where L = L(τ) = {n + mτ ; n,m ∈ Z}, with τ ∈ C

such that Im(τ) > 0, is a lattice and p is the canonical projection.
C/L is topologically a torus. It has a canonical complex structure
inherited from C via p locally. It is hence a compact Riemann surface
of genus 1 and is in fact the underlying compact Riemann surface of
an elliptic algebraic curve. For more details, see example (1.5.2.2.1),
(1.5.2.6.1) and (1.5.2.6.2).

1.2.2.3 Ramified Coverings

Now let p : M̂ −→ M be a proper non-constant holomorphic mapping of
Riemann surfaces. A point m̂ ∈ M̂ is called a branch point or ramification
point of p if there is no neighborhood of m̂ restricted to which p is injective.
Let A be the set of branch points of p. Then this is a discrete set whose
complement is open. Hence A is both discrete and closed. Since p is proper,
discrete and open, the set B := p(A) is also closed and discrete. B is called
the set of critical values of p. Now let M̂1 denote the complement in M̂
of the inverse image of B under p, and M1 the complement of B in M .
Then the restriction of p to M̂1 is a proper, nonconstant holomorphic map
of Riemann surfaces which is unbranched, i.e., it has no branch points.

It is easily seen that this map is a discrete proper local homeomorphism
and so it is a covering map by (1.2.1.5). Hence the number of sheets of
the covering (see (1.2.1.4)) is defined and is finite. Let this number be n.
This means that every value in M1 is taken by p exactly n times. But what
about values in B? It turns out that if we consider the (local) multiplicities
with which p takes a value in B, then p also takes each value in B, counting
multiplicities, exactly n times. Hence such a proper nonconstant holomor-
phic map p : M̂ −→M is called an n-sheeted ramified holomorphic covering
map.

Let us apply the results above to a nonconstant meromorphic func-
tion on a compact Riemann surface. Incidentally, every known proof of
the existence of nonconstant meromorphic functions on an arbitrary Rie-
mann surface is nontrivial. A way out for a compact Riemann surface is
to embed it into complex n-dimensional projective space PnC as a complex
submanifold for a suitable n. Then Chow’s Theorem (A.10.5.2) shows that
it acquires the additional structure of a smooth projective algebraic curve.
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Now any nontrivial projection onto any subspace P 1
C gives rise to a non-

trivial meromorphic function and every meromorphic function is obtained
in this way.

Any given nonconstant meromorphic function f on a compact Riemann
surface can be thought of as a nonconstant proper holomorphic map into
the Riemann Sphere C ∪ {∞} = P 1

C. Applying the results of the first two
paragraphs above gives the following.

Any meromorphic function on a compact Riemann surface has as many
zeros as it has poles, where the zeros and poles are counted with multiplici-
ties.

As another application of the results of the first two paragraphs above,
we may consider a polynomial of degree n as a holomorphic proper self-map
of the Riemann sphere. Since it takes any finite value exactly n times, we
get the following.

A polynomial of degree n in one variable takes the value ∞ exactly n
times.

1.2.2.4 Holomorphic Liftings

Before ending this subsection, we make some remarks on the holomorphicity
of continuous liftings. Let p : M̂ −→M be an unbranched holomorphic map
of Riemann surfaces. This is equivalent to assuming that p is a holomorphic
local homeomorphism. Now let f : N −→ M be any holomorphic map of
Riemann surfaces and let a lifting of f to a continuous map g : N −→ M̂
exist. Then it is easily verified that g is also holomorphic.

An important consequence of the above is the following. Let pi : M̂i −→
M be unbranched holomorphic maps of Riemann surfaces for i = 1, 2. Then
any continuous map f : M̂1 −→ M̂2 which is fiber-preserving, i.e., satisfying
p2 ◦ f = p1, is holomorphic. Therefore any such fiber-preserving map f
which is a homeomorphism is also biholomorphic.

1.2.3 Relations between π1(M)π1(M)π1(M) and Coverings of MMM

Let us denote by π1(M) the (first) fundamental group or first homotopy group
of any path connected topological space M . Recall that π1(M) consists of
homotopy equivalence classes of loops starting and ending at a chosen point
of M called the base point. Path connectedness ensures that a change of
the base point would alter π1(M) only up to an isomorphism. Now let
p : M̂ −→ M be a topological covering. Since π1(−) is a covariant func-
tor from the category of topological spaces (and continuous maps) to the
category of groups (and group homomorphisms), we get an induced group
homomorphism π1(p) : π1(M̂) −→ π1(M). Due to the unique path lifting
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property and the Monodromy theorem (1.2.1.3), π1(p) is injective and its
image determines a subgroup of π1(M). For the same reasons, π1(M,m)
acts on the fiber p−1(m) : given m̂ ∈ p−1(m) and [γ] ∈ π1(M,m), [γ] · m̂
is the terminal point of the unique lift of γ starting at m̂. It is easy to
check that this action moves any point of the fiber to any other point,
thereby giving a natural identification of the fiber with the coset space
π1(M)/Image(π1(p)).

1.2.3.1 Universal Coverings

Let M be a connected manifold. Then there exists a connected, simply
connected manifold M̃ and a covering map p̃ : M̃ −→M . Since M̃ is simply
connected, its fundamental group is trivial. Any such covering p̃ : M̃ −→M
is called a universal covering of M . This is because it satisfies the following
universal property. Let p : M̂ −→ M be any covering of M . Let m̂ ∈ M̂
and m̃ ∈ M̃ be given such that m̃ is mapped by p̃ to the same point
of M as is m̂ by p : M̂ −→ M . Then there exists a unique lifting of
p̃ : M̃ −→ M to a continuous map f : M̃ −→ M̂ which takes m̃ to m̂.
The proof of this result uses the hypotheses that M̃ is simply connected,
pathwise connected and locally pathwise connected. Hence given any two
universal coverings p̃i : M̃i −→ M , (i = 1, 2), there exists a unique fiber-
preserving homeomorphism f : M̃1 −→ M̃2. In this sense, the universal
covering p̃ : M̃ −→M is uniquely determined up to a unique isomorphism.

In particular, if M is a Riemann surface, so that we get a unique struc-
ture of Riemann surface on its universal covering space M̃ as indicated in
(1.2.2.1), then we call M̃ the holomorphic universal covering space of M .

1.2.3.2 Deck Transformations, Galois Coverings and the
Fundamental Group

A covering transformation or deck transformation of a topological covering
p : M̂ −→ M is a fiber-preserving homeomorphism of M̂ onto itself. The
set DeckM (M̂, p) of deck transformations becomes naturally a subgroup of
the group Aut(M̂) of automorphisms of M̂. If α ∈ Aut(M̂), the mapping
β 7→ αβα−1 gives an isomorphism of DeckM (M̂, p) with DeckM (M̂, pα−1)
inside Aut(M̂). Thus the deck transformation group is determined up to
conjugation in Aut(M̂).

The covering p : M̂ −→ M is said to be Galois (or normal or regular)
if DeckM (M̂, p) acts transitively on every fiber of p. This means that the
orbit of any point m̂ ∈ M̂ is the whole fiber p−1(p(m̂)) to which it belongs.
For example the universal covering p̃ : M̃ −→ M of a connected manifold
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M is Galois with deck transformation group isomorphic to π1(M). In this
case the deck transformation group is called the covering group of M .

It is clear that this covering group is determined up to conjugation in
the full group of automorphisms of the universal covering space.

1.2.3.3 Galois Theory of Coverings

If p : M̂ −→ M is a covering of the connected manifold M and M̂ is also
a connected manifold, then by the very definition of the universal covering
p̃ : M̃ −→M , there exists a continuous fiber-preserving map f : M̃ −→ M̂ .
This turns out to be a covering map and hence it is the universal covering
for M̂ . Thus G := DeckcM (M̃, f) is isomorphic to the fundamental group
of M̂ and is a subgroup of DeckM (M̃, p̃) ∼= π1(M).

Suppose we replace p : M̂ −→ M by an isomorphic covering, i.e., by
a covering p : M −→ M coming with a homeomorphism α : M̂ −→ M
satisfying p = p ◦ α. Then we obtain a conjugate of G in the fundamental
group of M . Hence an isomorphism class of coverings [p : M̂ −→ M ]
uniquely determines a conjugacy class [G] of subgroups of π1(M). If p :
M̂ −→ M is Galois, G turns out to be normal in π1(M) and hence all of
its conjugates coincide.

Conversely, given a subgroup G of π1(M), the latter as usual being
identified with the covering group of M , we let M̂ := M̃/G i.e., the set of
orbits of G in M̃ . Endow M̂ with the quotient topology. The covering map
p̃ : M̃ −→ M induces a continuous map p : M̂ −→ M and it is checked
that this is a covering of M . Then this covering determines a subgroup
of the fundamental group of M as above and this subgroup is found to
be conjugate to G. Replacing G by any of its conjugates in π1(M) would
lead to a covering isomorphic to p : M̂ −→ M . Further, in the case when
G is normal, this covering p : M̂ −→ M turns out to be Galois and we
have DeckM (M̂, p) = DeckM (M̃, p̃)/G. Of course the case when G is the
trivial subgroup of the fundamental group of M gives the universal covering
p̃ : M̃ −→M itself!

Thus there is a bijection between the set of conjugacy classes of subgroups
of π1(M) and the set of isomorphism classes of coverings of M .

1.3 Uniformization of Riemann Surfaces

In this section we classify all those Riemann surfaces whose fundamental
groups are commutative. We recall the following nontrivial result. For a
proof, see [1], Chap. IV, Sec. 4.



1.3. Uniformization of Riemann Surfaces 9

1.3.1 The Fundamental Theorem

1.3.1.1 Theorem (Classification of Simply-Connected Surfaces).
Let M be a simply connected Riemann surface. Then M is conformally
equivalent to one and only one of the following:

1. the Riemann sphere C ∪ {∞};
2. the complex plane C;
3. the unit disc ∆ = {z ∈ C; |z| < 1} or equivalently the upper half-plane

U = {z ∈ C; Im(z) > 0}.

1.3.1.2 Notation. SL(2,C) denotes the special linear group of 2×2 com-
plex matrices of determinant 1. Restricting to real and further to integer
entries leads to the subgroups SL(2,R) and SL(2,Z) respectively. We define
the projective special linear groups PSL(2,C), PSL(2,R) and PSL(2,Z)
as quotients of the respective special linear groups by the normal sub-
group {±I2}. Each element in PSL(2,−) can be represented by exactly
two matrices of determinant 1, with one representative being the negative
of the other.

We denote by P∆(2,C) the subgroup of PSL(2,C) represented by upper
triangular matrices.

Notice that each Möbius transformation corresponds to one and only one
element of PSL(2,C). Thus the groups of biholomorphic automorphisms of
the extended plane C ∪ {∞}, the upper half-plane U = {z ∈ C; Im(z) >
0} and the complex plane C are respectively identified with PSL(2,C),
PSL(2,R) and P∆(2,C).

The unimodular group PSL(2,Z) of Möbius transformations will be the
major object of study in (1.5).

We immediately deduce the following from theorem (1.3.1.1).

1.3.1.3 Corollary (Uniformization for Arbitrary Surfaces). Let
M be a Riemann surface with universal covering p̃ : M̃ −→ M. Then M̃
can be taken to be exactly one of the simply connected surfaces 1, 2 or 3
of theorem (1.3.1.1). For each of these choices, the corresponding covering
group DeckM (M̃, p̃)—which is isomorphic to π1(M)—is a group of Möbius
transformations that acts properly discontinuously without fixed points and
is a subgroup respectively of PSL(2,C), P∆(2,C) or PSL(2,R).

Proof. For the definitions of properly discontinuous actions see (1.5.2.1.1)
and (1.5.2.3). It is obvious from the definition of the deck transformation
group that it acts without fixed points and properly discontinuously in the
cases mentioned QED
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1.3.1.4 Remark. The covering group of a Riemann surface as deter-
mined by the above corollary actually turns out to be topologically discrete.
This will be proved independently in (1.5.2.4). However, we shall use this
result in our arguments below.

1.3.2 Surfaces with Universal Covering the Sphere

Consider a Riemann surface M which admits a covering by the Riemann
sphere C ∪ {∞}. Since the Riemann sphere is simply connected, any such
covering is a universal covering. Now any holomorphic automorphism of
the Riemann sphere is a Möbius transformation. If it is not trivial, it has
at least one and at most two fixed points. Such a map cannot be a deck
transformation. Thus the deck transformation group (which is isomorphic
π1(M)) must be trivial. So M must be simply-connected. But then the
identity mapping serves as a universal covering map for M. The univer-
sal property satisfied by a universal covering (1.2.3.1) then leads to the
following.

1.3.2.1 Theorem. Any Riemann surface which admits a covering by the
Riemann sphere may be identified with the Riemann sphere itself. With this
identification, the only possible covering maps are elements of PSL(2,C).

1.3.3 Surfaces with Universal Covering CCC

Let us look at those Riemann surfaces M whose universal covering space
is C. Thus the deck transformation group (which is isomorphic to π1(M))
must be a subgroup of P∆(2,C) which acts properly discontinuously with-
out fixed points. Now the only fixed-point-free automorphisms of C are
of the form z 7→ z + a, a ∈ C∗ := C − {0}. Further if z 7→ z + a is a
deck transformation, then so is z 7→ z + na where n ∈ Z. This shows that
the deck transformation group is a discrete Z-module. If we identify the
automorphism z 7→ z + a with a ∈ C, then the deck transformation group
becomes a discrete Z-submodule of C. The following characterization of
such discrete submodules is easy to prove (see for e.g., [4], Chap.7, Sec.2).

1.3.3.1 Proposition. A discrete Z-submodule of C consists of
either zero alone, or of the integral multiples nω of a single nonzero complex
number ω, or of all linear combinations nω +mτ with integral coefficients
of two nonzero complex numbers ω, τ which have nonreal ratio.

Hence π1(M) has to be isomorphic to (0), Z or Z⊕ Z.
If π1(M) is trivial, then M is biholomorphic to C itself.
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If π1(M) is isomorphic to Z, let z 7→ z+ a be a generator of this infinite
cyclic group. Since the deck transformation group is determined up to
conjugation inside the group of automorphisms of C by (1.2.3.2) and since
z 7→ z + a is conjugate to z 7→ z + 1 in that group, we may assume the
generator to be z 7→ z + 1. In this case it is easy to check that M may be
identified with C∗ and the universal covering map with p : C −→ C∗ given
by p(z) = e2πiz.

Finally, let π1(M) be isomorphic to Z ⊕ Z. Then we may take z 7→
z + 1 and z 7→ z + τ with Im(τ) > 0 as generators of this free abelian
group. Thus M is biholomorphic to C/L where L is the lattice L = L(τ) =
{n + mτ ; n,m ∈ Z} in C. Hence M is topologically a torus with complex
structure naturally inherited from the usual complex structure on C via the
covering map C −→ C/L; for more details see (1.5.2.2.1).

We have thus obtained the following.

1.3.3.2 Theorem. If the holomorphic universal covering space of the
Riemann surface M is C, then M is conformally equivalent to C,C∗ or a
complex torus. These correspond to the cases for which π1(M) is isomorphic
to (0), Z or Z⊕ Z respectively.

1.3.4 Surfaces with abelian π1π1π1 and Covering UUU

Before we proceed further, we collect some simple technical results con-
cerning Möbius transformations that we will need in the sequel. Let A be
a nontrivial Möbius transformation. Then it has one or two fixed points
in C ∪ {∞}. If we write A explicitly as A(z) = (az + b)/(cz + d) with
ad− bc = 1 then although (a+ d) is not well-defined, its square (a+ d)2 is.
We define

Trace2(A) = (a+ d)2.

In other words, although the matrix trace is not a function on PSL(2,C),
its square is; so thinking of A as an element of PSL(2,C), it is natural to
define Trace2(A) to be the square of the matrix trace. Now to find the
fixed points of A, we need to solve A(z) = z. This in general results in a
quadratic equation with discriminant dA = Trace2(A)− 4. We now define
A to be

1. parabolic if dA = 0;
2. elliptic if dA ∈ R and −4 ≤ dA < 0;
3. loxodromic if dA ∈ C− {z ∈ R; −4 ≤ z ≤ 0};
4. hyperbolic if dA ∈ R and dA > 0.
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Thus a hyperbolic element is loxodromic. Since the trace of a matrix is
invariant under conjugation by an invertible matrix, we see that the prop-
erty of a Möbius transformation being parabolic (respectively elliptic etc.,)
is invariant under conjugation by a Möbius transformation. The following
lemma clarifies the relationship between such properties and the nature of
the fixed points. Its proof is a matter of straightforward computation.

1.3.4.1 Lemma. A Möbius transformation

1. is parabolic if and only if it has one fixed point;
2. is parabolic if and only if it is conjugate to a translation z 7→ z + a;
3. has two fixed points if and only if it is conjugate to z 7→ λz with

λ 6= 0, 1 and further, in this case,

(a) it is loxodromic if and only if |λ| 6= 1;
(b) it is hyperbolic if and only if λ ∈ R, λ > 0;
(c) it is elliptic if and only if |λ| = 1;
(d) it is elliptic of finite order if and only if λ is a root of unity.

We intend next to look at Riemann surfaces with universal covering the
upper half-plane U = {z ∈ C; Im(z) > 0}. So we need to study Möbius
transformations in Aut(U) = PSL(2,R). The following results about such
Möbius transformations are easy to prove.

1.3.4.2 Lemma. (1) Every loxodromic automorphism of U is hyperbolic.
(2) An automorphism of U is elliptic if and only if it fixes a point of U.
Further, every automorphism of U that is of finite order is elliptic.

Statement (1) follows from the definitions. The proof of the first state-
ment of (2) boils down to using the fact that a quadratic expression in one
variable with real coefficients has a nonreal zero if and only if it has negative
discriminant. For the second statement of (2), use the previous lemma.

Using the lemmas above and the preceding theorems we deduce the
following results.

1.3.4.3 Corollary. The fundamental group of a Riemann surface has
no torsion.

1.3.4.4 Corollary. The covering group of a Riemann surface cannot
contain elliptic elements.

1.3.4.5 Corollary. The covering group of a Riemann surface with uni-
versal covering U contains only parabolic and hyperbolic elements.
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We wish to describe Riemann surfaces with abelian fundamental group
and universal covering U. To do so we will need the following result.

1.3.4.6 Lemma. Any Riemann surface with nonzero abelian π1 and uni-
versal covering U has cyclic covering group.

Proof. The previous corollary says that the covering group G contains only
parabolic and hyperbolic elements. We will show that the following cases
are mutually exclusive:

Case 1. G contains an element A that is parabolic.
Case 2. G contains an element A that is hyperbolic.

We first claim that if A and B are any pair of commuting nontrivial
Möbius transformations and A is parabolic, then so is B. Without loss
of generality, we may replace A and B respectively with their conjugates
by any fixed Möbius transformation. In doing so, we may further assume
that A(z) = z+ 1 by lemma (1.3.4.1). Write B(z) = (az+ b)/(cz+ d) with
ad−bc = 1. Then the hypothesis that A and B commute forces c = 0, ad =
1 and d = a. Thus B(z) = z+ (b/a) is parabolic by lemma (1.3.4.1). Hence
the claim.

Since G is abelian, the claim above shows that G consists entirely of
parabolic elements in Case 1. Hence Case 1 and Case 2 are mutually exclu-
sive.
Consider Case 1. Conjugate G by an automorphism C of U so that
A transforms to z 7→ z + 1. Then every other element of G transforms
to one of the form z 7→ z + β with β ∈ R. Since G is a Z-module and
also a discrete subset of the topological group of automorphisms of U , the
same properties are true of its conjugate C ◦ G ◦ C−1. By identifying the
translation z 7→ z + α with α ∈ C, this conjugate is identified with a dis-
crete Z-submodule of C contained in R. Now proposition (1.3.3.1) shows
this conjugate is cyclic and hence the same is true of G. This disposes of
Case 1.
Consider Case 2. By the discussion preceding Case 1, G contains only
hyperbolic elements. By lemmas (1.3.4.1) and (1.3.4.2), either A has the
form

A(z) = λ(z), λ ∈ R, λ > 0, λ 6= 1

or A has two distinct real fixed points. In the latter case pick an automor-
phism C of U that takes these fixed points to 0 and∞. Then the conjugate
C ◦ A ◦ C−1 has fixed points 0,∞ and is hence of the form z 7→ λz above.
Replacing G with C◦G◦C−1 if necessary, we may therefore assume without
loss of generality that A(z) has the form z 7→ λz above. Write any B ∈ G
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as B(z) = (az+ b)/(cz+ d) with a, b, c, d ∈ R and ad− bc = 1. Since A and
B commute, we get the identity

a(λz) + b

c(λz) + d
=
λ(az + b)
cz + d

which is valid for all z ∈ C ∪ {∞}. The conditions λ 6= 1 and λ > 0 force
b = 0 = c, ad = 1, so B(z) = a2z. Since B is hyperbolic, a2 6= 1, 0. Thus
every element of G can be written in the form z 7→ µz with µ ∈ R, µ >
0, µ 6= 1. Identifying z 7→ µz with logµ, the group G is identified with
a discrete Z-submodule of C contained in R. Again proposition (1.3.3.1)
shows G is cyclic QED

1.3.4.7 Theorem. Any Riemann surface with π1 isomorphic to Z ⊕ Z
has universal covering C and is isomorphic to a complex torus.

Proof. The only candidates for a universal covering apart from C are U and
C∪{∞}. The choice C∪{∞} is ruled out by theorem (1.3.2.1). The choice
U is ruled out by the previous lemma since π1 is commutative but not cyclic.
So the universal covering is C and the Riemann surface is isomorphic to a
complex torus by theorem (1.3.3.2) QED

1.3.4.8 Theorem. Let M be a Riemann surface with π1 abelian and
with universal covering U (or equivalently the unit disc ∆). Then M is
biholomorphic to exactly one of the following:

1. the unit disc ∆;
2. the punctured unit disc ∆∗ := ∆− {0};
3. an annulus ∆r := {z ∈ C; r < |z| < 1}.

Proof. If π1(M) is trivial, then M is biholomorphic to U (or equivalently
to ∆) by (1.2.3.3).

So let π1(M) be nontrivial. Then G ∼= π1(M) ∼= Z by lemma (1.3.4.6).
By (1.3.4.5), the generator of G is either hyperbolic or parabolic.
If the generator of G is parabolic, we may take it to be z 7→ z + 1 (see

Case 1 of proof of lemma (1.3.4.6)). With this choice of generator for G,
M = U/G is identified with ∆∗ and the covering map U −→ M with the
map U −→ ∆∗ given by z 7→ e2πiz.

If the generator of G is hyperbolic, we may take it to be z 7→ λz, λ ∈
R, λ > 0, λ 6= 1 (see Case 2 of proof of lemma (1.3.4.6)). By further
conjugating by the element z 7→ (−1/z) if needed, we may assume without
loss of generality that λ > 1. With this choice of generator for G, M = U/G
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is identified with ∆r where r = e(−2π2/ log λ) and the covering map U −→M
with the map U −→ ∆r given by z 7→ e(2πi log z/ log λ) (here log denotes the
principal branch of the logarithm) QED

1.3.4.9 Remarks. In this section we have classified all Riemann sur-
faces with abelian fundamental groups. Let M be a compact Riemann
surface of genus g > 1. M is topologically a 2-dimensional hollow sphere
with g hollow cylindrical handles attached to it as follows: the 2g ends of
these cylinders are attached to the boundaries of 2g distinct open discs cut
out from the sphere. Then π1(M) is the quotient of the free group gener-
ated by 2g generators a1, . . . , ag, b1, . . . , bg by the smallest normal subgroup
containing the element

a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g .

Thus π1(M) is a nonabelian group. For such a Riemann surface M the
universal covering space has to be the upper half-plane U with covering
group a subgroup of Aut(U) = PSL(2,R) isomorphic to π1(M).

In the next two sections we classify annuli and elliptic curves up to
conformal equivalence.

1.4 Classification of Annuli up to Conformal
Equivalence

Let r,R be positive real numbers with r < R. Define A(r,R) = {z ∈ C; r <
|z| < R}. Then A(r,R) is an annulus and is naturally a Riemann surface.
We want to find conditions under which two such annuli are biholomorphic.

Moduli Theory seeks to reveal the geometry behind the classification of
all possible extra structures (of a certain type) that can be imposed on a
geometric object with a fixed underlying structure.

We illustrate this point of view by giving two formulations of the prob-
lem of classification of annuli. Let us fix an annulus M := A(r0, R0). Then
the underlying topological space of any annulus A(r,R) is homeomorphic
to that of M . Therefore our classification problem for annuli may also be
stated as follows.

Parametrize all possible conformally distinct complex structures on the
underlying topological space of M .

Since each annulus A(r,R) ⊂ C is naturally an open subset of R2,
it acquires the structure of a differentiable manifold. Then the underlying
differentiable structure of any annulus is isomorphic (diffeomorphic) to that
of M .
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Therefore we may also say that we seek to parametrize all possible con-
formally distinct complex structures on the underlying differentiable mani-
fold of M .

We may simplify the problem of classification of annuli as follows. Since
the biholomorphic mapping z 7→ (z/R) takes A(r,R) onto A(r/R, 1), it is
enough to classify annuli of the type A(r, 1) = ∆r := {z ∈ C; r < |z| < 1}.

1.4.1 Theorem (Classification of Annuli). The set of conformal equi-
valence classes of annuli of the form ∆r is in a natural bijective correspon-
dence with the set {r ∈ R; 0 < r < 1} of real numbers.

Proof. Suppose we are given a biholomorphic map φ : ∆r1 −→ ∆r2 . By
theorem (1.3.4.8), the holomorphic universal coverings are given by pj :
U −→ ∆rj , with pj(z) = e(2πi log z/ log λj) where λj = e(−2π2/ log rj) > 1 for
j = 1, 2. Further, each covering group Gj is the infinite cyclic subgroup
of automorphisms of the upper half-plane U generated by the hyperbolic
Möbius transformation Aj(z) = λjz. Now φ ◦ p1 : U −→ ∆r2 is also a
universal covering of ∆r2 with covering group G1. Therefore G1 must be a
conjugate of G2 inside the group of automorphisms of U by (1.2.3.2). Let
T be an automorphism of U such that G2 = T ◦G1 ◦ T−1.

Since A1 generates G1, T ◦ A1 ◦ T−1 generates G2 and so must equal
A2 or its inverse. With notations as in (1.3.4), we have Trace2(A1) =
Trace2(A2) = Trace2(A−1

2 ). λj > 1 now forces λ1 = λ2 whence r1 = r2.
The conformal equivalence class of ∆r is thus uniquely determined by r or
equivalently by the corresponding λ = e(−2π2/ log r).

We get the following natural correspondences:

{∆r ; 0 < r < 1} ←→ (0, 1) ⊂ R defined by ∆r ↔ r

and

{∆r ; 0 < r < 1} ←→ (1,∞) ⊂ R defined by ∆r ↔ λ = e(−2π2/ log r).

QED

1.4.2 Remarks. For the moment, the above correspondences seem to
be only set-theoretic. The set (0, 1) ⊂ R may be called a parameter set,
and since it comes with the natural structure of differentiable submanifold
of R, it may be called a parameter manifold. The classification of annuli up
to conformal equivalence is thus achieved by one real parameter r ∈ (0, 1).

The collection {∆r ; r ∈ (0, 1)} may be thought of as a family of annuli
parametrized by (0, 1). We will make this precise in the next chapter in
(2.2.1.1) and (2.2.2.1). It is natural to ask whether the structure (topologi-
cal, differentiable etc.,) on the parameter space is in any way related to the
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properties of the family it parametrizes. This question is the core of every
moduli problem. For example, what is the relationship between the com-
plex structures on the annuli ∆r and the natural differentiable structure on
(0, 1) where the parameter r varies? This will be clarified by the study of
families in the next chapter.

1.5 Classification of Elliptic Curves

This section classifies elliptic curves (complex 1-dimensional tori).
In the first subsection we establish a natural correspondence between

the set of conformal equivalence classes of elliptic curves and the set of
orbits U/PSL(2,Z) of the unimodular group PSL(2,Z) in the upper half-
plane U. This correspondence is the first step in the discovery of the deep
geometry on U/PSL(2,Z) whose beautiful properties are highlighted in
Classical Function Theory, Algebraic and Analytic Number Theory and the
Algebraic and Analytic Theory of Moduli of Elliptic Curves. We will touch
upon some of these properties in sections 7 and 8 of chapter 4. The richness
of the theory arises from the deep fact that any compact Riemann surface
has the structure of a smooth projective algebraic curve, a particular case
being that 1-dimensional complex tori, namely compact Riemann surfaces
of genus 1, correspond to elliptic algebraic curves over C — see (1.5.2.6.2).

In the second subsection we quickly review the theory needed to endow
U/PSL(2,Z) with a natural complex structure. This leads to a parametriza-
tion of isomorphism classes of complex 1-dimensional tori by the complex
plane C in the last subsection.

1.5.1 Set-theoretic Classification of Elliptic Curves

As noted in the beginning of section 1.4, Moduli theory seeks to reveal
the geometry behind the classification of all possible extra structures (of
a certain type) that can be imposed on a geometric object with a fixed
underlying structure. We again illustrate this point of view by giving two
formulations of the problem of classification of elliptic curves.

A topological torus is any topological space that is homeomorphic to a
(hollow) sphere with one (hollow cylindrical) handle attached to it. It is
thus homeomorphic to the product of two circles: S1 × S1. It is connected
and compact, with fundamental group isomorphic to Z⊕ Z.

A real 2-dimensional torus is any differentiable manifold that is diffeo-
morphic to the natural differentiable submanifold structure on the surface
S1 × S1 inherited from R3. It is orientable and 2-dimensional.

A complex 1-dimensional torus is obtained as follows. Let L = L(τ) =
{n + mτ ; n,m ∈ Z} with Im(τ) > 0 be a lattice in C, where by a lattice
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we mean a Z-submodule of maximal rank. Identifying n + mτ ∈ L with
the fixed-point-free Möbius automorphism of C given by the map z 7→
z + n+mτ makes L a discrete subgroup of automorphisms of C. Consider
the topological quotient C/L of C by L, which is homeomorphic to a torus
with fundamental group isomorphic to L ∼= Z⊕Z. Since the canonical map
C −→ C/L is a covering map, C/L inherits naturally a unique differentiable
structure and a unique complex structure from C. Further details are given
in (1.5.2.2.1).

The covering C −→ C/L is universal with covering group the abelian
subgroup of automorphisms of C generated by z 7→ z + 1 and z 7→ z + τ ,
naturally identified with L. C/L is thus a compact Riemann surface of
genus 1. Given τ ∈ U we thus get the associated lattice L(τ) and the
complex torus C/L(τ).

Conversely by theorem (1.3.4.7), any Riemann surface M with π1(M) ∼=
Z ⊕ Z has to have C for its universal covering space and is a complex
torus. Theorem (1.3.3.2) shows M is of the form C/L(τ). Therefore our
classification problem for elliptic curves may be stated as follows.

Parametrize all possible conformally distinct complex structures on the
underlying topological space of a fixed complex torus.

Given τ1, τ2 ∈ U , it is not hard to find a diffeomorphism between the
tori they define.

Hence we may also say that we want to parametrize all possible confor-
mally distinct complex structures on the underlying differentiable manifold
of a fixed complex torus.

A partial answer to the above question is given by the following.

1.5.1.1 Theorem (Classification of Elliptic Curves). The set of con-
formal equivalence classes of complex 1-dimensional tori is in a natural
correspondence with the set U/PSL(2,Z) of PSL(2,Z)-orbits in U .

Proof. Suppose we are given a biholomorphic map f : T1 −→ T2, where
T1 and T2 are the complex tori defined by τ1 and τ2 ∈ U respectively. Let
pi : C −→ Ti be the universal covering with deck transformation group Gi
the subgroup of automorphisms of C generated by z 7→ z+1 and z 7→ z+τi
for i = 1, 2. Let f̃ : C −→ C be a lifting of f to the universal covering
spaces by (1.2.1.2), (1.2.1.3) and (1.2.2.4). The map f̃ is not unique and
may be replaced by A2 ◦ f̃ ◦ A1 with Aj ∈ Gj . f̃ being an automorphism
of C is an element of P∆(2,C) (see (1.3.1.2)) and is hence of the form
f̃(z) = az + b, a, b ∈ C, a 6= 0. Then f̃ ◦ G1 ◦ f̃−1 = G2 by (1.2.3.2).
If θ is the isomorphism of G1 onto G2 given by g 7→ f̃ ◦ g ◦ f̃−1, then
θ(z 7→ z+ 1) = (z 7→ z+ a) and θ(z 7→ z+ τ1) = (z 7→ z+ aτ1). Identifying
the automorphism of C given by z 7→ z + α with α ∈ C, G1 and G2 can
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be regarded as Z-modules and θ as a Z-linear map with θ(1) = a and
θ(τ1) = aτ1. The matrix of θ is given by

Θ =
[
α β
γ δ

]
,

where α, β, γ, δ ∈ Z satisfy

a = θ(1) = α · 1 + β · τ2,

aτ1 = θ(τ1) = γ · 1 + δ · τ2.

Since θ is an isomorphism of Z-modules, Θ is an invertible matrix with
inverse also having entries in Z. The determinant of Θ must equal ±1, so
αδ − βγ = ±1. The formula

τ1 =
θ(τ1)
θ(1)

=
γ + δτ2
α+ βτ2

and the fact that τi ∈ U force αδ−βγ = 1. We have shown that if τ1, τ2 ∈ U
determine conformal tori, then τ1 is the image of τ2 under the unimodular
Möbius transformation given by

A(z) =
γ + δz

α+ βz
∈ PSL(2,Z).

Conversely, if τ1, τ2 ∈ U belong to the same PSL(2,Z)-orbit, then we may
reverse the arguments above to obtain a conformal isomorphism f : T1 −→
T2 between the tori they define QED

Our next task will be to study U/PSL(2,Z). We rapidly review the
theory required for this in the next subsection.

1.5.2 Quotients, Projective Embeddings and
Automorphic Functions

We outline how the orbit space for the action of a discontinuous group of
automorphisms on a Riemann surface is naturally again a Riemann surface.

1.5.2.1 Quotients for Fixed-point-free Actions

1.5.2.1.1 Properly Discontinuous Actions. Let W be a complex
manifold and G a group of biholomorphic automorphisms of W .

Let the action of G be fixed-point-free i.e., let every nontrivial element of
G leave no point of W fixed. This is equivalent to every stabilizer subgroup
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Gω := {g ∈ G ; g(ω) = ω} being trivial for each ω ∈W , or to the orbit map
µω : G −→ W given by g 7→ g(ω) being injective for every ω ∈ W . In this
case each orbit is a “set-theoretic copy” of G.

Let us further assume that G acts properly discontinuously on W . This
means that for any compact subsets K1,K2 of W , there exist only finitely
many elements g ∈ G such that the set g(K1) ∩K2 is nonempty. Thus all
but finitely many elements of G displace K1 completely away from K2.

Under these hypotheses, we have the following fundamental result on
quotients.

1.5.2.1.2 Theorem. Let W be a complex manifold and G a group of
biholomorphic automorphisms acting on W properly discontinuously with-
out fixed points. Then the set W/G of orbits of G in W naturally inher-
its the structure of a complex manifold from W in such a way that the
canonical set-theoretic projection φ : W −→ W/G becomes a holomorphic
covering map of W/G with deck transformation group G. In particular, if
W is simply-connected, then φ : W −→ W/G is the holomorphic universal
covering for W/G and π1(W/G) ∼= G.

Proof. We indicate a brief sketch of the main steps. First of all, we show
that each orbit is a discrete subset of W .

Next, for each w ∈ W we find a sufficiently small complex coordinate
neighborhood U(w) which is completely displaced by each nontrivial ele-
ment of G. Here we use the hypotheses that G acts properly discontinuously
without fixed points.

The quotient topology is given to W/G so that the natural projection φ :
W −→W/G becomes continuous. We check that W/G with this topology is
Hausdorff using again the hypothesis that G acts properly discontinuously.

We next check that the map φ restricted to U(w) induces a homeomor-
phism onto an open subset of W/G which we denote by Û(ŵ). Then we
verify that the inverse image of Û(ŵ) under φ splits into the disjoint union
of translates of U(w) by various elements of G, and further that each of
these translates is mapped homeomorphically by φ onto Û(ŵ).

In this way φ : W −→ W/G becomes a topological covering with deck
transformation group G. Since φ is a local homeomorphism, we may trans-
port the structure of complex manifold on W to W/G, thus making φ a
holomorphic covering map of W/G (see (1.2.2.1)) QED

1.5.2.1.3 Remark. We note that the statement of the above theorem
and its proof can be easily adapted to any of the following categories:

1. Complex manifolds and holomorphic maps (as done above);
2. Differentiable manifolds and differentiable maps;
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3. Topological spaces and continuous maps.

In each situation, the theorem says that the quotient map is a covering in
the corresponding category.

1.5.2.1.4 Fundamental Domains. Again let W be a complex mani-
fold and G a group of biholomorphic automorphisms acting properly dis-
continuously without fixed points on W . By a fundamental domain F for
G, we mean a subset F of W such that:

1. F is closed;
2. F is the closure of its interior;
3. any interior point of F is the only point in its G-orbit lying within F ;
4. the translates of F by elements of G cover W .

If such an F exists, the quotient map of the previous theorem φ : W −→
W/G maps F onto W/G and is bijective on the interior of F . This helps in
concluding that W/G has certain properties provided F has them already.
For example, if F is compact or connected, then the same is true of W/G.

1.5.2.2 Quotients of Complex Lie Groups

Let W be a group with an operation denoted by ◦. If W is also a com-
plex manifold such that the set-theoretic map W × W −→ W given by
(w1, w2) 7→ w1 ◦ w−1

2 is holomorphic, then W (along with the operation ◦)
is called a complex Lie group. Adapting this definition to the differentiable
and topological categories respectively leads to the notions of real Lie group
and topological group.

For any abstract group G, the map from G into the group of group-
theoretic automorphisms of G given by g 7→ (left multiplication by g) is an
injective group homomorphism (Cayley’s Theorem). Hence the Lie group
W can be thought of as a subgroup of the group of biholomorphic auto-
morphisms of the complex manifold W .

A subgroup G of the Lie group W is said to be discrete if the underlying
subset of G is a discrete subset of the underlying topological space of W .
Since such a discrete subgroup G acts properly discontinuously without
fixed points on W , the natural map φ : W −→W/G becomes a holomorphic
covering with deck transformation group G as seen in the previous theorem.
If G is normal, W/G naturally becomes a complex Lie group and the map
φ a morphism of Lie groups.

1.5.2.2.1 Example (Tori as Quotients). The complex vector space Cn
is a complex commutative Lie group with vector addition as group opera-
tion. Since it is 2n-dimensional as a real vector space, we may fix a basis
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ω := 〈w1, . . . , w2n〉. Then the subset of Cn defined by

G =


2n∑
j=1

(mjwj) ; mj ∈ Z


is a lattice in Cn (i.e., a Z-submodule of maximal rank) and moreover, a
discrete subgroup of the Lie group Cn. G has for its fundamental domain
the 2n-dimensional real closed “parallelopiped” given by

F =


2n∑
j=1

(tjwj) ; 0 ≤ tj ≤ 1

 .

F is clearly compact and connected. The canonical quotient φ : Cn −→
Cn/G is a covering of Lie groups. Tnω := Cn/G is an n-dimensional compact
connected commutative complex Lie group called an n-dimensional complex
torus and it has universal covering space Cn with deck transformation group
(covering group) G. Note that π1(Tnω ) ∼= G. The n × 2n complex matrix
whose entries are given by the components of the vectors in the R-basis ω,
is called the period matrix associated to Tnω .

For the case n = 1, we may take w1 = 1 and w2 = τ with Im(τ) > 0. For
simplicity of notation we write τ for ω = 〈1, τ〉. Then G is the lattice L =
L(τ) = {n+mτ ; n,m ∈ Z} with fundamental domain F the fundamental
parallelogram with vertices 0, 1, τ + 1, τ. Further T 1

τ = C/G is a complex
one-dimensional torus with universal covering C and deck transformation
group G ∼= π1(T 1

τ ) = Z⊕Z. The notion of an algebraic group is the analogue
of the notion of a Lie group for the algebraic category of schemes. Since T 1

τ

has the structure of an algebraic elliptic curve (as we shall see in (1.5.2.6.2)),
we may hope for the existence of a group law on this algebraic curve that
would make it into an algebraic group; this guess turns out to be true.

1.5.2.2.2 Example (The Möbius Group PSL(2,C)). The set M(2,C)
of 2 × 2 matrices over C is set-theoretically bijective to C4 and thereby
inherits the holomorphic structure of C4.

The determinant function M(2,C) −→ C is a holomorphic (polynomial)
map which is multiplicative. The Jacobian matrix corresponding to this
map is of full rank at each point of the open submanifold GL(2,C) and the
map restricted to this submanifold is itself a group homomorphism onto
C− {0}.

By the Implicit Function Theorem, the inverse image in GL(2,C) of the
trivial subgroup namely SL(2,C), becomes a complex Lie group embedded
as a closed submanifold of C4. Its quotient by the discrete subgroup {±I2}
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gives PSL(2,C) a complex Lie group structure. We will study discrete
subgroups of PSL(2,C) in (1.5.2.4).

One of the main aims of this subsection is to develop the necessary
theory to equip the set U/PSL(2,Z) of orbits of PSL(2,Z) in the upper
half-plane U with a natural Riemann surface structure so that the natural
map U −→ U/PSL(2,Z) becomes holomorphic.

Now PSL(2,Z) does not act without fixed points on U : by (1.3.4.2)
there exist elliptic elements in PSL(2,Z). Hence theorem (1.5.2.1.2) cannot
be applied to obtain a Riemann surface structure on the quotient.

We therefore need to modify the above theorem so that it extends to
points which are fixed by nontrivial elements of PSL(2,Z) i.e., to points
which have nontrivial stabilizers. It is for this purpose that we next intro-
duce Kleinian and Fuchsian groups, and also quotients by such groups.

1.5.2.3 Discontinuous, Kleinian and Fuchsian Groups

1.5.2.3.1 Definition. Let G be a subgroup of PSL(2,C). Let z0 ∈
C ∪ {∞}. We say that G acts properly discontinuously at z0 if the following
hold:

1. the stabilizer subgroup of G at z0 i.e., the subgroup of those elements
of G which leave z0 fixed, is finite;

2. there exists a neighborhood U of z0 which is preserved by every ele-
ment of G which leaves z0 fixed, but is completely displaced by all
other elements of G.

The subset of points of C ∪ {∞} where G acts properly discontinu-
ously is called the region of discontinuity of G and is denoted by Ω(G). Its
complement in C∪{∞} is denoted by Λ(G) and is called the limit set of G.

G is said to be Kleinian if Ω(G) is nonempty. A Kleinian group G is
further said to be Fuchsian if there is a disc or a half-plane that is preserved
by (every element of) G.

1.5.2.3.2 Proposition. If G is a Kleinian group, then Ω(G) is an open
subset that is preserved by G.

Proof. It is easy to verify that Ω(G) is preserved by G. Pick any point
z0 ∈ Ω(G). If this point has trivial stabilizer, then the definition above
gives a neighborhood U of z0 which is completely displaced by every non-
trivial element of G. Obviously U ⊂ Ω(G) and each point of U has trivial
stabilizer.

Thus the subset of points of Ω(G) with trivial stabilizers is open
in C ∪ {∞}.
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If the point z0 has a nontrivial (finite) stabilizer, then we claim that
there exists a sufficiently small neighborhood of z0 in which every other
point has trivial stabilizer.

In other words, the set of points of Ω(G) with nontrivial (finite)
stabilizers is discrete in Ω(G).

The above claim is a consequence of the following simple but powerful
lemma. It says that if a group G of biholomorphic automorphisms acts on
a Riemann surface M such that the stabilizer subgroup at a point of M is
finite, then there exists a disc-like neighborhood of that point preserved by
G on which the action of the stabilizer looks like the action of a finite cyclic
group of rotations of a disc about its center. Granting this lemma, we see
that a point of Ω(G) with finite nontrivial stabilizer has a neighborhood in
which every other point has trivial stabilizer. Since the same is also true
for points of Ω(G) with trivial stabilizers, Ω(G) is indeed an open subset of
C ∪ {∞}. QED

1.5.2.3.3 Lemma. Let V be a neighborhood of 0 ∈ C and H be a group
of biholomorphic maps hi : V −→ V that fix 0 ∈ C for 1 ≤ i ≤ n. Then there
exists a simply connected neighborhood D ⊂ V of 0 ∈ C that is preserved
by H and a biholomorphic map f : ∆ −→ D from the unit disc ∆ fixing
0 ∈ C such that the group

Ĥ := {ĥj := f−1 ◦ hj ◦ f ; j = 1, . . . , n}

is a finite cyclic group of rotations of ∆ about the origin.

Proof. We divide the proof into two steps.
Step 1: We show that there exists a simply connected neighbor-
hood D of the origin which is preserved by H.

Fix an element h ∈ H. Consider the image of a closed disc Dr := {z ∈
C ; |z| ≤ r} ⊂ V under h. This image is a convex region if and only if the
image of the circle ∂Dr under h is a convex curve. The latter is true if and
only if the argument of the tangent to h(∂Dr) viz. ((π/2)+arg z+argh′(z))
is an increasing function of arg z on ∂Dr. The derivative of this function
with respect to arg z is given by the quantity Re

(
zh′′

h′

)
+1 (note that h′ 6= 0

since h is biholomorphic), which is positive for z sufficiently close to the
origin. For sufficiently small ε, h therefore maps every closed disc Dr, r < ε,
onto a convex region.

Since H is finite, we may choose ε small enough so that the image of
the open disc Dε := {z ∈ C ; |z| < ε} ⊂ V under every element of H is
convex. Now we let D to be the intersection of the various images of this
open disc under elements of H. Then D is open and convex, whence a
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simply connected neighborhood of the origin. Further D is preserved by H
due to its very construction. This completes Step 1.
Step 2: We show that H is a finite cyclic group of “rotations of
D about the origin”.

By the Riemann Mapping Theorem, D is conformally equivalent to the
unit disc ∆ by a map f : ∆ −→ D such that f(0) = 0. For any hj ∈ H,
the mapping ĥj := f−1 ◦ hj ◦ f is a conformal automorphism of ∆ which
fixes the origin and hence by the Lemma of Schwarz it is a rotation i.e.,
ĥj(z) = eiθjz, (0 ≤ θj < 2π). Note that Ĥ := f−1 ◦H ◦f is a group since H
is. Therefore Ĥ and hence H are commutative groups. Choose the smallest
positive angle θj . Then the corresponding ĥj (resp. hj) generates Ĥ (resp.
H) as a cyclic group and ĥj(z) = e(2πi/n)z QED

1.5.2.3.4 Corollary. A Kleinian group is finite or countable.

Proof. Choose an element z0 in Ω(G) which has trivial stabilizer (such z0

exist—in fact the subset of points of Ω(G) which have nontrivial stabilizer
is discrete by the above lemma). Then the orbit of z0 is discrete, hence
finite or countable. But this orbit is just a set-theoretic copy of G QED

We will explain in (1.5.2.5) how to construct a quotient by a Kleinian
group so that the quotient naturally acquires the structure of a Riemann
surface. We are interested in the quotient of the upper half-plane U by
PSL(2,Z) but all that we can easily deduce about PSL(2,Z) is that it is
discrete. It is not clear whether PSL(2,Z) is Kleinian. We next study the
relationship between Kleinian and discrete subgroups of PSL(2,C).

1.5.2.4 Discrete Subgroups of PSL(2,C)

Recall that an abstract subgroup G of PSL(2,C) is said to be discrete if
its underlying set is a discrete subset of the underlying topological space of
PSL(2,C).

1.5.2.4.1 Lemma. Any Kleinian subgroup G ⊂ PSL(2,C) is discrete.

Proof. If G is finite, it is discrete. If not, G is countable by (1.5.2.3.4). If G
had an accumulation point g ∈ PSL(2,C), then we may find a sequence
{gn} of distinct points of G which tends to g. We may replace {gn} by
{g−1
n+1 ◦ gn} and assume that g is the identity. The sequence gn(z) then

tends to z for any z ∈ C. Choosing z ∈ Ω(G) ∩ C contradicts the Kleinian
hypothesis on G QED

From the above lemma we deduce the following important result which
we have already used in subsections (1.3.2) through (1.3.4) (see (1.3.1.4)).
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1.5.2.4.2 Corollary. The covering group of a Riemann surface is dis-
crete.

1.5.2.4.3 Caution. There exist discrete subgroups of PSL(2,C) that are
not Kleinian.

For example, the Picard group defined by{
A(z) =

az + b

cz + d

∣∣∣∣ ad− bc = 1; a, b, c, d Gaussian Integers
}

is a discrete but not Kleinian subgroup of SL(2,C) and the same are true
of its image in PSL(2,C).

However, the notions of discreteness and being Kleinian coincide for a
group of conformal automorphisms of a disc (or half-plane). In this case the
group is therefore also Fuchsian. Further the preserved disc (or half-plane)
is entirely contained in the region of discontinuity. More precisely we have
the following.

1.5.2.4.4 Theorem. Let G be a subgroup of automorphisms of the unit
disc ∆. Then the following are equivalent:

1. G is discrete;
2. G is Kleinian and acts properly discontinuously at each point of ∆;
3. G is Kleinian and acts properly discontinuously at some point of ∆;
4. G is Kleinian.

Proof. (1)⇒ (2): Suppose that G does not act properly discontinuously at
some point z0 of ∆. This holds if and only if there exists an infinite sequence
of distinct points {zn} in the G-orbit of z0 tending to z0. For each n, pick
gn ∈ G such that gn(zn) = z0. Thus {gn} is an infinite sequence of distinct
points of G.

We will show that G has an accumulation point, contradicting its dis-
creteness. Define for each nonnegative integer n

An(z) =
z − zn
1− znz

·

Then {An} is a sequence of automorphisms of ∆ tending to A0. For each
positive integer n, the automorphism of ∆ given by

Cn = An+1 ◦ g−1
n+1 ◦ gn ◦A−1

n

leaves the origin fixed, so Schwarz’ lemma implies that Cn(z) = λnz, |λn| =
1. Since the unit circle is complete, we may assume without loss of gener-
ality that {λn} converges to an element λ0 of the unit circle. Then for each
z in the unit disc, Cn(z) tends to C0(z) = λ0z.
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Now the sequence of points {hn = g−1
n+1◦gn} of G tends to A−1

0 ◦C0◦A0.
Since the gn are distinct, the sequence {hn} contains an infinite subsequence
of distinct points. Therefore we are done.

(2)⇒ (3): Trivial.
(3)⇒ (4): Trivial.
(4)⇒ (1): Already established in (1.5.2.4.1) QED

Let G be a Fuchsian group which preserves the discD. Then the exterior
of D is also a disc in C∪ {∞} that is preserved by G. So the exterior of D
also lies in the region of discontinuity Ω(G) by the above theorem. Hence
we obtain the following.

1.5.2.4.5 Corollary. The limit set Λ(G) of points of C∪{∞} where the
Fuchsian group G does not act properly discontinuously is contained in the
boundary ∂D of the disc D that G preserves.

1.5.2.5 Quotients of Domains in C ∪ {∞}C ∪ {∞}C ∪ {∞} by Kleinian Groups

LetG be a Kleinian group and V aG-invariant component of Ω(G). We wish
to endow the set of orbits V/G with a holomorphic structure.

By assumption G acts properly discontinuously at each point of V . Give
V/G the quotient topology so that the natural map φ : V −→ V/G becomes
continuous. It will follow from the discussion below that φ is an open map
and that the topological space V/G is Hausdorff.

Suppose that z is a point of V with trivial stabilizer. Then there exists
an open neighborhood Uz of z which is completely displaced by every non-
trivial element of G. Choose a local complex coordinate neighborhood
(Wz, ω) centered at z i.e., a neighborhood Wz of z which is mapped biholo-
morphically by ω onto the unit disc in C with z mapped onto the origin.
Without loss of generality we may assume that Wz ⊆ Uz. Then φ maps Wz

homeomorphically onto an open set in V/G which thereby inherits the com-
plex structure on Wz. In this way, the G-invariant open set of points of V
whose stabilizers are trivial acquires the structure of a covering space over
its quotient (by G) which is a Riemann surface (see the proofs of (1.5.2.3.2)
and (1.5.2.1.2)).

Next let us look at a point z in V with nontrivial (finite) stabilizer.
Then there exists an open neighborhood Uz of z which is preserved by
those elements of G which fix z and which is completely displaced by all
other elements of G. We have seen that the action of the stabilizer on Uz
(chosen sufficiently small) looks like the action of a finite cyclic group of
rotations about the center of a disc (1.5.2.3.3). Now choose a local complex
coordinate neighborhood (Wz, ω) centered at z so that the action of the
generator of the stabilizer on its image (the unit disc) is given by ω 7→
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e(2πi/k)ω, where k is the cardinality of the stabilizer. The homeomorphism
ω ◦ φ−1 followed by the self-map ω 7→ ωk of the unit disc, can then be
deemed to be a local complex coordinate neighborhood centered at φ(z) on
V/G. Note that this works even when k = 1 and hence also takes care of
the case of points with trivial stabilizers that we just discussed above.

Thus V/G gets the structure of a Riemann surface such that φ : V −→
V/G is holomorphic. φ will be ramified at all those points of V that have
nontrivial stabilizers (1.2.2.3) and outside this subset of points it will be a
covering map (1.5.2.1.2).

Finally we wish to make Ω(G)/G into a Riemann surface. Declare two
components of Ω(G) to be equivalent under G if there exists an element of
G which maps one (biholomorphically) onto the other. Let {Ωi; i ∈ N} be a
maximal set of nonequivalent components of Ω(G). Then there is a natural
set-theoretic bijection of the orbit space Ω(G)/G with the disjoint union of
orbit spaces Ωj/Gj where Gj is the subgroup of G that preserves Ωj for
each j. Then Gj acts properly discontinuously on Ωj , so by the previous
paragraph each quotient Ωj/Gj has a natural structure of Riemann surface
such that the canonical map Ωj −→ Ωj/Gj is holomorphic. Hence we have
established the following.

1.5.2.5.1 Theorem. If G is Kleinian group, then Ω(G)/G is a (count-
able or finite) union of Riemann surfaces such that the canonical set-theo-
retic projection Ω(G) −→ Ω(G)/G is holomorphic.

1.5.2.6 Projective Embeddings and Algebraizability of Complex
1-dimensional Tori

1.5.2.6.1 The Weierstrass ℘-function Associated to a Torus.
Let τ ∈ U = {z ∈ C; Im(z) > 0} and let L = L(τ) = {n + mτ ;n,m ∈ Z}
be the corresponding lattice. As we have already seen, T (τ) = C/L is a
complex torus. Define the Weierstrass ℘-function associated to this torus by
the expression

℘(z) =
1
z2

+
∑

ω∈L−{0}

(
1

(z − ω)2
− 1
ω2

)
.

Then ℘(z) is an L-invariant meromorphic function on C which has poles of
order two precisely at each point of L. Therefore it can be considered as a
meromorphic function on T (τ) with a single pole of order two at the point
given by the image of L. It is not hard to verify (see for e.g., [4], Chap.7,
Sec.3) that ℘(z) satisfies the differential equation

(℘′(z))2 − 4(℘(z))3 + g2℘(z) + g3 = 0,
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where the numbers g2 and g3 are given by

g2 = 60
∑

ω∈L−{0}

(ω−4) and g3 = 140
∑

ω∈L−{0}

(ω−6).

1.5.2.6.2 Projective Embedding Using the ℘℘℘-function. Consider
the homogeneous polynomial of degree 3 in three variables given by

P (x0, x1, x2) = x0x
2
1 − 4x3

2 + g2x
2
0x2 + g3x

3
0.

It is simply the homogenization of the polynomial expression obtained by
replacing ℘′(z) with x1 and ℘(z) with x2 on the left-hand side of the dif-
ferential equation for ℘(z) mentioned above.

The solution set of P = 0 defines an analytic as well as algebraic hyper-
surface C of degree 3 in complex projective 2-dimensional space P 2

C. Hence
C is called a cubic curve in P 2

C. Since the discriminant g3
2 − 27g2

3 6= 0, at
least one of the partial derivatives ∂P

∂xi
is nonzero at each point of P 2

C. This
ensures that C is analytically as well as algebraically smooth. Further, the
(closed) set of points of C naturally inherits the structure of a compact
Riemann surface from the complex structure on P 2

C.
Now consider the holomorphic mapping Φ : T (τ) − {L̂} −→ P 2

C given
by z 7→ [1 : ℘′(z) : ℘(z)], where L̂ ∈ T (τ) is the image of L. Since ℘(z)
(resp. ℘′(z)) has a pole of order two (resp. of order three) at L̂, rewriting
Φ as Φ(z) = [z3 : z3℘′(z) : z3℘(z)] extends it holomorphically to L̂. The
image of T (τ) under Φ is contained in C, and it can be verified that Φ is a
bijective holomorphic map onto C. Thus Φ is a biholomorphic map through
which T (τ) gets the algebraic structure of a smooth projective cubic curve of
genus 1 in P 2

C called an elliptic algebraic curve. Conversely given an elliptic
algebraic curve, its underlying compact Riemann surface of genus 1 is a
complex 1-dimensional torus determined uniquely up to isomorphism by
the GAGA correspondence (A.10.5.1).

Hence the classification of complex 1-dimensional tori is the
same as the classification of elliptic algebraic curves over C.

1.5.2.6.3 The Automorphic Functions λ and J . We continue using
the notations of (1.5.2.6.2). Our aim is to quickly describe the elliptic
modular function. This will be used in the next section where we obtain
the structure of a Riemann surface on the set of isomorphism classes of
elliptic curves.

Consider the first order differential equation satisfied by the Weierstrass
℘-function associated to τ ∈ U (1.5.2.6.1). This differential equation may
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be written in the form

(℘′(z))2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

where e1, e2, e3 are the zeros of the polynomial 4Z3−g2Z−g3. These zeros
are distinct and are related to τ ∈ U by the formulae

e1 = ℘

(
1
2

)
, e2 = ℘

(τ
2

)
, e3 = ℘

(
1 + τ

2

)
.

We next define the function λ : U −→ C by

λ(τ) =
e3 − e2

e1 − e2
.

λ(τ) is analytic and never assumes the values 0 and 1 because e3−e2, e1−e2

and e3− e1 are analytic functions of τ ∈ U that never vanish. The function
λ is called automorphic because it is invariant under the congruence mod 2
subgroup of the unimodular group PSL(2,Z) given by{[

a b
c d

]
∈ PSL(2,Z);

[
a b
c d

]
≡
[
1 0
0 1

]
(mod 2)

}
.

Finally we define the function J : U −→ C by

J(τ) =
4
27

(1−λ(τ)+(λ(τ))2)3

(λ(τ))2(1− λ(τ))2
=
−4(e1e2 + e2e3 + e3e1)3

((e1−e2)(e2−e3)(e3−e1))2
=

g3
2

g3
2−27g2

3

.

Then J(τ) is analytic on U and is automorphic with respect to the full
unimodular group PSL(2,Z). The domain F := {z ∈ C ; −1

2 < Re(z) < 1
2 ,

|z| > 1} along with a part of its boundary is mapped by J conformally in
a one-to-one manner onto C. Further the closure of F is a fundamental
domain for the action of PSL(2,Z) on U . The function J(τ) is called the
elliptic modular function.

1.5.3 The Riemann Surface Structure on U/PSL(2,Z)U/PSL(2,Z)U/PSL(2,Z)

We put to use the concepts reviewed in the previous subsection to prove
the following.

1.5.3.1 Theorem (Holomorphic Parametrization of Elliptic
Curves). The set U/PSL(2,Z) of isomorphism classes of complex
1-dimensional tori has a natural structure of Riemann surface biholomor-
phic to C.
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Proof. We have seen in (1.5.1.1) that the set of conformal equivalence
classes of complex 1-dimensional tori is bijective in a natural way to
U/PSL(2,Z). Now PSL(2,Z) is discrete, hence Kleinian and Fuchsian by
theorem (1.5.2.4.4). By the same theorem, it acts properly discontinously
on U . Hence U/PSL(2,Z) is a Riemann surface such that the canonical
map U −→ U/PSL(2,Z) is holomorphic by (1.5.2.5.1). The elliptic mod-
ular function J(τ) on U is invariant under PSL(2,Z) and hence defines a
holomorphic function J̃ on the Riemann surface U/PSL(2,Z). The fun-
damental regions of PSL(2,Z) and J(τ) in U are the same (1.5.2.6.3) and
therefore J̃ : U/PSL(2,Z) −→ C is a biholmorphic mapping QED

1.5.3.2 Remarks. The above study of the problem of classification of
elliptic curves illustrates the need for quotient constructions in classifica-
tion problems. Most often the parameter set obtained in the first attempt
towards a parametrization (the upper half-plane U in our study) con-
tains “redundant” parameters (every element of U belonging to a fixed
PSL(2,Z)-orbit defines up to isomorphism the same conformal torus). For-
tunately there may be a “good” group of automorphisms of the parameter
space (PSL(2,Z) in our study) which permutes the redundant parame-
ters. To get rid of the redundant parameters we must therefore construct
a quotient (U/PSL(2,Z) in our study) by going modulo the group. We
would like the quotient to have the same structure as that of the objects in
the category we are working with (the structure of a Riemann surface on
U/PSL(2,Z) in our study). So we look for properties of the action of the
group that will ensure that the set-theoretic quotient inherits the required
structure (in our study PSL(2,Z) acts properly discontinuously on U and
this ensures that the quotient inherits the structure of a Riemann surface
from U).

The Theory of Moduli seeks to go beyond mere classification to discover
the geometry hidden behind the classification. As mentioned at the end of
section 1.4, the core of the problem of moduli lies in analyzing how the
structure on the parameter space is connected to or reflects properties of
the structure on the objects which were originally sought to be classified.
For example, how does the complex structure on U/PSL(2,Z) ∼= C relate to
the conformal structures on the tori it parametrizes? To make this question
precise, we need the notion of a “family”; this notion is described in the
next chapter. For motivation, the collection of elliptic curves

{T 1
τ = C/L(τ) ; τ ∈ U}

may be called as a “complex analytic family of elliptic curves parametrized
by U” — we will make this precise in (2.2.1.1), (2.2.2.2), (2.4.1.1) and
(2.4.2) in chapter 2.
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Theorem (1.5.3.1) does not indicate the relationship of the structure of
Riemann surface on U/PSL(2,Z) to the Riemann surface structures on the
tori it parametrizes. Theorem (4.7.3.5) of chapter 4 captures the beautiful
“moduli-theoretic” properties of the Riemann surface U/PSL(2,Z) namely
those properties that relate the holomorphic structure on U/PSL(2,Z) to
“families of holomorphically varying Riemann surface structures on a topo-
logical torus”.



2. Families: Global
Deformations

2.1 Overview of this Chapter

This chapter explains the notion of a family of compact complex manifolds
whose holomorphic structures depend either differentiably or holomorphi-
cally on a variable point of a parameter manifold.

Sections 2.2 and 2.4 respectively define the notions of a differentiable
family and of a complex analytic family of compact complex manifolds
of fixed dimension. For example, the set of annuli parametrized by the
open real interval (0, 1), obtained in section 1.4 of the previous chapter,
is a differentiable family of (noncompact) complex manifolds. For another
example, the set of elliptic curves parametrized by the upper half-plane
in complex 1-dimensional space, obtained in section 1.5 of the previous
chapter, is a complex analytic family of compact complex manifolds (a
holomorphic family of compact Riemann surfaces of genus 1).

Section 2.3 describes the fundamental idea of Kodaira-Spencer, based
on which they made precise in [6] the notion of a “variation of complex
structures” on a given differentiable manifold. This idea also helps us to
naturally define the notion of a “deformation of the complex structure”
on a compact complex manifold. The definition of a differentiably varying
family of complex structures, given in 2.2, is justified in 2.3.

The notion of equivalence of differentiable families is explained in 2.2
and the corresponding notion for complex analytic families is explained in
2.4. There are many operations on families, like restriction, pullback, etc.,
which are also explained in these sections. These operations are functorial
and lead to the formulation, of a functor of families and hence to a functor
of equivalence classes of families, which is made precise in section 2.5. This
functorial formulation motivates the general definition of a global moduli
problem, which we shall give in chapter 4.

33
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In section 2.6, we construct two complex analytic families of complex n-
dimensional tori which serve as fundamental examples that exhibit various
subtle phenomena encountered in many moduli problems. The remarkable
local properties of these families are investigated in the next chapter in
(3.4.4).

Given a family of compact connected complex manifolds and a fixed
point on the parameter space, one is naturally led to ask whether any
additional property of the fiber (member of the family) over this point is
preserved under sufficiently small variations of its complex structure. For
example, this fiber, which is a compact complex manifold, may admit an
algebraic structure, say that of a scheme over the field of complex numbers
(see (A.4) and (A.5) of the Appendix). Then it is a natural question whether
sufficiently close fibers (which represent “small” variations of complex struc-
ture of the fixed fiber) also admit algebraic structures. That this question
has a negative answer for the case of deformations of the complex structure
of a complex n-dimensional algebraic torus, for n ≥ 2, is the content of
section 2.7.

Finally, in section 2.8, we construct an example which shows how the
complex structure in a family may suddenly vary at certain points of the
parameter space, though it may “remain constant” at all other points in
some neighborhood of such a point. To find the causes of such discontinuous
variations and to find conditions sufficient to ensure they do not occur, we
must study the local properties of families. This leads to the study of
“infinitesimal deformations of complex structure” which are explained in
the next chapter.

2.2 Differentiable Families

In the following we make precise the notion of a differentiable family of com-
pact connected complex manifolds parametrized by a differentiable mani-
fold. By differentiable manifold or simply manifold we mean a connected
real differentiable manifold of class C∞. By a map of manifolds we mean
a C∞-mapping. The definition we adopt is that of K.Kodaira (see [5],
Chap. 4, Sec. 1) who alongwith D.C.Spencer made precise the idea of defor-
mation of complex structure.

2.2.1 The Definition of a Differentiable Family

2.2.1.1 Definition. Let B be a domain in Rm. For each t ∈ B, let
there be given a compact connected complex manifold Mt of fixed (com-
plex) dimension n. Then the set {Mt; t ∈ B} of compact connected complex
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manifolds is called a differentiable family of compact connected complex man-
ifolds or is said to be differentiably dependent on the parameter t ∈ B if there
is a surjective map of differentiable manifolds φ : M −→ B such that the
following hold:

1. the rank of the Jacobian matrix of φ is equal to m at each point of
M — in other words, the Jacobian of φ is of maximal rank every-
where;

2. for each t ∈ B,φ−1(t) is a compact connected subset of M;
3. φ−1(t) = Mt and
4. there are a locally finite open covering {Uj ; j ∈ N} ofM and complex-

valued C∞ functions z1
j (p), . . . , znj (p) defined on Uj for each positive

integer j, such that for each t in B the open cover of Mt given by {Uj∩
φ−1(t);Uj ∩ φ−1(t) 6= ∅} forms a system of local complex coordinates
for Mt with the coordinate map given by p 7→ (z1

j (p), . . . , znj (p)) on
each nonempty intersection Uj ∩ φ−1(t) in Mt.

2.2.1.2 Notation and Terminology

We denote the differentiable family {Mt; t ∈ B} by (M, B, φ) or simply by
M. B is called the parameter space or the base space andM the deformation
space or the total space associated to this differentiable family.

2.2.1.3 Remarks on the Above Definition

Let M have dimension η as a real differentiable manifold. Then condition
(1) of the above definition ensures (by the Implicit Function Theorem) that
the fiber of φ over t viz. φ−1(t), is a closed embedded real differentiable sub-
manifold ofM of dimension (η−m) for each t ∈ B. Further, condition (2)
of the above definition ensures that the fibers of φ are compact connected
differentiable manifolds. Now the requirement (3) of the above definition is
that, for each t ∈ B, the compact connected embedded real differentiable
submanifold φ−1(t) of M admits a complex structure making it a com-
plex manifold of dimension n biholomorphic to the complex manifold Mt

prescribed earlier. Therefore, η −m = 2n.
By using the Implicit Function Theorem for the map φ we can get a

system of local C∞ coordinates {(Uj , xj); j ∈ N} where {Uj ; j ∈ N} is a
locally finite open cover for M and xj : Uj −→ Rη is the coordinate map
given by

xj(p) = (x1
j (p), . . . , x

2n
j (p), t1, . . . , tm)

and where φ(p) = (t1, . . . , tm) = t ∈ B ⊂ Rm. In fact, each xj actually
maps Uj into the product manifold R2n × B ⊂ Rη. Further φ−1(t) as real
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differentiable manifold has a local system of C∞ coordinates given by the
open cover {Uj ∩ φ−1(t);Uj ∩ φ−1(t) 6= ∅} with the C∞ coordinate map on
each nonempty intersection Uj ∩ φ−1(t) given by p 7→ (x1

j (p), . . . , x
2n
j (p)).

Now the purpose of condition (4) of the above definition is to relate the
coordinates {xαj ; 1 ≤ α ≤ 2n} to the complex structure on φ−1(t) viz. Mt

in the following sense: if we set zαj = x2α−1
j + (

√
−1)x2α

j where 1 ≤ α ≤ n,
then these are complex-valued functions from Uj into Cn = R2n which are
C∞; the requirement is that (for a suitable choice of the C∞ coordinate
system on M), the maps

p 7→ (z1
j (p), . . . , znj (p)), p ∈ φ−1(t),

serve as complex coordinates for a complex structure on φ−1(t) isomorphic
to Mt.

We note here that the above definition is easily extended to the case
when B is a connected real differentiable manifold.

We further note that we may more generally define in a similar manner
a differentiable family of real differentiable compact connected manifolds.
Finally, we note that we may define a differentiable family of (not necessar-
ily compact) complex manifolds by removing the word “compact” wherever
it occurs in the definition above.

2.2.1.4 An Important Note

The notion of a differentiable family defined above can be formulated in the
more sophisticated language of differentiable fiber bundles. This formulation
is explained in (3.2.4).

2.2.2 Examples of Differentiable Families

The following examples relate to the classification of annuli and tori done
in sections 1.4 and 1.5 of chapter 1.

2.2.2.1 Example: Differentiable Family of Annuli

Set M = {(x, y, z) ∈ R3 ; 0 < x < 1, x2 < y2 + z2 < 1}. Let B = (0, 1) ⊂
R. Let φ :M−→ B be simply the restriction of the coordinate projection
px : R3 −→ R onto the first coordinate. Then

φ−1(x0) = ∆x0 := {w ∈ C = R2 = p−1
x (x0) ; x0 < |w| < 1}

is a complex annulus for each x0 ∈ B, where w = y + (
√
−1)z. Then it

is clear that (M, B, φ) is a differentiable family of complex annuli, where
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we think of this differentiable family only as a family of connected complex
manifolds and not as a family of compact connected complex manifolds
(cf. (1.4.2)).

2.2.2.2 Example: Differentiable Family of Tori

Let U denote the upper half-plane in C and B denote the underlying real
differentiable manifold of U . For each τ ∈ U , let T (τ) := T 1

τ be the
corresponding conformal torus (elliptic curve) as in (1.5.2.2.1). Define the
set of mappings

G = {gm,n : (z, w) 7→ (z +mw + n,w) ; m,n ∈ Z, z ∈ C, w ∈ U}.

Then G is a group of biholomorphic automorphisms of the product complex
manifold C×U and acts properly discontinuously and without fixed points.
Therefore, M := (C× U)/G is a complex manifold by (1.5.2.1.2).

The projection pw : C×U −→ U onto the second factor commutes with
each element of G and hence gives rise to a holomorphic map φ :M−→ U .
Then we see that the fiber of φ over τ ∈ U can be canonically identified with
the complex torus T (τ) = C/L(τ) where L = L(τ) = {n + mτ ;n,m ∈ Z}
is the lattice associated to τ .

The complex coordinates (z, w) on C×U give rise to complex coordinates
onM. Using these coordinates, it is easy to see that the rank of the complex
Jacobian matrix of φ is equal to 1. Hence, if we look only at the underlying
C∞ structures on M and U , and consider φ just as a C∞ map, then it is
clear that (M, B, φ) is a differentiable family of complex tori (cf. (1.5.3.2)).

2.2.3 Notions of Triviality and Operations on
Differentiable Families

We introduce in the following the notions of equivalence of differentiable
families, triviality of a differentiable family, pullback of a differentiable fam-
ily by a C∞ map, restriction of a differentiable family and local triviality
of a differentiable family.

2.2.3.1 Equivalence of Differentiable Families

Suppose that (M, B, φ) and (N , B, ψ) are two differentiable families having
the same base space B. They are then said to be (differentiably) equivalent
if there exists a diffeomorphism Φ : M −→ N such that for each t ∈
B,Φ maps Mt = φ−1(t) biholomorphically onto Nt = ψ−1(t). Elementary
considerations as in (2.2.1.3) show in such a case that the differentiable
family (N , B, ψ) can be thought of as the differentiable family (M, B, φ)
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endowed with a set of new local C∞ coordinates forM. Therefore we often
tend to identify differentiably equivalent families.

2.2.3.2 Trivial Differentiable Families

The differentiable family (M × B,B, p) where M is a compact complex
manifold, B is a connected differentiable manifold, M × B denotes the
product differentiable manifold of the underlying differentiable manifold
of M and the differentiable manifold B and p is just the projection onto
the second factor from this product, is an example of a trivial differentiable
family. More generally we say that a differentiable family with base space B
is trivial if it is equivalent (in the sense of (2.2.3.1) above) to a differentiable
family (M×B,B, p) for some compact complex manifold M. If this happens
it is clear that all the fibers (as complex manifolds) are biholomorphic to
M .

2.2.3.3 Induced Differentiable Family: Change of the Parameter

Suppose that (M, B, φ) is a differentiable family of compact connected com-
plex manifolds. Let h : D −→ B be a C∞ map of connected differentiable
manifolds. Define the fiber product

M×B D = {(m, s) ∈M×D ; φ(m) = h(s)},

and consider the image of this fiber product under the canonical map

φ× 1D :M×D −→ B ×D

where 1D denotes the identity map of D. The image is the graph Gh of the
map h. Now Gh is naturally a differentiable submanifold of B ×D diffeo-
morphic to D via the second projection p from the product differentiable
manifold B ×D.

Since φ is a C∞ map of maximal rank, so is the map φ × 1D. There-
fore, by the implicit function theorem, the inverse image of the graph of
h under the latter map acquires naturally the structure of a differentiable
submanifold of M× B; but this inverse image is precisely the fiber prod-
uct. Therefore the fiber product becomes, in a natural way, the deformation
space of a differentiable family viz. (M×B D,D, p ◦ (φ× 1D)).

This differentiable family has parameter space D and is called the family
induced fromM via h or the pullback of the familyM by h and is denoted
for simplicity by (h∗M, D, h∗φ).

Note that for each s ∈ D, the complex manifold (h∗φ)−1(s) is biholomor-
phic to Mh(s) = φ−1(h(s)). Therefore the induced family {Mh(s); s ∈ D}
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can be thought of as a family obtained from {Mt; t ∈ B} by a change of the
parameter from t ∈ B to s ∈ D via the map h with h(s) = t.

It is checked that if f : E −→ D is a map of connected differentiable
manifolds, then the differentiable family on E induced by the composite
map h ◦ f from the family M on B can be canonically identified with the
differentiable family induced by the map f from the family h∗M on D. In
other words, the operation of change of parameter is functorial. Further it
is clear that the pullback of a trivial family is also a trivial family.

2.2.3.4 Restriction of a Differentiable Family

Let (M, B, φ) be a differentiable family. Let I ⊂ B be a domain in B.
Thus I acquires in a unique way the structure of an open submanifold of
B such that the inclusion map i : I ↪→ B is an open immersion. Then
the pullback of the family (M, B, φ) by i, in the sense of (2.2.3.3) above
and denoted as explained there by (i∗M, I, i∗φ), is called the restriction of
(M, B, φ) to I ⊂ B. We simplify the notation (i∗M, I, i∗φ) to (MI , I, φ).
The following statements are easily checked: (1) The restriction of a trivial
family is trivial. (2) The operation of pulling back commutes with the
operation of restriction.

2.2.3.5 Locally Trivial Differentiable Families

A differentiable family (M, B, φ) is said to be locally trivial if for each t ∈ B,
there is a domain I ⊂ B containing t such that the restriction of (M, B, φ)
to I is trivial in the sense of (2.2.3.2). Then the following statements are
easy to verify: (1) The pullback of a locally trivial family is also locally
trivial. (2) The restriction of a locally trivial family is also locally trivial.

Note that for a locally trivial family, all the fibers are biholo-
morphically equivalent to each other.

However there exist locally trivial differentiable families that are not
(globally) trivial. For such an example, see the construction in (4.8.2) of a
family F of elliptic curves which is locally trivial but not globally trivial.

It turns out under certain conditions that locally trivial families corre-
spond precisely to those families which have “ no infinitesimal deformations
of complex structures” (see (3.2.7.3)).
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2.3 The Fundamental Idea of Kodaira-Spencer

2.3.1 The Local Triviality of Differentiable Families

Recall each of the examples (M, B, φ) of (2.2.2). As already noted in the
beginnings of (1.4) and (1.5.1), we see that all the fibers of φ are isomor-
phic as real differentiable manifolds. Therefore we can think of each of
these families as parametrizing varying complex structures on the same
real differentiable manifold.

It turns out in general that for any differentiable family of compact
connected complex manifolds (M, B, φ), all the fibers of φ are diffeomorphic
to one another.

Therefore we may think of a differentiable family (M, B, φ) as
a family of varying complex structures on the same underlying
differentiable manifold.

The basic theorem that implies this is the following. For its proof, we
refer to [5], Chap. 2, Theorem 2.4.

2.3.1.1 Theorem. Let (M, B, φ) be a differentiable family of compact
connected real differentiable manifolds. Then for each t0 ∈ B, there is a
C∞ coordinate neighborhood U of t0 such that the restriction (MU , U, φ)
of (M, B, φ) to U is equivalent to the trivial family (Mt0 × U,U, p) where
Mt0 = φ−1(t0) and p from Mt0×U onto U is the coordinate projection onto
the second factor. In other words, a differentiable family of real compact
connected differentiable manifolds is locally trivial.

2.3.1.2 Remark. The above theorem may be stated as follows in the
sophisticated language of fiber bundles.

A differentiable family of compact connected real differentiable manifolds
is a locally trivial differentiable fiber bundle.

This version of the above theorem is the starting point for another
formulation of the notion of a differentiable family — see (3.2.4).

2.3.2 C∞C∞C∞-Deformations of Complex Structure

Now we come to the fundamental and fruitful idea of Kunihiko Kodaira and
D.C.Spencer which is the basis of their Theory of Deformation of Complex
Structures (see [6]). According to them, a deformation of the complex
structure on a complex manifold M is another complex structure on the
underlying differentiable manifold of M obtained by using the same local
complex coordinate charts on M but with different glueing (or transition)
functions. To understand this notion, we first recall below how a complex
manifold M of (complex) dimension n is obtained.
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2.3.2.1 Definition. Choose a finite or countable open cover {Ui} of a
connected second-countable locally-Euclidean Hausdorff topological space
M and choose for each i, a homeomorphism zi : Ui −→ Cn onto a domain
Vi in Cn. Now transport the natural complex structure on the domain
Vi = zi(Ui) ⊂ Cn to Ui via zi so that zi becomes a holomorphic map. We
call each pair (Ui, zi) a local complex coordinate chart, Ui the associated
local complex coordinate neighborhood and zi the associated local complex
coordinate. We denote the intersection of Uj and Uk as Ujk and denote by
Vkj the image of Ukj under zk. Clearly, whenever Ujk is nonempty, Ujk has
two complex structures, one each arising from the coordinates zj and zk.
We now require that these two complex structures on Ujk be compatible
(or that Uj and Uk be glued biholomorphically along Ujk) by imposing the
condition that the homeomorphism

fjk := zj ◦ z−1
k : Vkj −→ Vjk

of domains in Cn be biholomorphic for each nonempty intersection Ukj .
The biholomorphic maps fjk are called transition functions or glueing func-
tions and they satisfy the patching condition fjk = fjl ◦ flk. With all the
above conditions being satisfied, the collection of charts {(Ui, zi)} is called
a system of local complex coordinates for M and M together with such a
maximal system is called a complex manifold of dimension n.

By a morphism (or holomorphic map) of complex manifolds is meant
a continuous map which induces holomorphic maps locally via the local
coordinates.

We may assume that the open cover {Ui} is locally finite and also that
each domain Vi ⊂ Cn is a unit polydisc Vi = {zi(p) = (z1

i (p), . . . , zni (p)) ∈
Cn ; p ∈ Ui , |zαi (p)| < 1, α = 1, . . . , n}. Notice that (z1

j , . . . , z
n
j ) ∈ Vj and

(z1
k, . . . , z

n
k ) ∈ Vk represent the same point of M if and only if

(z1
j , . . . , z

n
j ) = fjk(z1

k, . . . , z
n
k )

which is written coordinatewise as

zαj = fαjk(zk) = fαjk(z1
k, . . . , z

n
k ) for each α = 1, . . . , n.

2.3.2.2 Remark. In the above definition, if we replace Cn by Rn and
replace all holomorphic maps by C∞-maps, then we obtain the definition of
a real differentiable manifold of dimension n. With similar modifications,
one may define a real differentiable manifold of class Ck where k is a positive
integer and also a locally Euclidean manifold.

It would be instructive for the interested reader to check that these
definitions are equivalent to the ones given in (A.5).
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2.3.2.3 Deformations of a Complex Manifold

If M is a compact complex manifold of dimension n as defined above,
then we may assume that its system of local complex coordinates is finite:
{(Ui, zi); i = 1, . . . , l}. Thus a compact complex manifold M is obtained by
glueing a finite number of polydiscs V1, . . . , Vl i.e., by identifying zk ∈ Vk
and zj = fjk(zk) ∈ Vj .

A deformation of M is considered to be the complex manifold obtained
by glueing the same polydiscs V1, . . . , Vl via different transition functions.
In other words, we replace fαjk(zk) by the functions

fαjk(zk, t) = fαjk(zk, t1, . . . , tm)

with the initial conditions fαjk(zk, t0) = fαjk(zk) where t = (t1, . . . , tm) is
a parameter which represents a variable point on some (complex or real
differentiable) connected manifold B. The initial conditions ensure that
for t = t0 ∈ B, the deformation that we obtain is M itself. Further, for
each t ∈ B, if we denote by Mt the complex manifold obtained by glueing
the polydiscs V1, . . . , Vl via the transition functions fjk(zk, t), then each
Mt is called a deformation of Mt0 = M . This is the fundamental idea of
K.Kodaira and D.C. Spencer.

It then happens that if we consider a differentiable family (M, B, φ) of
compact connected complex manifolds Mt = φ−1(t), t ∈ B, then for a fixed
fiber Mt0 = φ−1(t0), t0 ∈ B, any other sufficiently close fiber Mt = φ−1(t)
(i.e., with t sufficiently close to t0) is simply a complex manifold obtained by
glueing the same polydiscs that form a system of local complex coordinate
neighborhoods for M but by different transition functions, in exactly the
way mentioned above, so that the nearby fibers are actually deformations
of M . Further, by applying theorem (2.3.1.1), we see that all the fibers are
diffeomorphic to each other.

Hence the notion of a differentiable family indeed captures
locally the idea of a C∞- deformation of complex structures on a
fixed differentiable manifold.

We precisely formulate and prove the exact relationship between defor-
mations and differentiable families in the following.

2.3.2.4 Theorem (Nearby fibers of a family are deformations of
each other). Let (M, B, φ) be a differentiable family of compact con-
nected complex manifolds. Fix a point t0 ∈ B and let Mt0 = φ−1(t0) be
the compact connected complex manifold obtained by glueing the polydiscs
V1, . . . , Vl by identifying zk ∈ Vk and zj = fjk(zk) ∈ Vj via the transi-
tion functions {fjk} arising out of a given finite system of local complex
coordinates {(Ui, zi); i = 1, . . . , l} i.e., zj(Uj) = Vj and fjk = zj ◦ z−1

k .
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Then there exists a domain I ⊂ B containing t0 such that for each t ∈
I,Mt = φ−1(t) is a compact complex manifold obtained by glueing the same
polydiscs V1, . . . , Vl but by different transition functions

fαjk(zk, t) = fαjk(zk, t1, . . . , tm)

with the initial conditions fαjk(zk, t0) = fαjk(zk) where t = (t1, . . . , tm) are
local C∞ coordinates on I and the functions fjk(zk, t) are C∞ functions
of t.

Proof. Given a differentiable family (M, B, φ), as explained in (2.2.1.3) we
can find a locally finite open cover {U ′j ; j ∈ N} of M and a system of C∞

local coordinate charts {(U ′j , xj); j ∈ N} with each xj a diffeomorphism of
U ′j onto Vj × Ij where Vj ⊂ R2n = Cn is a domain that can be assumed to
be a polydisc:

Vj = {zj(p) = (z1
j (p), . . . , znj (p)) ∈ Cn ; p ∈ U ′j , |zαj (p)| < rαj , α = 1, . . . , n}

and where Ij ⊂ B is (identified via a local C∞ coordinate map with) a
domain in Rm, m being the dimension of B as a real differentiable manifold.
Here Ij can be chosen to be an open multi-interval given by

Ij = {t = (t1, . . . , tm) ∈ Rm ; ajν < tν < bjν , ν = 1, . . . ,m}.

Thus we have for p ∈ U ′j ⊂M,

xj(p) = (z1
j (p), . . . , znj (p), t1, . . . , tm), φ(p) = (t1, . . . , tm).

The transition functions {fjk} which glue the domains {Vj × Ij} to give
the differentiable manifold M are given as usual by fjk = xj ◦ x−1

k and
are C∞ functions of the variables t and zk (in fact, the functions fjk are
holomorphic in the variables zk) and hence are written as fjk(zk, t). Thus
the points (zj , t) ∈ Vj × Ij and (zk, t′) ∈ Vk × Ik represent the same point
ofM if and only if (zj , t) = fjk(zk, t′) which also means that t and t′ must
represent the same point of B.

Now fix any t0 ∈ B. Then Mt0 = φ−1(t0) is the compact connected
complex manifold obtained by glueing the polydiscs {Vj ×{t0} ∼= Vj ; U ′j ∩
Mt0 6= ∅} via the (biholomorphic!) transition functions {fjk(zk, t0)} and
therefore the points zj ∈ Vj and zk ∈ Vk represent the same point of
Mt0 = φ−1(t0) if and only if zj = fjk(zk, t0).

By the compactness of the fibers of φ and the fact that the open cover
{U ′j} is locally finite, it is easy to see that there exists an open neighborhood
I of t0 in B (which can be identified with an open multi-interval in Rm via
local coordinates at t0) such that φ−1(I) is contained in the union of a finite
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number of U ′j which we assume without loss of generality to be U ′1, . . . , U
′
l .

Let Uj = U ′j ∩Mt0 for each j. Now let t ∈ I.
Then by construction, Mt is a compact connected complex manifold

obtained by glueing the polydiscs {Vj × {t} ∼= Vj ; j = 1, . . . , l} via the
transition functions {fjk(zk, t)} (which depend holomorphically on the vari-
ables zk) and therefore the points zj ∈ Vj and zk ∈ Vk represent the same
point of Mt = φ−1(t) if and only if zj = fjk(zk, t).

Therefore we see that the restriction of (M, B, φ) to I ⊂ B, which gives
the differentiable family (MI , I, φ) as in (2.2.3.4), consists of fibers which
are all compact connected complex manifolds obtained by glueing the same
polydiscs {V1, . . . , Vl} but with transition functions fjk(zk, t) which depend
differentiably on the parameter t ∈ I.

We see that these polydiscs themselves are independent of
the parameter t ∈ I and only the way in which they are glued
together is dependent on t ∈ I so as to determine various defor-
mations of the complex structure on any (chosen) fixed fiber
Mt0 = φ−1(t0), t0 ∈ I ⊂ B QED

Motivated by the above theorem, we make the following definitions.

2.3.2.5 Definitions (Local and Global Deformations). Let M be a
compact connected complex manifold and (M, B, φ) a differentiable family
of compact connected complex manifolds with M ∼= Mt0 = φ−1(t0) for some
t0 ∈ B. Then there exists a domain I in B containing t0 which satisfies the
conditions of the above theorem. We call the compact connected complex
manifold Mt = φ−1(t), for each t ∈ I, a local C∞-deformation of complex
structure of M . More generally we call the fiber Mt = φ−1(t), for each
t ∈ B, a (global) C∞-deformation of complex structure of M .

The differentiable manifold M is called a total space of (global) C∞-
deformations of complex structure of M and B is called the parameter space
or the base space. Recall that the underlying structure of differentiable man-
ifold does not change under deformation as explained in theorem (2.3.1.1).
So, by studying existence and properties of deformation spaces, we are actu-
ally studying the relationship of the variation of complex structure on the
underlying differentiable manifold of a fixed compact complex manifold to
the properties and structure of the corresponding parameter spaces.

It is clear from the theorem (2.3.2.4) that a sufficiently small local com-
plex coordinate neighborhood of each point of a fixed compact complex
manifold does not change its holomorphic structure when deformed locally.

2.3.2.6 A Preliminary Formulation of the Problem of Moduli

In the following we adopt the definitions given by C.S.Seshadri in his survey
article [7].
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Given a compact connected complex manifold M , by the problem of
moduli of M we mean an investigation of the set X of isomorphism classes
of global deformations of M to answer the following questions:

(a) whether a suitable geometric structure exists on this set X (for e.g.,
whether X admits the structure of a C∞ manifold, complex manifold,
complex analytic space or algebraic scheme);

(b) whether special properties are found to be satisfied by the structures
obtained onX in (a) above, particularly those that relate to properties
intrinsic to M .

The problem of moduli of M can be formally divided into two subprob-
lems:

1. the problem of local moduli of M ;
2. the problem of global moduli of M .

The problem of local moduli may be stated to be the study of the infinitesimal
neighborhoods of the point of X corresponding to (the isomorphism class of
the trivial deformation of) M , provided X has some decent structure, say
differentiable, holomorphic, analytic or algebraic. For example, if x0 ∈ X
corresponds to M , then such a study will involve the computation of the
(analytic or algebraic) tangent space of X at x0, a computation of the
dimension of X at x0 and also an investigation as to whether X is smooth
or singular at x0. The Theory of Local Moduli is also called the study
of infinitesimal deformations and is the main theme of the next chapter.
The best solution that one can hope to obtain for a local moduli problem
is called a “local moduli space” — this is explained in the next chapter
(see (3.6)).

The problem of global moduli of M involves the investigation of global
properties of the structure on X, for example, if X itself is a parameter space
of some family of deformations (M, X, φ) of M possessing some special
properties with respect to other families which consist of deformations ofM .
The notion of a global moduli problem is precisely formulated in functorial
terms in chapter 4 (see (4.5)). The best solution that one can hope to
obtain for a global moduli problem is called a “fine moduli space”, while a
less better solution that one often gets is called a “coarse moduli space” —
these concepts are explained in chapter 4 (see (4.5)).

2.4 Complex Analytic Families

In section 2.2, we defined the notion of a differentiably varying family
of compact connected complex manifolds parametrized by a differentiable
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manifold. In this section, we make precise the corresponding notion for the
category of complex manifolds and holomorphic maps i.e., the notion of a
holomorphically varying family of compact connected complex manifolds
parametrized by a complex connected manifold. The following definition is
an analogue of (2.2.1.1) and is again due to Kodaira-Spencer [6].

2.4.1 The Definition of a Complex Analytic Family

2.4.1.1 Definition. Let B be a domain in Cm. For each t ∈ B, let there
be given a compact connected complex manifold Mt of fixed (complex)
dimension n. Then the set {Mt; t ∈ B} of compact connected complex
manifolds is called a complex analytic family of compact connected complex
manifolds or is said to be holomorphically dependent on the parameter t ∈ B
if there is a surjective holomorphic map of complex manifolds φ :M−→ B
such that the following hold:

1. the rank of the Jacobian matrix of φ is equal to m at each point of
M — in other words, the Jacobian of φ is of maximal rank every-
where;

2. for each t ∈ B,φ−1(t) is a compact connected subset of M;
3. φ−1(t) = Mt.

2.4.1.2 Notation and Terminology

We denote the complex analytic family {Mt; t ∈ B} by (M, B, φ) or simply
byM. B is called the parameter (or base) space andM the deformation (or
total) space associated to this complex analytic family.

2.4.1.3 Remarks on the Above Definition

LetM have dimension η as a complex manifold. Then condition (1) of the
above definition ensures (by the Implicit Function Theorem) that the fiber
of φ over t viz. φ−1(t), is a closed embedded complex submanifold of M
of dimension (η −m) for each t ∈ B. Further, (2) of the above definition
ensures that the fibers are compact connected complex manifolds. Now the
condition (3) requires for each t ∈ B that the compact connected embedded
complex submanifold φ−1(t) ofM is biholomorphic to the complex manifold
Mt prescribed earlier. Therefore, η −m = n.

In the statement of condition (1) of the above definition, by the Jacobian
of φ we mean the Jacobian matrix of the holomorphic map φ written in
terms of local complex coordinates for M and B.

By using the Implicit Function theorem for the map φ we can get a
system of local complex coordinates {(Uj , zj); J ∈ N} where {Uj ; j ∈ N} is
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a locally finite open cover for M and zj : Uj −→ Cη is the holomorphic
complex coordinate map onto a polydisc Vj ⊂ Cn+m such that

zj(p) = (z1
j (p), . . . , znj (p), t1, . . . , tm),

and where φ(p) = (t1, . . . , tm) = t ∈ B ⊂ Cm. In fact, each zj actually maps
Uj into the product complex manifold Cn×B ⊂ Cη. Further, φ−1(t) = Mt,
for each t ∈ B (as complex manifold) has a system of local complex coordi-
nates given by the open cover {Uj ∩φ−1(t); Uj ∩φ−1(t) 6= ∅} with the local
complex coordinate map on each nonempty intersection Uj ∩ φ−1(t) given
by p 7→ (z1

j (p), . . . , znj (p)). In terms of these local complex coordinates, φ
is simply the projection given by

(z1
j , . . . , z

n
j , t1, . . . , tm) 7→ (t1, . . . , tm).

The polydiscs {Vj ; j ∈ N} are glued by the holomorphic transition functions
{fjk; j, k ∈ N} where fjk = zj ◦z−1

k for each nonempty intersection Uj∩Uk.
Then fjk is a holomorphic function of the variables t and zk and is hence
written coordinatewise as

fαjk(zk, t) = fαjk(z1
k, . . . , z

n
k , t1, . . . , tm)

for each α = 1, . . . , η. Thus for t0 ∈ B,Mt0 is a compact connected complex
manifold obtained by glueing the polydiscs

{Vj,t0 := p−1(t0) ∩ Vj ; j ∈ N}

in Cn (where p is the canonical projection onto the second factor from the
product complex manifold Cn×B) via the holomorphic transition functions
{fjk(zk, t0); j, k ∈ N} so that the point zj ∈ Vj,t0 represents the same point
of Mt0 as the point zk ∈ Vk,t0 if and only if zj = fjk(zk, t0).

The above definition is easily extended to the case when B is a connected
complex manifold.

It is also clear that one may define a complex analytic family of (not
necessarily compact) complex manifolds by removing the word “compact”
wherever it occurs in the definition above. Finally we note that, given a
complex analytic family (M, B, φ), by considering only the underlying dif-
ferentiable manifold structures on M and B and by regarding the map φ
just as a C∞ map, we see that we obtain a differentiable family of compact
connected complex manifolds which we refer to as the underlying differ-
entiable family of the complex analytic family (M, B, φ). We denote this
underlying differentiable family also by (M, B, φ), leaving the context of
the discussion to indicate that we are interested only in the underlying
differentiable family.



48 2. Families: Global Deformations

2.4.2 Examples of Complex Analytic Families

We recall example (2.2.2.2) where we described the differentiable family
(M, B, φ) of complex tori parametrized by the upper half-plane U ; here B
is the underlying differentiable manifold of U . From the calculations there
it is evident now that (M, U, φ) is actually a complex analytic family of
complex tori parametrized by U .

For interesting generalizations of the above complex analytic family to
higher dimensions refer to (2.6.1) and (2.6.2). Another interesting example
is given by the family of Hopf surfaces constructed in (2.8.2).

2.4.3 Notions of Triviality and Operations on Complex
Analytic Families

Just as in the case of differentiable families, we next define the notions of
equivalence, triviality, pullback, restriction and local triviality for complex
analytic families (cf. (2.2.3)).

2.4.3.1 Holomorphic Equivalence of Complex Analytic Families

Suppose (M, B, φ) and (N , B, ψ) are two complex analytic families. Then
they are said to be holomorphically equivalent if there exists a biholomorphic
map Φ : M −→ N such that for each t ∈ B,Φ maps Mt = φ−1(t) biholo-
morphically onto Nt = ψ−1(t). Elementary considerations show in such a
case that the complex analytic family (N , B, ψ) can be thought of as the
complex analytic family (M, B, φ) endowed with a set of new local complex
coordinates forM. Therefore we often tend to identify equivalent families.

2.4.3.2 Trivial Complex Analytic Family

The complex analytic family (M ×B,B, p) where M is a compact complex
manifold, B is a connected complex manifold, M ×B denotes the product
complex manifold of M and B, and p is just the projection onto the second
factor from this product, is an example of a trivial complex analytic family.
More generally, we say that a complex analytic family is trivial if it is equiv-
alent (in the sense of (2.4.3.1)) to a complex analytic family (M ×B,B, p)
as above where M is some compact complex manifold. It is clear that in
this case all the fibers (as complex manifolds) are biholomorphic to M .

It is obvious that if a complex analytic family is trivial, then the under-
lying differentiable family is also trivial.

It turns out that the converse of the above assertion is also true but this
is nontrivial to prove (see (3.2.9.2)).
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2.4.3.3 Induced Complex Analytic Family: Change of the
Parameter

Suppose (M, B, φ) is a complex analytic family of compact connected com-
plex manifolds. Let h : D −→ B be a holomorphic map of connected
complex manifolds. Define the fiber product

M×B D = {(m, s) ∈M×D; φ(m) = h(s)},

and consider the image of this fiber product under the canonical map

φ× 1D :M×D −→ B ×D

where 1D denotes the identity map of D. The image is the graph Gh of
the map h. Now Gh is naturally a complex submanifold of B × D and is
biholomorphic to D via the second projection p from the product complex
manifold B ×D.

Since φ is a holomorphic map of maximal rank, so is the map φ × 1D.
Therefore, by the Implicit Function theorem, the inverse image of the graph
of h under the latter map acquires naturally the structure of a complex
submanifold ofM×B; but this inverse image is precisely the fiber product.
Therefore the fiber product becomes, in a natural way, the deformation
space of a complex analytic family viz. (M×B D,D, p ◦ (φ× 1D)).

This complex analytic family has parameter space D and is called the
family induced from M via h or the pullback of the family M by h and is
denoted for simplicity by (h∗M, D, h∗φ).

Note that for each s ∈ D, the complex manifold (h∗φ)−1(s) is biholomor-
phic to Mh(s) = φ−1(h(s)). Therefore the induced family {Mh(s); s ∈ D}
can be thought of as a family obtained from {Mt; t ∈ B} by a change of the
parameter from t ∈ B to s ∈ D via the map h with h(s) = t.

It is clear that if f : E −→ D is a map of connected complex manifolds,
then the complex analytic family on E induced by the composite map h◦f
from the family M on B, can be canonically identified with the complex
analytic family induced by the map f from the family h∗M on D. Thus
the operation of change of parameter is functorial. Further it is clear that
the pullback of a trivial family is also a trivial family.

2.4.3.4 Restriction of a Complex Analytic Family

Let (M, B, φ) be a complex analytic family. Let I ⊂ B be a domain in
B. Thus I acquires in a unique way the structure of an open submanifold
of B such that the inclusion map i : I ↪→ B is an open immersion. Then
the pullback of the family (M, B, φ) by i, in the sense of (2.4.3.3) above
and denoted as explained there by (i∗M, I, i∗φ), is called the restriction of
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(M, B, φ) to I ⊂ B. Further, instead of writing (i∗M, I, i∗φ) we shall write
(MI , I, φ). The following statements are then obvious: (1) The restriction
of a trivial family is trivial. (2) The operation of pulling back commutes
with the operation of restriction.

2.4.3.5 Locally Trivial Complex Analytic Family

A complex analytic family (M, B, φ) is said to be locally trivial if for each
t ∈ B, there is a domain I ⊂ B containing t such that the restriction of
(M, B, φ) to I is trivial in the sense of (2.4.3.2).

It is clear that the pullback of a locally trivial family is also locally
trivial.

Under certain conditions, locally trivial families correspond precisely to
those families which have “no infinitesimal deformations of complex struc-
tures” (cf. (2.2.3.5 and 2.4.3.2)).

Note that for a locally trivial family, all the fibers are biholomorphically
equivalent to each other. However there exist locally trivial holomorphic
families that are not (globally) trivial (see (4.8.2)). The following statement
will be proved in (3.2.9.1).

A complex analytic family is locally trivial if and only if it is
locally trivial as a differentiable family.

2.4.4 Remarks on Holomorphic Deformations of
Complex Structure

Let (M, B, φ) be a complex analytic family of compact connected complex
manifolds. By the discussion in (2.3) it is clear that the underlying differ-
entiable manifold structure of each of the fibers Mt = φ−1(t) is the same
(up to diffeomorphism). It is also clear from (2.3.2.4) that for a fixed fiber
Mt0 = φ−1(t0), t0 ∈ B, any other sufficiently close fiber Mt = φ−1(t) is sim-
ply a complex manifold obtained by glueing the same polydiscs that form a
system of local complex coordinate neighborhoods for Mt0 but by different
transition functions which depend holomorphically on t ∈ B, t sufficiently
close to t0.

Hence the notion of a complex analytic family indeed captures
locally the idea of a holomorphic deformation of complex struc-
tures on a fixed differentiable manifold.

Just as in (2.3.2.5), by considering complex analytic families instead
of differentiable families, we may define the notions of a local holomorphic
deformation and a global holomorphic deformation of the complex structure
of a fixed compact complex manifold, and we may also formulate (as in
(2.3.2.6)), the problems of local and global moduli for such holomorphic
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deformations.
In the next section, we describe the functorial properties of families.

This functorial viewpoint is fundamental to the “Theory of Moduli” where
problems are often formulated in functorial terms.

2.5 Functorial Properties of Families

Let M be a compact connected complex manifold. Let MC∞ denote the
underlying differentiable manifold of M . We wish to study those structures
of complex manifold that can be imposed on MC∞ which also occur as
deformations of the complex structure M on MC∞ .

Let S denote the set of pairs of the form (MC∞ , {(Uj , zj); j ∈ N}) where
{(Uj , zj); j ∈ N} is a system of local complex coordinates on MC∞ that
endows MC∞ with the structure of a complex manifold which occurs as a
deformation of M .

We define the equivalence relation ∼S on S by declaring two elements
of S to be equivalent if and only if they give rise to biholomorphic complex
structures on MC∞ . Thus, the set-theoretic quotient S/∼S of S by ∼S
is simply the set of conformal isomorphism classes of complex manifold
structures on MC∞ that occur as deformations of M .

The following discussion applies to both complex analytic families and
differentiable families. Therefore in the following, the words “family”,
“deformation”, “manifold”, “map of manifolds” could be replaced through-
out by the words “complex analytic family”, “holomorphic deformation”,
“complex manifold”, “holomorphic map” respectively; or throughout by the
words “differentiable family”, “C∞ deformation”, “differentiable manifold”,
“C∞ map” respectively.

2.5.1 The Functor of Families

Let C denote the category whose objects are pairs of the form (B, t0) where
B is a connected manifold and t0 a point of B called the base point; mor-
phisms in C are maps of manifolds that preserve base points i.e., a morphism
from (B′, t′0) to (B, t0) is a map of manifolds f : B′ −→ B which maps t′0
onto t0.

Let S denote the category whose objects are sets and whose morphisms
are set-theoretic maps. Define the association FAM : C −→ S by letting
FAM((B, t0)) denote the set of pairs of the form

((M, B, φ), {(Uj , zj); j ∈ N})

where (M, B, φ) is a family such that the fiber of φ over t0 (which is a com-
pact complex manifold) occurs as a deformation of M and {(Uj , zj); j ∈ N}
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is a system of local coordinates forM which induces local complex coordi-
nate systems for each of the fibers of the family. For simplicity of notation,
we will denote such a pair just by (M, B, φ), but agree to remember that
a system of local coordinates (as above) for M has been fixed and should
be used throughout in constructions involving this pair.

Let P = {p} denote the degenerate one-point manifold consisting of a
single point p. It is then clear that FAM((P, p)) = S.

Let (M, B, φ) be an element of FAM((B, t0)). Now if f : B′ −→
B is a map of connected manifolds, we see that for the induced family
(f∗M, B′, f∗φ) on B′ (see (2.2.3.3) and (2.4.3.3)), if t′0 ∈ B′ is mapped
onto t0 by f , then (f∗φ)−1(t′0) is biholomorphic to φ−1(t0) and hence this
induced family is an element of the set FAM((B′, t′0)). Thus we get a map
of sets

f∗ : FAM((B, t0)) −→ FAM((B′, t′0)), (M, B, φ) 7→ (f∗M, B′, f∗φ).

We also get a natural map of sets

HomC((B′, t′0), (B, t0)) −→ HomS(FAM((B, t0)),FAM((B′, t′0)))

given by f 7→ f∗, where HomA(X,Y ) denotes the set of morphisms from
an object X to another object Y of a category A. We thus see that FAM :
C −→ S is a contravariant functor and is in fact an example of a contravariant
functor of families arising naturally from a moduli problem viz. the problem
of moduli of M .

Next, for an object (B, t0) in C, we define the equivalence relation∼(B,t0)

on the set FAM((B, t0)) as follows. Define (M, B, φ) ∼(B,t0) (N , B, ψ) if
and only if these two families are equivalent (in the sense of (2.2.3.1) or
(2.4.3.1) as the case may be).

When (B, t0) = (P, p), we see that the equivalence relation ∼(B,t0) on
the set FAM((B, t0)) = S reduces to the equivalence relation ∼S . Finally,
let f : (B′, t′0) −→ (B, t0) be a morphism in C. Then we get the induced
map (via the contravariant functor FAM) given by

FAM(f) = f∗ : FAM((B, t0)) −→ FAM((B′, t′0)).

Now let (M, B, φ) and (N , B, ψ) be elements of FAM((B, t0)) which are
equivalent (under the equivalence relation ∼(B,t0)).

Then the induced families (f∗M, B′, f∗φ) and (f∗N , B′, f∗ψ) that are
elements of FAM((B′, t′0)) are also equivalent under the equivalence rela-
tion ∼(B′,t′0).

Thus the equivalence on families defined above is compatible
with the pullback operation on families.
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2.5.2 The Functor of Equivalence Classes of Families

We continue with the notations of the previous subsection. Define the
contravariant functor F : C −→ S, called the functor of equivalence classes
of families, by

F((B, t0)) = FAM((B, t0))/∼(B,t0)

where FAM((B, t0))/∼(B,t0) denotes the set of ∼(B,t0)-equivalence classes
of families in FAM((B, t0)). Notice that F((P, p)) = S/∼S . Further for a
morphism f : (B′, t′0) −→ (B, t0) in C, we define

F(f) : F((B, t0)) −→ F((B′, t′0))

by sending the equivalence class of (M, B, φ) to the equivalence class of
(f∗M, B′, f∗φ); this map is well-defined because the operation of pullback
of families is compatible with the equivalence on families as indicated in
the previous subsection.

We may now reformulate the problem of global moduli of M
to be a study of the properties of the functor F , and the problem
of local moduli of M to be a study of the properties of the functor
Floc obtained similarly by restricting attention only to sufficiently
small deformations of M.

In the next section, we construct two families of complex tori which
exhibit many special properties.

2.6 Two Motivating Examples of Families of
Complex Tori

We construct two complex analytic families of complex tori which will serve
as motivating examples for studying various phenomena naturally occur-
ring in Deformation Theory and Moduli Theory. Both of the following
constructions are due to Kodaira-Spencer ([6], Chap. VI, Sec. 14(γ)).

2.6.1 The Complex Analytic Family BBB of Complex Tori

Let S be the set of complex matrices of order n whose imaginary part
has positive determinant. We write an element s ∈ S as s = (sαβ) where α
denotes the row index and β denotes the column index. Then S is identified
with an open submanifold, of the complex manifold Cn2

, of matrices of
order n with sαβ denoting the (n(α − 1) + β)-th coordinate on Cn2

. For
each matrix s ∈ S we define a period matrix with n rows and 2n columns
denoted ω(s) = (ωαj (s)) by setting ωαj (s) = δαj for j = 1, . . . , n and setting
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ωαj (s) = sαβ for j = n+β, β = 1, . . . , n. Define the following set of mappings
of Cn × S onto itself:

Ĝ = {gj : (z, s) 7→ (z + ωj(s), s); j = 1, . . . , 2n},

where ωj(s) is the vector in Cn with components corresponding to the
entries in the j-th column of ω(s). Each gj is a holomorphic automorphism
of Cn × S. Let G denote the additive abelian subgroup of automorphisms
of Cn × S generated by Ĝ. G acts properly discontinuously without fixed
points and hence the quotient B := (Cn × S)/G is a complex manifold by
theorem (1.5.2.1.2); further, the canonical projection onto the second factor
from Cn×S induces a holomorphic map φ : B −→ S whose fiber over each
point s ∈ S is a complex torus of dimension n with period matrix ω(s)
(see (1.5.2.2.1)).

It is easily checked that the Jacobian of the map φ is of maximal rank
at each point of B. Thus (B, S, φ) is a complex analytic family of complex
n-dimensional tori.

For the case n = 1, this family reduces to the complex analytic fam-
ily of elliptic curves parametrized by the upper half-plane in C that we
constructed in (2.2.2.2) (cf. (2.4.2)).

Next we construct, using a similar procedure as above but this time
allowing arbitrary period matrices, a complex analytic family of complex
n-dimensional tori (C,M, ψ) which has a larger parameter space than the
above family (B, S, φ). We shall establish certain remarkable properties of
the family (B, S, φ) in (3.4.4).

2.6.2 The Complex Analytic Family CCC of Complex Tori

Let L be the space of all complex n × 2n matrices ω = (ωαj ) with the
following additional condition:

(
√
−1)n det

[
ω
ω

]
> 0. (2.1)

(When we write ω = (ωαj ), j denotes the column index and α denotes the
row index.) L is identified in an obvious manner with an open submanifold
of C2n2

. Define the following set of mappings of Cn × L onto itself:

Ĝ = {gj : (z, ω) 7→ (z + ωj , ω); j = 1, . . . , 2n},

where ωj is the vector in Cn with components corresponding to the entries
in the j-th column of ω. Each gj is a holomorphic automorphism of Cn ×
L. Let G be the additive abelian subgroup of automorphisms of Cn × L
generated by Ĝ. G acts properly discontinuously and hence the quotient
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L := (Cn × L)/G is a complex manifold; further, the canonical projection
onto the second factor from Cn×L induces a holomorphic map ψ : L −→ L
whose fiber over each point ω ∈ L is a complex torus of dimension n with
period matrix ω.

It is easily checked that the Jacobian of the map ψ is of maximal rank
at each point of L. Thus (L, L, ψ) is a complex analytic family of com-
plex n-dimensional tori. But the parameter space L contains redundant
parameters which we next eliminate.

There is a canonical left-action of GL(n,C) on Cn and L. The quotient
M := L/GL(n,C) is a complex manifold. We define the action of τ ∈
GL(n,C) on Cn × L by the holomorphic automorphism (which we again
denote by τ) given by τ : (z, ω) 7→ (τ(z), τω). This map τ commutes
with each element gj ∈ G and hence induces a holomorphic automorphism
of L, which we again denote by the same symbol τ . Therefore GL(n,C)
becomes a group of holomorphic automorphisms of L. The quotient C :=
L/GL(n,C) is a complex manifold with a canonical holomorphic map into
M , induced by ψ, which we again denote by ψ. The fibers of this map are
again complex n-dimensional tori. Thus (C,M, ψ) is a complex analytic
family of complex n-dimensional tori.

We can regard the above complex analytic family as being obtained in
the following way also. In fact the main difference is that while in the above
construction we have first taken the quotient of Cn×L by G to obtain L and
then taken the quotient of L by GL(n,C) to obtain C, in the construction
below we will do just the reverse — the main point here is that the actions
of G and GL(n,C) commute at the appropriate instances.

Now Cn×L can be thought of as the total space of the trivial holomorphic
vector bundle of rank n on L. Then the action of GL(n,C) on this total
space as well as the base space L of this vector bundle is compatible with
respect to the bundle projection (i.e., the canonical projection from Cn × L
onto the second factor) — we express this fact by saying that GL(n,C)
acts on the trivial bundle over L of rank n. Let E = (Cn × L)/GL(n,C)
so that E is the total space of a holomorphic vector bundle over M with a
canonical bundle projection map onto M .

Now G acts on Cn×L and hence (remembering that the actions of G and
GL(n,C) on Cn × L commute) G acts also on E discontinuously. Further,
under this action of G on E , the fibers of E over M are left invariant.
Thus the quotient E/G is a complex manifold and comes with a canonical
holomorphic map into M ; this quotient is none other than the complex
manifold C we obtained above and the canonical map is simply the map ψ
so that we have again obtained the complex analytic family (C,M, ψ).

It is routine to verify that M is covered by
(

2n
n

)
local complex coordinate

neighborhoods Sj1,j2...jn where 1 ≤ j1 < · · · < jn ≤ 2n, each of which is
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biholomorphic to the parameter space S of the complex analytic family
(B, S, φ) of (2.6.1) above. Further, the restrictions (2.4.3.4) of the family
(C,M, ψ) to these local complex coordinate neighborhoods are all equivalent
to the complex analytic family (B, S, φ). In fact, if we define the subsets

Lj1j2...jn = {ω ∈ L; det(ωαjβ ) 6= 0}

of L, then it is clear that these are open subsets, that they are invariant
under the action of GL(n,C) and that they cover L because of the condition
given by equation (2.1) above. Then the quotient by GL(n,C) of each
subset Lj1j2...jn is precisely the local complex coordinate neighborhood of
M denoted above by Sj1j2...jn . Thus we may identify S with S12...n and
(B, S, φ) with the restriction of (C,M, ψ) to S12...n.

Now let γ ∈ SL(2n,R). Then the linear transformation of L given
by multiplication by γ on the right induces an analytic automorphism of
M = L/GL(n,C) denoted by t 7→ tγ. In the case when both t and tγ
belong to S ⊂M , we have the explicit expression for tγ as

tγ = (γ11 + tγ21)−1(γ12 + tγ22), where γ =
[
γ11 γ12

γ21 γ22

]
.

Clearly SL(2n,R) acts transitively on M i.e., there is only one orbit for
this action. Thus for any fixed t ∈ M , the quotient of SL(2n,R) by the
stabilizer subgroup of t is isomorphic to M itself.

Next let us consider the discrete subgroup of SL(2n,R) given by
SL(2n,Z). It is then easily verified that two fibers ψ−1(t) and ψ−1(u)
are conformally equivalent tori if and only if both t and u belong to the
same orbit of SL(2n,Z). Thus M also contains redundant parameters and
to eliminate these we must therefore go modulo the group SL(2n,Z). Then
it happens that the cases corresponding to n = 1 and n > 1 are quite
different as explained below.

• When n = 1 it is easy to check that the action of SL(2,Z) on M is
discontinuous and the quotient space M/SL(2,Z) is biholomorphic
to C (cf. chap. 1, sec. 1.5 where we worked with the upper half-plane
U and PSL(2,Z) respectively instead of M and SL(2,Z)). However,
the situation for the case n > 1 is comparatively bad.

• When n > 1 the action of SL(2n,Z) on M is not discontinuous (this
result is due to Siegel [8]). In fact, it can be shown that every open
non-empty subset V of M contains a point t whose SL(2n,Z) -orbit
intersects V in an infinite set of points! (this is due to Kodaira-
Spencer [6], Chap. VI, Sec. 14). Therefore we also deduce that the
quotient topological space M/SL(2n,Z) is not even Hausdorff!
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Hence the natural construction of the moduli space of complex
n-dimensional tori fails for n > 1!

It can be further shown that for any nonempty open subset V of M ,
the restriction of the family (C,M, ψ) to V can never consist of conformally
distinct tori, even if we want to consider the restricted family only as a
differentiable family.

In fact, given a nonempty open subset V of M and a differentiable family
(V, V, ξ) of complex n-dimensional tori each of whose fibers ξ−1(v), v ∈ V ,
occurs (up to isomorphism) as a fiber of the restriction of (C,M, ψ) to V ,
the following can be proved: if the fibers of V are all conformally distinct,
then V cannot contain a representative (up to isomorphism) of each of the
fibers of C restricted to V i.e., there exists v0 ∈ V such that ψ−1(v0) is not
biholomorphic to any fiber ξ−1(v) of V; in other words, if V does contain
among its fibers a representative of every one of the fibers of C restricted to
V , then there exist distinct point v1, v2 of V such that ξ−1(v1) and ξ−1(v2)
are biholomorphic. For proofs of these, refer to Chap. VI, Sec. 14(γ) of the
paper of Kodaira-Spencer [6].

We shall establish certain remarkable “local moduli-theoretic” proper-
ties of the family (C,M, ψ) in (3.4.4).

In the next section we show how certain complex-analytic deformations
of a complex-analytic object that admits an algebraic structure, may fail
to admit any algebraic structures.

2.7 Algebraizability and Analytic
Deformations

The study of the problem of moduli of a compact connected complex man-
ifold when the manifold admits also an algebraic structure (for e.g., the
problem of moduli of a compact Riemann surface), becomes very interest-
ing and greatly unifies the vast subjects of Analysis, Differential Geometry,
Differential Topology, Algebraic Topology, Number Theory and Algebraic
Geometry; for such a study involves the correlation of various results and
ideas from each of these branches of Mathematics with those of the others.
The necessity for such a correlation arises from the fact that the object
(whose moduli we want to study) has both an analytic as well as an alge-
braic structure and these structures are not entirely independent of each
other — for example, many properties of a scheme over C (an algebraic
structure described in (A.4) and (A.5) of the Appendix) imply the exis-
tence of corresponding properties for its associated complex analytic space
and conversely (see theorem (A.10.4.1)).

It is therefore often helpful to know various conditions under which a
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given complex analytic space admits an algebraic structure. Some of the
results concerning algebraizability of complex analytic spaces relevant to
our needs are briefly presented in section A.10 of the Appendix.

It is not an uncommon phenomenon that a (global or local) holomorphic
deformation of a complex algebraizable manifold (i.e., a complex manifold
which is the complex analytic space associated to a scheme of finite type
over C — see (A.10) of the Appendix) may fail to be algebraic; thus one
must make suitable restrictions on the nature of the deformations consid-
ered if one wants to get only those analytic deformations which are also
algebraic. We will discuss below an example of this phenomenon.

To begin with, we first recall a fundamental theorem that gives necessary
and sufficient conditions under which a complex n-dimensional torus is
algebraizable.

2.7.1 Algebraizability of Complex Tori

Let us recall the example of (1.5.2.2.1), where we defined the n-dimensional
complex torus Tnω = Cn/G with

G =


2n∑
j=1

(mjwj); mj ∈ Z


and with 〈ω〉 = 〈w1, . . . , w2n〉 a set of 2n vectors that are linearly indepen-
dent over R. When n = 1 we know that each such torus T 1

τ is algebraic
and is in fact an elliptic algebraic curve (1.5.2.6).

However, for n > 1 almost all tori Tnω do not admit any algebraic
structure!

To describe the ones that do, we first recall from (1.5.2.2.1) that the
period matrix associated to Tnω is the transpose ΩT of the matrix Ω = (wji )
with 2n rows and n columns, where we have written wi = (w1

i , . . . , w
n
i ) ∈ Cn

for each i = 1, . . . , 2n. We then have the following.

2.7.1.1 Theorem (Algebraizability of Complex Tori). A complex
n-dimensional torus Tnω is algebraizable if and only if its period matrix ΩT

is a Riemann Matrix i.e., there exists a skew-symmetric (or alternating) real
invertible matrix J of order 2n with integer entries such that the matrix of
order n given by ΩT · J−1 ·Ω is the zero matrix and the determinant of the
matrix of order n given by

√
−1(Ω

T ·J−1 ·Ω) (which is a Hermitian matrix)
is positive. Further, if n ≥ 2, then almost all tori Tnω are not algebraizable.

Notice that the hypothesis that the period matrix ΩT is a Riemann
matrix is equivalent to the following: there exists a Hermitian form H on
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Cn such that (1) the real skew-symmetric (or alternating) form E := Im(H)
is integral on G×G ⊂ Cn × Cn and (2) H is positive definite.

Under these conditions it is possible to construct an ample line bun-
dle L on Tnω i.e., such that the space of holomorphic sections of the m-
th tensor power of L for m ≥ 3 gives an embedding of Tnω as a closed
complex submanifold in a suitable complex projective space P kC . Then by
the GAGA correspondence (or Chow’s theorem) stated in (A.10.5) of the
Appendix, it follows that Tnω is algebraizable. For further details, refer to
Chap.1 of Mumford’s book on Abelian Varieties [9], especially the Theorem
of Lefschetz in section 3 there.

2.7.1.2 Remark. For n = 1 the above theorem says that complex one-
dimensional tori T 1 = C/G are always algebraizable. For if G is the lattice
in C generated by 1, τ with Im(τ) > 0, then the mapping H : C×C −→ C
given by H(z, w) = (zw)/(Im(τ)) is a positive definite Hermitian form such
that Im(H) is integral on G×G. It is also easy to check in this case that
the period matrix of T 1 is trivially a Riemann matrix.

However, as stated in the theorem above, almost all tori Tn for n ≥ 2 are
not algebraic. It turns out that on most general tori Tn, n ≥ 2 there exist no
nonconstant meromorphic functions and hence they can’t be algebraic. In
fact a complex n-dimensional torus that admits n algebraically independent
meromorphic functions has to be algebraizable. For a proof of this, refer to
section 3 of Chap.1 of Mumford’s book cited above.

2.7.2 Non-algebraic Deformations of Complex
Algebraic Tori

Recall the examples of (2.6.1) and (2.6.2) of complex analytic families of
complex tori denoted respectively by (B, S, φ) and (C,M, ψ). Let us assume
that n > 1 and choose a point of the parameter space over which the fiber
as complex torus is algebraic (i.e., its period matrix is a Riemann matrix
as explained in the previous subsection). We can explicitly show that in
any neighborhood of this chosen point, there exists a point over which the
fiber as complex torus is not algebraizable i.e., there exists a point over
which the fiber as complex torus has period matrix which is not a Riemann
matrix. In fact, the locus of points that correspond to algebraic tori has
dimension ≤ n(n+ 1)/2 < n2 (see (3.4.4.2)).

Hence there exist arbitrarily small holomorphic deformations
of any n-dimensional algebraic complex torus that are not alge-
braic for each n > 1.

In the next section, we show by suitable examples how the variation of
complex structure of Mt = φ−1(t) for a complex analytic family (M, B, φ)
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may be continuous (as t varies in B) or the variation may exhibit sudden
changes called “jump phenomena”.

2.8 Discontinuous and Continuous Variation
of Complex Structure

2.8.1 Continuous Variation of Complex Structure

The example of (2.4.2) of the complex analytic family (M, U, φ) of complex
1-dimensional tori parametrized by the upper half-plane U is a situation
in which the complex structure of Mt = φ−1(t) varies continuously as t
varies in U . This can be seen using the elliptic modular function J(t) of
(1.5.2.6.3) since the conformal structure on the torus defined by t ∈ U is
completely characterized by the complex number J(t).

2.8.2 Discontinuous Variation of Complex Structure:
Jump Phenomena

A complex n-dimensional torus Tn = Cn/L where L is a lattice in Cn is an
obvious generalization of an elliptic curve T 1 = C/G where G is a lattice in
C (cf. (1.5.2.2.1)). Though all T 1 are algebraic, we know from (2.7.1) that
for n > 1 most Tn are not. However, their underlying differentiable (hence
also topological) structures are the same by (2.3.1.1).

Another way of defining an elliptic curve T 1 = C/G is by considering it
to be the quotient C∗/G∗ where C∗ = C− {0} and

G∗ = {g∗m : z 7→ αmz; α = e2πiτ , m ∈ Z}

and where G is the lattice L = L(τ) = {n+mτ ; n,m ∈ Z}. Then G∗ acts
properly discontinuously and without fixed points on C∗ with fundamental
domain

F ∗ = {z ∈ C− {0}; |α| ≤ |z| ≤ 1}

which is a closed annulus so that C∗/G∗ is a complex 1-dimensional torus
by theorem (1.5.2.1.2). Note that the condition Im(τ) > 0 implies that the
modulus of the complex number α is less than 1.

This definition of an elliptic curve as T 1 = C∗/G∗ can also be generalized
to higher dimensions. However, the objects so obtained are very different
from higher-dimensional complex tori: they are called Hopf manifolds and
are not algebraizable. In fact, in contrast to the case of complex tori, even
the underlying topological structure of a Hopf manifold is quite different
from that of an algebraizable complex manifold.



2.8. Discontinuous and Continuous Variation 61

We shall construct a complex analytic family of Hopf surfaces (i.e.,
Hopf manifolds of complex dimension two) which exhibits a sudden change
in complex structure at a point of the parameter space.

So let G be the infinite cyclic group generated by the automorphism

(z1, . . . , zn) 7→ (α1z1, . . . , αnzn)

of Cn − {0} where each αi is a fixed complex constant of modulus greater
than 1. G acts properly discontinuously and without fixed points on Cn −
{0} so that the quotient M := (Cn−{0})/G is a compact complex manifold
(by (1.5.2.1.2)) called a Hopf manifold of dimension n.

M as a real differentiable manifold can be shown to be isomorphic to
the product S1 × S2n−1 (where Sk denotes the k-sphere in Rk+1). Notice
that for n = 1, M is just an elliptic curve of the form C∗/G∗ as described
above. For n ≥ 2, on the one hand, the rank of the finitely generated
abelian homology group H1(Mtop,Z)—where Mtop is the topological space
underlying M—called the first Betti number of M turns out to be equal to 1.
On the other hand, from the Hodge Theory of harmonic differential forms
it is known that the first Betti number of an algebraic manifold is even.
Therefore even the underlying topological structure of the Hopf manifold
M is different from that of an algebraic manifold.

It can be shown that if α1, . . . , αn are independent in the sense that
αk11 . . . αknn 6= 1 for any n-tuple (k1, . . . , kn) 6= (0, . . . , 0) of integers, then M
has no nontrivial meromorphic functions. This again implies that M cannot
be algebraizable, for any algebraic manifold abounds in such functions.

Now we construct a complex analytic family of Hopf surfaces i.e., a
family of holomorphically varying complex structures on the differentiable
manifold S1×S3. So fix α, t ∈ C such that 0 < |α| < 1 and define the map

gt : (z1, z2) 7→ (αz1 + tz2, αz2).

This is a holomorphic automorphism of C2 − {0} and generates an infinite
cyclic group Gt that acts properly discontinuously and without fixed points
on C2 − {0}. So the quotient Mt := (C2 − {0})/Gt is a complex manifold
(by (1.5.2.1.2)) called a Hopf surface since it is a Hopf manifold of dimension
two. We claim that {Mt; t ∈ C} is a complex analytic family. To see this,
first define the mapping

g : (z1, z2, t) 7→ (αz1 + tz2, αz2, t)

which is an automorphism of (C2−{0})×C and generates an infinite cyclic
group G that acts properly discontinuously and without fixed points on
(C2 − {0})×C. Thus the quotient M := ((C2 − {0})×C)/G is a complex
manifold by (1.5.2.1.2). The second canonical projection from (C2−{0})×C
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commutes with g and therefore induces a holomorphic map φ : M −→ C.
The rank of the Jacobian matrix of φ is 1 everywhere and hence (M,C, φ)
is a complex analytic family of compact complex manifolds (Hopf surfaces)
with fiber over t ∈ C given by φ−1(t) = (C2 − {0})/Gt = Mt.

Now let t ∈ U := C − {0}. The matrix of gt is given by [ α t
0 α ] . This

upon conjugation by the matrix [ 1 0
0 t ] gives the matrix [ α 1

0 α ], which is just
the matrix of g1.

The above observation shows that the restriction of (M,C, φ) to U (for
a suitable choice of coordinates on M) is equivalent to the trivial family
over U with fiber type M1. Thus we see that Mt has the same complex
structure as M1 for t 6= 0.

By nontrivial calculations involving holomorphic vector fields, Kodaira
and Spencer have shown that while each Mt, t 6= 0 has only two linearly
independent holomorphic vector fields, M0 has four linearly independent
holomorphic vector fields (see [6], chap. VI, sec. 15). Hence M0 has to have
a different complex structure from Mt for each t 6= 0.

Thus the complex structure of (M,C, φ) = {Mt; t ∈ C} jumps
at t = 0.

This type of phenomenon is christened a jump phenomenon.
The occurrence of jump phenomena is one of the main reasons for the

nonexistence of certain types of “global moduli spaces” called coarse moduli
spaces and fine moduli spaces which we shall introduce in section 4.5 of
chapter 4.

In the next chapter we study the notion of an “arbitrarily small” defor-
mation of complex structure called an infinitesimal deformation.



3. Theory of Local
Moduli: Infinitesimal
Deformations

3.1 Overview of this Chapter

This chapter explains Kodaira-Spencer Theory, which is the study of arbi-
trarily small deformations of the complex structure on a given compact
complex manifold.

Section 3.2 is devoted to the definition and properties of the various
avatars of the Kodaira-Spencer maps for a given family of compact complex
manifolds.

The notion of an infinitesimal deformation of the complex structure of
a compact complex manifold, as an element of the first cohomology group
of this manifold with values in its sheaf of germs of holomorphic vector
fields, is introduced in subsection 3.2.1 for a differentiable family, and in
subsection 3.2.8 for a complex analytic family.

Each infinitesimal deformation is associated to a tangent direction at the
point, of the base space, over which the corresponding fiber of the family
is the fixed compact complex manifold whose local deformations of com-
plex structure we want to study. Therefore, we get a map of vector spaces,
from the tangent space at that point of the base, to the first cohomology
group of the compact complex manifold with values in its sheaf of holo-
morphic vector fields. This map is called the infinitesimal Kodaira-Spencer
map and is introduced in subsection 3.2.2 for a differentiable family and in
subsection 3.2.8 for a complex analytic family.

Since there is a differentiable family underlying every complex analytic
family, it is natural to ask if there is any relationship between the infinites-
imal Kodaira-Spencer map for a complex analytic family to that of the
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underlying differentiable family at a given point of the base manifold. That
these maps may be considered to be one and the same in a suitable sense,
is explained in subsection 3.2.9.

If a family of compact complex manifolds is locally trivial, then the
infinitesimal Kodaira-Spencer maps at each point of the base manifold van-
ish. However, the converse is not generally true because of existence of
families that exhibit jump phenomena. A converse does exist, if we impose
the additional hypothesis of regularity which stipulates that the dimensions,
of the first cohomology groups of the fibers with values in their correspond-
ing sheaves of holomorphic vector fields, remain constant. This is explained
in subsection 3.2.7 for a differentiable family and in subsection 3.2.8 for a
complex analytic family.

One naturally asks if there exists a concept which would truly character-
ize the dependence of the variation of the complex structures, on the fibers
of a family, on the varying point of the base space. Though the concept
of an infinitesimal Kodaira-Spencer map does not satisfy this requirement
unless the family is regular, there is a global version of this map which
fits the bill. This is called the global Kodaira-Spencer map for the given
family and is explained in subsection 3.2.6 for a differentiable family and
in subsection 3.2.10 for a complex analytic family. The development of this
concept requires the notions of fundamental sequences of vector bundles
and sheaves for the given family, and these notions are described in sub-
sections 3.2.3 and 3.2.5 for a differentiable family, and in subsection 3.2.10
for a complex analytic family. As a by-product of the discussion in subsec-
tion 3.2.3, one is able to formulate the notion of a differentiable family in
terms of the sophisticated language of differentiable fiber bundles, and this
formulation is explained in the subsequent subsection viz. 3.2.4.

As may be expected, the global Kodaira-Spencer map for a complex
analytic family is related to that of the underlying differentiable family.
This relationship is explained in subsection 3.2.11.

The infinitesimal deformation of a compact complex manifold along a
prescribed tangent direction at the point of the base (over which the fiber of
the family is the compact complex manifold in consideration) is obtained by
differentiating the transition functions with respect to the tangent direc-
tion, and then expressing the derivatives in an intrinsic form by letting
them to be coefficients of vector fields — this is how one ends up with
a first cohomology class of the compact complex manifold with values in
its sheaf of holomorphic vector fields. Therefore one may expect that the
infinitesimal deformation should possess some well-known properties of the
derivative. One such property is expressed by the chain rule, for computing
infinitesimal deformations under a change of parameter, which is explained
in subsection 3.3.1.
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Using the chain rule, one is able to give an example of a family for
which all the infinitesimal deformation maps vanish, but yet the family is
not locally trivial. This example is explained in subsection 3.3.2.

Not every element of the first cohomology group of a compact complex
manifold with values in its sheaf of holomorphic vector fields corresponds
to an infinitesimal deformation of its complex structure. In fact, there may
exist certain elements — obstruction classes — which will not correspond
to a smooth deformation of the complex structure. The notion of primary
obstruction to infinitesimal deformation is formulated in subsection 3.4.1,
and higher order obstructions are formulated in subsection 3.4.5. It is seen
that, if the second cohomology group of the compact complex manifold
with values in its sheaf of holomorphic vector fields vanishes, then all these
obstructions vanish! Therefore, such a situation should be a good one, and
this is justified by the Theorem of Existence, which says that in such a
situation, all first cohomology classes are associated to infinitesimal defor-
mations and this association is actually a correspondence. This theorem is
indicated in subsection 3.4.6.

A family is said to be complete at a point of the base space, if it locally
induces every other family of deformations of the compact complex manifold
which is the fiber over this point. Completeness is ensured by the surjec-
tivity of the infinitesimal Kodaira-Spencer map at that point, and this is
the content of the Theorem of Completeness described in subsection 3.4.2.

Given a compact complex manifold, one may ask if there is a minimal
set of independent parameters which are sufficient to parametrize every one
of its infinitesimal deformations. If such a set exists, then its cardinality
may be called the number of moduli of the compact complex manifold.
The conditions under which the number of moduli is defined and exists are
explained in subsections 3.4.3 and 3.4.6.

In subsection 3.4.4, we show the existence of the conditions required to
define the number of moduli of any complex n-dimensional torus, and prove
that this number is n2.

The concept of a deformation of the complex structure on a compact
complex manifold has an analogue for complex fiber bundles; the notion
of a deformation of the complex structure on a complex fiber bundle, the
notions of global and infinitesimal Kodaira-Spencer maps for a family of
complex fiber bundles and various results analogous to those in the context
of deformations of compact complex manifolds are indicated in section 3.5.

Every cohomology class in the first cohomology group, of a compact
complex manifold with values in its sheaf of holomorphic vector fields,
does correspond to an infinitesimal deformation of the complex structure
on the compact complex manifold, provided one allows complex-analytic
deformations which may in general not be smooth. This is the content of
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Kuranishi’s Theorem, and is explained in section 3.6, necessitating the for-
mulation using complex-analytic spaces which may not be manifolds i.e.,
which may in general have singularities. The notion of a local moduli space
is also explained in this section.

Examples of local moduli spaces are given in section 3.7. Riemann’s
celebrated formula for the number of moduli of a compact Riemann surface
is justified in subsection 3.7.1.

The existence of a local moduli space for a simple vector bundle on a
compact Riemann surface is explained in section 3.8, and the dimension of
this local moduli space is computed using the Riemann-Roch formula.

Deformation theory may be formulated in the category of schemes, and
the corresponding definitions are explained in section 3.9.

The notion of a global moduli space, in contrast to that of a local moduli
space, is explained in the next chapter. That these notions are related, and
that one can obtain global moduli spaces by glueing local moduli spaces is
also illustrated in the next chapter.

3.2 Infinitesimal Deformations and
Deformation Maps of Kodaira-Spencer

3.2.1 Infinitesimal Deformations for Differentiable
Families

Let (M, B, φ) be a differentiable family of compact complex manifolds.
Recall theorem (2.3.2.4): for t0 ∈ B let Mt0 = φ−1(t0) be the compact
connected complex manifold obtained by glueing the polydiscs V1, . . . , Vl by
identifying zk ∈ Vk and zj = fjk(zk) ∈ Vj via the transition functions {fjk}
arising out of a given finite system of local complex coordinates {(Ui, zi); i =
1, . . . , l} i.e., zj(Uj) = Vj and fjk = zj ◦ z−1

k ; then there exists a domain
I ⊂ B containing t0 such that for each t ∈ I,Mt = φ−1(t) is a compact
complex manifold obtained by glueing the same polydiscs V1, . . . , Vl but by
different transition functions

fαjk(zk, t) = fαjk(zk, t1, . . . , tm)

with the initial conditions fαjk(zk, t0) = fαjk(zk) where t = (t1, . . . , tm) are
local C∞ coordinates on I and the functions fjk(zk, t) are C∞ functions of t.

In the following discussion, we will use the notations of the above the-
orem (and also of its proof). Recall that any fiber Mt = φ−1(t) for t ∈ I is
called a local C∞-deformation of complex structure of Mt0 (see (2.3.2.5)).
In the following discussion we work with the restriction of (M, B, φ) to I
i.e., with (MI , I, φ) and without loss of generality we assume that I is a
domain in Rm.
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Recall that {(U ′j , xj); j = 1, . . . , l} cover φ−1(I) and that xj(U ′j) =
Vj × Ij . Further, for each t ∈ I, let Uj,t := U ′j ∩Mt. Then, for each t ∈ I,
we get the following finite system of local complex coordinates on Mt:

{(U ′j , zj); j = 1, . . . , l},

zαj = x2α−1
j + (

√
−1)x2α

j (1 ≤ α ≤ n),

xj(Uj,t) = Vj × {t} ∼= Vj .

We write Uj,t0 as Uj . Notice first of all that on each nonempty intersection
U ′i ∩ U ′j ∩ U ′k we have the following patching conditions for the transition
functions:

fik(zk, t) = fij(fjk(zk, t), t). (3.1)

Recall that m is the dimension of B as real differentiable manifold and
t = (t1, . . . , tm) are local C∞ coordinates on I induced from the standard
ones on Rm. Choose a C∞ tangent vector to B at t ∈ I of the form

∂

∂t
=

m∑
λ=1

cλ
∂

∂tλ
, cλ ∈ R,

which is an element of the C∞ tangent space to B at t ∈ I, denoted TtB.
Introduce the following holomorphic vector fields given by

θjk(zj , t) =
n∑
α=1

∂fαjk(zk, t)
∂t

∂

∂zαj
, zk = fkj(zj , t) (3.2)

on Uj,t ∩ Uk,t(6= ∅) ⊂Mt.
It is important to bear in mind that in the above, the functions

fαjk(zk, t) of the variables z1
k, . . . , z

n
k , t are first to be differentiated

with respect to t and then the substitutions zαk = fαkj(zj , t) are to
be made.

We will denote θjk(zj , t) by θjk(t) for simplicity. Differentiation of the
condition (3.1) combined with the definition of θjk(t) from formula (3.2)
gives the following identities on Ui,t ∩ Uj,t ∩ Uk,t(6= ∅) ⊂Mt:

θik(t) = θij(t) + θjk(t), θkj(t) = −θjk(t). (3.3)

Let Θt denote the sheaf of germs of holomorphic vector fields over Mt i.e., the
sheaf associated to the holomorphic tangent bundle of Mt. Then the above
relations express the fact that the sections θjk(t) ∈ Θt(Uj,t ∩ Uk,t) define
a 1-cocycle {θjk(t)} with values in the sheaf Θt relative to the open covering
Ut := {Uj,t} of Mt (see (A.9)). This is written as {θjk(t)} ∈ Z1(Ut,Θt).
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Since each Uj,t is biholomorphic (via xj) to the corresponding polydisc
Vj × {t} ∼= Vj as noted earlier, we see from (A.9) that this 1-cocyle defines
an element

θ(t) ∈ H1(Mt,Θt) ∼= Ȟ
1
(Mt,Θt) := Ȟ

1
(Ut,Θt).

It can be verified that the definition of θ(t) is independent of
the choice of local C∞ coordinates {(U ′j , xj)}.

Since θ(t) is obtained by differentiating the patching conditions (3.1) for
transition functions that are responsible for changing the complex structure
of Mt with respect to t, it is intuitively correct to make the following defi-
nition.

3.2.1.1 Definition. The cohomology class θ(t) obtained above is called
the infinitesimal deformation of Mt along the direction prescribed by ∂

∂t ∈ TtB.
θ(t) is also called the derivative of the complex structure of Mt along the
direction prescribed by ∂

∂t ∈ TtB. Thus we write θ(t) = ∂Mt

∂t .

3.2.1.2 Note. We have defined θ(t) only for t ∈ I. However, the the-
orem (2.3.2.4) guarantees that as t0 varies in B, neighborhoods such as I
always exist and cover B and hence θ(t) is defined uniquely for each t ∈ B.
At this point we again state that the definition of θ(t) does not depend on
the choice of local C∞ coordinates on M.

3.2.2 Infinitesimal Kodaira-Spencer Maps for
Differentiable Families

We continue using the notations of (3.2.1) and fix a differentiable family of
compact complex manifolds (M, B, φ) for the following discussion.

3.2.2.1 Definition. Define the mapping ρt : TtB −→ H1(Mt,Θt) given
by ρt

(
∂
∂t

)
= θ(t) = ∂Mt

∂t . This map is an R-linear map and is called
the infinitesimal deformation map or the infinitesimal Kodaira-Spencer map at
t ∈ B for the family (M, B, φ).

If a function does not depend on a certain parameter then its partial
derivative with respect to that parameter must be zero. Similarly, if the
complex structure on Mt does not depend on the parameter t ∈ B, we must
have that the derivative of the complex structure, along any prescribed
tangent direction at each t ∈ B, must be zero. This must all the more
be expected in the case of a locally trivial family since in that case all the
fibers are biholomorphic to each other. This expectation turns out to be
true and is verified by straightforward computation. Hence we can state
the following.
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3.2.2.2 Lemma. If (M, B, φ) is a locally trivial differentiable family of
compact complex manifolds, then at each point t ∈ B, the infinitesimal
Kodaira-Spencer map ρt is the zero map. In other words, locally trivial
families do not admit any infinitesimal deformations.

Suppose we were to believe that ρt truly characterizes the dependency
of complex structure of Mt on t ∈ B locally, then it is natural to expect
that the vanishing of ρt at each point t ∈ B must imply that the differ-
entiable family is locally trivial. Unfortunately this is not true (because
of jump phenomena (cf. (2.8.2) and (3.3.2)) unless we impose some addi-
tional conditions—see theorem (3.2.7.3). However, it turns out that there
is a “global version” of the infinitesimal Kodaira-Spencer map which over-
comes this difficulty. We describe this in (3.2.6). Before that, we define
the notions of fundamental sequences for a differentiable family and also
explain the reformulation of the notion of differentiable family in terms of
differentiable fiber bundles in subsections (3.2.3) through (3.2.5) below.

3.2.3 The Fundamental Sequence of Vector Bundles
for a Differentiable Family

Let (M, B, φ) be a differentiable family of compact complex manifolds.
We use the notations of theorem (2.3.2.4) and its proof. Consider the
transition functions {fjk} that glue the domains {Vj × Ij} to give M. For
p ∈ U ′i ∩ U ′k(6= ∅) we set as usual zαi (p) = fαik(zk(p), t), (α = 1, . . . , n).
These are C∞ functions which are actually holomorphic in zk. Let gik(p)
be the Jacobian matrix

gik(p) :=

[
∂zαi (p)

∂zβk (p)

]
.

Let F be the complex vector bundle over M determined by the system of
transition functions {gik} with respect to the open cover {U ′i} ofM. Next
let G be the vector bundle over M with fiber Cn ⊕ Rm determined by the
system of transition functions with respect to this cover given by matrices

hik(p) :=

[
gik(p) [∂zαi (p)/∂tνk]

0 [∂tλi /∂t
ν
k]

]
,

where ti = (t1i , . . . , t
m
i ) is a system of local C∞ coordinates for B covering

φ(U ′i) for every i. Then clearly F is a sub-bundle of G and we have a short
exact sequence of vector bundles on M given by

0 −→ F −→ G −→ G/F −→ 0,
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which is called the fundamental sequence of vector bundles for the differen-
tiable family (M, B, φ).

3.2.3.1 Remark. By thinking of any fixed fiber Mt = φ−1(t) as a fam-
ily over a base space consisting of a single point, we can similarly get a
fundamental sequence of vector bundles for the fiber over t ∈ B.

3.2.4 Reformulation of the Definition of Differentiable
Family in Terms of Differentiable Fiber Bundles

We now give another formulation of the notion of a differentiable family, as
already promised in (2.2.1.4) and (2.3.1.2).

Let F+ be the C∞ vector bundle overM of tangent vectors along fibers
of φ and G+ be the C∞ tangent bundle of M. Recall that m and 2n are
the dimensions respectively of the differentiable manifolds corresponding to
B and to any fiber of φ. We have the short exact sequence of C∞ vector
bundles over M given by

0 −→ F+ −→ G+ −→ G+/F+ −→ 0.

Let GL((2n,m),R) denote the subgroup of elements of GL(2n + m,R)1

which map the linear subspace x2n+1 = x2n+2 = · · · = x2n+m = 0 of
R2n+m (with standard coordinates x1, . . . , x2n+m) onto itself. Then due to
(2.3.1.1) the structure group of G+ is GL((2n,m),R) and that of F+ is a
subgroup of this group. Let GL(n,C;m,R) denote the group of matrices
of the form [

A B
0 C

]
,

where A ∈ GL(n,C), C ∈ GL(m,R) and B is an arbitrary n ×m matrix
with entries in C. Notice that the matrices given by hik(p) of (3.2.3) are of
this form. Define the map GL(n,C;m,R) −→ GL((2n,m),R) by

[
A B
0 C

]
7→

Re(A) −Im(A) Re(B)

Im(A) Re(A) Im(B)

0 0 C

 .
Then this map embeds GL(n,C;m,R) as a real subgroup of GL((2n,m),R).
Put the matrices given by hik(p) of (3.2.3) in the form[

A B
0 C

]
,

1GL(k, R) (respectively GL(k, C)) denotes the group of invertible real (respectively
complex) matrices of order k ∈ N.
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consider these as elements of GL((2n,m),R) by the above embedding and
take the C∞ vector bundle onM defined with these as transition functions.
The resulting vector bundle turns out to be precisely G+. Now complexify
the first 2n components of vectors of G+ to get a vector bundle CG+. Let

E =

1
√
−1 0

1 −
√
−1 0

0 0 1


so that we have

E ·

Re(A) −Im(A) Re(B)

Im(A) Re(A) Im(B)

0 0 C

 · E−1 =

A 0 B

0 A B

0 0 C


which shows that the vector bundle CG+ has G and its conjugate G as
sub-bundles. Next, if the vector bundle CF+ is the complexification of F+,
then we have the splitting CF+ = F+ ⊕ (

√
−1)F+ = F ⊕ F. Finally recall

that (M, B, φ) can be regarded as a differentiable fiber bundle because of
(2.3.1.1). Hence we can make the following definition.

3.2.4.1 Definition. A differentiable family of complex manifolds is a
differentiable fiber bundle (M, B, φ) alongwith a differentiable reduction
of the structure group GL((2n,m),R) of the C∞ tangent bundle G+ of
M to GL(n,C;m,R) (regarded as real subgroup) which imparts to each
fiber a complex analytic structure. Here m and 2n respectively denote
the dimensions of B and of any fiber of φ considered as real differentiable
manifolds.

3.2.5 The Fundamental Sequence of Sheaves for a
Differentiable Family

We continue with the notations of (3.2.3) above. Let Θ,Ψ respectively be
the sheaves of germs of differentiable sections of F,G whose restrictions
to each fiber of φ are holomorphic. Then we get, from the fundamental
sequence of vector bundles for the differentiable family (M, B, φ) defined
in (3.2.3) the following short exact sequence (cf. (A.8)) of sheaves on M:

0 −→ Θ −→ Ψ
j−→Ψ/Θ −→ 0.

Let ΥB be the sheaf of germs of differentiable sections of the tangent bundle
of B and let Υ̃ = φ−1(ΥB) be the inverse image sheaf induced over M by
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φ (see (A.1)). Then there is a natural injection Υ̃ ↪→ Ψ/Θ and its image
will be denoted by Υ. Let Π = j−1(Υ) ↪→ Ψ so that we get a short exact
sequence of sheaves (on M)

0 −→ Θ −→ Π
j−→Υ −→ 0

called the fundamental sequence of sheaves for the differentiable family
(M, B, φ).

An alternative definition of the above fundamental sequence of sheaves
is as follows. Let OR be the sheaf of germs of real-valued differentiable
functions on M that are constant along fibers of φ. Ψ is a sheaf of germs
of vector fields tangent to M and operates on OR by differentiation. Let
Π be the largest subsheaf of Ψ for which OR is stable under the operation
of Π by differentiation. Then Θ is a subsheaf of Π and Θ annihilates OR.
Then the quotient Π/Θ is nothing but Υ and thus we get the fundamental
sequence of sheaves mentioned above.

3.2.5.1 Remark. By thinking of any fixed fiber Mt = φ−1(t) as a fam-
ily over a base space consisting of a single point, we can similarly get a
fundamental sequence of sheaves for the fiber over t ∈ B.

3.2.6 The Global Kodaira-Spencer Map for a
Differentiable Family

Let (M, B, φ) be a differentiable family of complex manifolds. First of all,
for a sheaf F of abelian groups on M and for each integer q ≥ 0, consider
the presheaf of abelian groups on B defined by the association

U 7→ Hq(MU ,F |MU
)

for each open subset U of B where MU := φ−1(U) (see (A.1) and (A.8)
for an explanation of the notations used here). Its sheafification (see (A.1))
will be denoted by Hq(F). Let

0 −→ Θ −→ Π
j−→Υ −→ 0

be the fundamental sequence of sheaves for (M, B, φ) introduced in (3.2.5)
above. Let U ⊂ B be any open subset. Then we have the following short
exact sequence of sheaves

0 −→ Θ |MU
−→ Π |MU

j−→Υ |MU
−→ 0
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over MU = φ−1(U) giving a corresponding long exact sequence in coho-
mology (see (A.8))

0 −→ H0(MU ,Θ |MU
) −→ H0(MU ,Π |MU

) −→

−→ H0(MU ,Υ |MU
) δU−→H1(MU ,Θ |MU

) −→ · · ·

where δU is the connecting homomorphism. Since

H0(MU ,Υ |MU
) ∼= H0(U,ΥB |MU

) = ΥB(U)

where ΥB denotes the sheaf associated to the C∞ tangent bundle of B, we
have (via δU ) the map

ρU : ΥB(U) −→ H1(MU ,Θ |MU
)

which for U sufficiently small and containing a point t ∈ B is called the
local Kodaira-Spencer map at that point. This map is linear over the ring
of differentiable functions over U .

We next vary U in B and sheafify the presheaf corresponding to each
entry of the long exact sequence of cohomology groups mentioned above to
obtain (because of the universal properties of the sheafifications— see (A.1))
a long exact sequence of sheaves of cohomology groups

0 −→ H0(Θ) −→ H0(Π) −→ H0(Υ) δ−→H1(Θ) −→ H1(Π) −→ · · · .

Since H0(Υ) ∼= ΥB , we get (via δ) the homomorphism of sheaves

ρ : ΥB −→ H1(Θ)

which is called the global Kodaira-Spencer map for the differentiable family
(M, B, φ). Note that ρ is linear over the sheaf of germs of C∞ functions
on B.

In the next subsection, we discuss the relationship between the local
triviality of a family and the Kodaira-Spencer maps.

3.2.7 Local Triviality and the Kodaira-Spencer Maps

We state the following theorem which indicates the relationship between
the global and infinitesimal versions of the Kodaira-Spencer maps for a
differentiable family and which also justifies the statement that the global
Kodaira-Spencer map truly characterizes the dependence on the parameter
of the complex structures on the fibers of the family. For its proof, refer to
the papers of Kodaira-Spencer [6], chap. II.
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3.2.7.1 Theorem.

1. Let (M, B, φ) be a differentiable family of compact complex manifolds.
Let ρt : TtB −→ H1(Mt,Θt) and ρ : ΥB −→ H1(Θ) denote respec-
tively the infinitesimal Kodaira-Spencer map at t ∈ B and the global
Kodaira-Spencer map for this family. Then there exist canonical maps
r1,t and r2,t such that the following diagram commutes

ΥB
ρ−−−−→ H1(Θ)

r1,t

y yr2,t

TtB
ρt−−−−→ H1(Mt,Θt)

2. (M, B, φ) is locally trivial if and only if ρ vanishes.
3. ρ = 0 implies that ρt = 0 at each point t ∈ B but the converse is not

true.

In connection with assertion (3) of the above theorem, one can say more.
Let ρ vanish and fix a point t ∈ B. Choose a small open neighborhood U of
t and first note that ΥB(U) is a finite module over the ring of differentiable
functions over U . So if U is taken sufficiently small, the local Kodaira-
Spencer map at t ∈ B viz. ρU itself must vanish.

On the other hand, if ρt = 0 for each t ∈ B, we have already men-
tioned in (3.2.2) that the family need not be locally trivial. We will give
an example in (3.3.2) of a differentiable family which is not locally trivial
but for which all the infinitesimal Kodaira-Spencer maps vanish. Thus, by
assertion (2) of the above theorem, the global Kodaira-Spencer map cannot
vanish for this family. The family in this example is the family of Hopf
surfaces constructed in (2.8.2). Recall from (2.8.2) that this family exhibits
a jump in the variation of complex structure at a point of the parameter
space. Calculations reveal that the dimension of the complex vector space,
given by the first cohomology group of the fiber with values in its sheaf of
germs of holomorphic vector fields, shoots up at the point t at which the
jump phenomenon occurs. It is therefore natural to expect that families
(M, B, φ) for which the dimension of H1(Mt,Θt) is a constant independent
of t ∈ B might behave better i.e., ρt = 0 for each t ∈ B may imply ρ = 0
for such families. This motivates the following definition; the theorem fol-
lowing it justifies that the condition of the definition is indeed the right
one.

3.2.7.2 Definition. The differentiable family (M, B, φ) is said to be
regular if and only if the dimension of the complex vector space H1(Mt,Θt)
is the same for all points t ∈ B i.e., it is an integer independent of t ∈ B.
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Here, as usual, Mt = φ−1(t) for each t ∈ B, and Θt is the sheaf of germs of
holomorphic vector fields on Mt.

3.2.7.3 Theorem. Let (M, B, φ) be a regular differentiable family of
compact complex manifolds. Then this family is locally trivial if and only
if the infinitesimal Kodaira-Spencer map at each point of B vanishes.

The proof of the theorem is done by induction on the dimension of
B and involves the Theory of Differentiable Families of Strongly Elliptic
Differential Operators. For further details, refer to chap. 7 of Kodaira’s
book [5].

3.2.7.4 Important Note. We again emphasize the indispensability of
the assumption of regularity in the above theorem—see the counter-example
in (3.3.2).

From the next theorem, a theorem of Fröhlicher-Nijenhuis [10] can be
deduced. Their theorem asserts that any differentiable family of compact
complex manifolds each biholomorphic to n-dimensional complex projective
space PnC (for a fixed positive integer n) has to be locally trivial. Notice that
the first cohomology group of PnC with values in the sheaf of germs of holo-
morphic vector fields is zero. It was this theorem that encouraged Kodaira-
Spencer to make precise their philosophy that a deformation of a compact
complex manifold is to be considered as the glueing of the same finite set of
polydiscs but by different transition functions which depend (either differ-
entiably or holomorphically) on a parameter, because this notion naturally
gives rise to an element in H1(M,Θ) corresponding to each tangent direc-
tion at the point on the parameter space over which the fiber is M .

3.2.7.5 Theorem (Rigidity Principle). Let (M, B, φ) be a differen-
tiable family of compact complex manifolds. Let t0 ∈ B and let the compact
complex manifold Mt0 := φ−1(t0) be such that H1(Mt0 ,Θt0) = 0. Then
there is a sufficiently small neighborhood I ⊂ B of t0 restricted to which
this differentiable family becomes trivial.

Proof. The function t 7→ dimC(H1(Mt,Θt)) is an upper semicontinuous
function. (This result depends on the theory of differentiable families of
strongly elliptic differential operators. For a more general result of this type
see (1) of theorem (3.2.11.2)). Hence there is a sufficiently small neighbor-
hood I of t0 such that dimC(H1(Mt,Θt)) ≤ dimC(H1(Mt0 ,Θt0)) for each
t ∈ I. This forces dimC(H1(Mt,Θt)) = 0 for each t ∈ I. Thus the restric-
tion (MI , I, φ) is a regular differentiable family. Further, for this family, at
each point of the parameter space I, the infinitesimal Kodaira-Spencer map



76 3. Theory of Local Moduli: Infinitesimal Deformations

vanishes. Hence by the previous theorem this restricted family is locally
trivial. Now we may choose I sufficiently small so that the restricted family
itself is trivial QED

Motivated by the above theorem, we state the following.

3.2.7.6 Definition (Rigid Manifold). A compact complex manifold
M is called rigid if for any differentiable family of compact complex man-
ifolds (M, B, φ) with t0 ∈ B such that the compact complex manifold
Mt0 = φ−1(t0) is biholomorphic to M , there is an open neighborhood of t0
restricted to which this differentiable family becomes trivial.

Thus, if M is rigid, it has no infinitesimal deformations and any small
deformation of M is still biholomorphic to M itself.

The above theorem says that if M is a compact complex manifold such
that H1(M,Θ) = 0, then M is rigid. Here, as usual, Θ denotes the sheaf of
germs of holomorphic vector fields on M . Thus PnC is rigid for each positive
integer n.

3.2.8 Infinitesimal Deformations and Kodaira-Spencer
Maps for Complex Analytic Families

Let (M, B, φ) = {Mt; t ∈ B} be a complex analytic family of compact com-
plex manifolds. Fix a point t ∈ B. By restricting this family (if necessary)
to a local complex coordinate neighborhood of t, we may assume without
loss of generality that B is a domain in Cm. Here m denotes the dimension
of B as a complex manifold. Let t = (t1, . . . , tm) be the coordinates on
B induced from the standard coordinates on Cm. Further, let n denote
the dimension of any fiber of φ as complex manifold. Thus the dimension
of M as complex manifold is (n + m) (recall that the Jacobian of φ is of
maximal rank at each point ofM). Then from the remarks in (2.4.1.3) we
can choose a system of local complex coordinates {(Uj , zj); j ∈ N} on M
such that the following hold:

1. the coordinate map zj : Uj −→ Cn+m is given by

p 7→ (z1
j (p), . . . , znj (p), t1, . . . , tm)

where φ(p) = (t1, . . . , tm) i.e., locally φ looks like a projection:

(z1
j , . . . , z

n
j , t1, . . . , tm) 7→ (t1, . . . , tm);

2. the open covering of M given by U = {Uj ; j ∈ N} is locally finite;
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3. for each t ∈ B, the open covering induced by U on Mt alongwith the
maps

{p 7→ (z1
j (p), . . . , znj (p)), p ∈ Uj ∩Mt 6= ∅}

gives a system of local complex coordinates on Mt. The transition
functions for M (with respect to the above coordinate system) are
as usual given by {fjk = zj ◦ z−1

k } and we write zαj = fαjk(zk, t), α =
1, . . . , n+m.

Recall that a local holomorphic deformation of a compact complex mani-
fold (corresponding to the fiber of φ over a point t ∈ B) is simply obtained
by glueing the same polydiscs which were glued to get the given compact
complex manifold, but via different transition functions which depend holo-
morphically on the parameter (cf. (2.3.2.4)). We want to measure how the
glueing changes infinitesimally as t varies in B. Since the nature of the
glueing is determined by the transition functions fjk, it is natural to differ-
entiate these functions with respect to t and view the resulting functions
as a measure of the dependence on the parameter t of the holomorphic
structure on the fibers of φ. We proceed below exactly as in the case of
differentiable families (cf. (3.2.1)) to define infinitesimal deformations and
infinitesimal Kodaira-Spencer maps for complex analytic families.

So let TtB denote the holomorphic tangent space of B at t. Let a
holomorphic tangent vector

∂

∂t
=

m∑
λ=1

cλ
∂

∂tλ
, cλ ∈ C

be given. Define the following holomorphic vector field on Ujk := Uj ∩Uk :

θjk(zj , t) =
n∑
α=1

∂fαjk(zk, t)
∂t

∂

∂zαj
, zk = fkj(zj , t).

It is important to bear in mind that in the above, the functions
fαjk(zk, t) of the variables z1

k, . . . , z
n
k , t are first to be differentiated

with respect to t and then the substitutions zαk = fαkj(zj , t) are to
be made.

We will denote θjk(zj , t) by θjk(t) for simplicity. Then, as in the case of
differentiable families, simple differentiation yields the following identities
on Ui ∩ Uj ∩ Uk(6= ∅) :

θik(t) = θij(t) + θjk(t), θkj(t) = −θjk(t).

The above relations express the fact that the sections θjk(t) ∈ Θt(Uj ∩Uk∩
Mt) (where Θt is the sheaf of germs of holomorphic vector fields over Mt
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i.e., the sheaf associated to the holomorphic tangent bundle of Mt) give
rise to a 1-cocycle {θjk(t)} with values in the sheaf Θt relative to the open
covering Ut := {Uj ∩Mt} of Mt. This is written as {θjk(t)} ∈ Z1(Ut,Θt) .
We may choose U in such a way that each nonempty intersection Uj ∩Mt

is biholomorphic to a polydisc in Cn. Therefore, this 1-cocycle defines a
unique element of H1(Mt,Θt) (see (A.9)) which we denote by θ(t).

It can be verified that the definition of θ(t) is independent of
the choice of local complex coordinates on M.

Since θ(t) is obtained by differentiating the patching condition for tran-
sition functions which are responsible for changing the complex structure
of Mt with respect to t, it is intuitively correct to make the following defi-
nition.

3.2.8.1 Definition (Infinitesimal Deformations for Complex Ana-
lytic Families). The cohomology class θ(t) obtained above is called the
infinitesimal deformation of Mt along the direction prescribed by ∂

∂t ∈ TtB.
θ(t) is also called the derivative of the complex structure of Mt along the
direction prescribed by ∂

∂t ∈ TtB, t ∈ B. Thus we write θ(t) = ∂Mt

∂t .

3.2.8.2 Definition (Infinitesimal Kodaira-Spencer Maps for Com-
plex Analytic Families). We continue using the above notations with a
complex analytic family of compact complex manifolds (M, B, φ) fixed for
the following discussion.

Define the mapping ρt : TtB −→ H1(Mt,Θt) given by ρt
(
∂
∂t

)
= θ(t) =

∂Mt

∂t . This map is a C-linear map and is called the infinitesimal deformation
map or the infinitesimal Kodaira-Spencer map at t ∈ B for the complex analytic
family (M, B, φ).

As in the case of differentiable families, we obtain the following results
(cf. (3.2.2.2), (3.2.7.3) and (3.2.7.5)).

3.2.8.3 Theorem.

1. If (M, B, φ) is a locally trivial complex analytic family of compact
complex manifolds, then at each point t ∈ B, the infinitesimal Kodaira-
Spencer map ρt is the zero map. In other words, locally trivial families
do not admit any infinitesimal deformations.

2. Let (M, B, φ) be a regular complex analytic family of compact com-
plex manifolds. Then this family is locally trivial if and only if the
infinitesimal Kodaira-Spencer map at each point of B vanishes.

3. (Rigidity Principle). Let (M, B, φ) be a complex analytic family of
compact complex manifolds. Let t0 ∈ B and let the compact complex
manifold Mt0 := φ−1(t0) be such that H1(Mt0 ,Θt0) = 0. Then there
is a sufficiently small neighborhood I ⊂ B of t0 restricted to which
this complex analytic family becomes trivial.
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4. Let (M, B, φ) = {Mt := φ−1(t); t ∈ B} be a complex analytic family
of compact complex manifolds such that H1(Mt,Θt) = 0 for each
t ∈ B. Then (M, B, φ) is a complex analytic fiber bundle.

As an application of assertion (4) of the above theorem, we see that any
complex analytic family of compact complex manifolds each biholomorphic
to PnC has to be locally trivial and hence is a complex analytic fiber bundle
(called a projective bundle) with structure group the projective group of
linear transformations on PnC .

3.2.8.4 Important Note. As for the indispensability of the assumption
of regularity in (2) of the above theorem, see the counter-example in (3.3.2).

3.2.9 The Relationships of the Infinitesimal Kodaira-
Spencer Maps for a Complex Analytic Family to
those of the Underlying Differentiable Family

For the below discussion, we fix a complex analytic family of compact com-
plex manifolds (M, B, φ) and continue using the notations of the previous
subsection.

For any complex manifold N , let NR denote the underlying differen-
tiable manifold. Then the dimension of MR is (2n + 2m) and that of
any fiber of φ considered as a differentiable manifold, viz. (Mt)R, is 2n.
Assume that BR ⊂ (Cm)R = R2m. Let x = (x1, . . . , x2m) be the real C∞

coordinates on BR induced by the standard coordinates on (Cm)R = R2m.
In other words, Cm is identified with R2m (as differentiable manifolds)
using standard coordinates where the complex coordinates t = (t1, . . . , tm)
correspond to the real coordinates x = (x1, . . . , x2m) via the relations
tj = x2j−1 + (

√
−1)x2j , (1 ≤ j ≤ n). Then by direct calculation we have

the relations

∂

∂tj
=

1
2
√
−1

∂

∂x2j
+

1
2

∂

∂x2j−1
,

and
∂

∂tj
=
−1

2
√
−1

∂

∂x2j
+

1
2

∂

∂x2j−1
,

from which follow the relations

∂

∂tj
+

∂

∂tj
=

∂

∂x2j−1
,

and
∂

∂tj
− ∂

∂tj
= −
√
−1

∂

∂x2j
.
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Now if we take cλ to be complex numbers, then the association

2m∑
λ=1

cλ
∂

∂xλ
↔

m∑
β=1

(c2β−1 + (
√
−1)c2β)

∂

∂tβ
+

m∑
β=1

(c2β−1 − (
√
−1)c2β)

∂

∂tβ

identifies as complex vector spaces the complexification of the C∞ tangent
(real vector) space TR

x (BR) to BR at x, denoted by TR
x (BR)⊗R C, with the

complex vector space TtB ⊕ TtB where TtB denotes the conjugate of the
holomorphic tangent space TtB to B at t ∈ B.

The underlying differentiable family of (M, B, φ) is denoted by
(MR, BR, φ), where φ is thought of just as a C∞ map. To avoid confusion,
we will modify our earlier notation for the infinitesimal Kodaira-Spencer
map for the underlying differentiable family at x ∈ BR to ρR

x . The infinitesi-
mal Kodaira-Spencer map at x ∈ BR for the underlying differentiable family
is given by

ρR
x : TR

x (BR) −→ H1(Mt,Θt)

where ρR
x

(
∂
∂x

)
= θ(x) = ∂Mt

∂x (here t and x represent the same point). More
precisely, if we have the expression

∂

∂x
=

2m∑
λ=1

cλ
∂

∂xλ
, (cλ ∈ R),

for the C∞ tangent vector ∂
∂x , then θ(x) is the image of the 1-cocycle

{θjk(x)} in H1(Mt,Θt) given by

θjk(x) =
n∑
α=1

∂fαjk(zk, x)
∂x

∂

∂zαj
=

n∑
α=1

(
2m∑
λ=1

cλ
∂fαjk(zk, x)

∂xλ

)
∂

∂zαj
, zk=fkj(zj , x).

Now replacing x by t and noting that the partial derivaties of fαjk with
respect to tβ vanish because these functions are holomorphic in tβ , we get
the following expression for θjk(x) = θjk(t):

θjk(t) =
n∑
α=1

 m∑
β=1

(c2β−1 + (
√
−1)c2β)

∂fαjk(zk, t)
∂tβ

 ∂

∂zαj
.

Therefore we see that

ρR
x

(
2m∑
λ=1

cλ
∂

∂xλ

)
= ρt

 m∑
β=1

(c2β−1 + (
√
−1)c2β)

∂

∂tβ

 .
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Now we can define a C-linear map

ρ̃R
x : TR

x (BR)⊗R C −→ H1(Mt,Θt)

obviously by extending ρR
x so that we obtain

ρ̃R
x

(
2m∑
λ=1

cλ
∂

∂xλ

)
= ρt

 m∑
β=1

(c2β−1 + (
√
−1)c2β)

∂

∂tβ


where we emphasize that the cλ are all complex numbers. Thus we get
the following commutative diagram, where we have identified TR

x (BR)⊗R C
with TtB ⊕ TtB:

TtB ⊕ TtB
ρ̃R
t−−−−→ H1(Mt,Θt)

p1

y y(=)

TtB
ρt−−−−→ H1(Mt,Θt)

In the above diagram, p1 denotes the projection onto the first direct sum-
mand. Next notice that the map ρ̃R

t vanishes identically on TtB.
Therefore we see that for a complex analytic family, the nat-

ural extension of the infinitesimal Kodaira-Spencer map of the
underlying differentiable family can be identified with the infinites-
imal Kodaira-Spencer map of the complex analytic family at each
point of the parameter manifold.

It is obvious that if a complex analytic family (M, B, φ) is locally trivial,
then the underlying differentiable family is also locally trivial. However,
using the above, we get the following converse.

3.2.9.1 Theorem. Let (M, B, φ) be a complex analytic family of com-
pact complex manifolds. Then this family is locally trivial if and only if the
underlying differentiable family is locally trivial.

Proof. Assume that (M, B, φ) is a complex analytic family such that its
underlying differentiable family is locally trivial. This complex analytic
family and its underlying differentiable family are both regular families
because all fibers are biholomorphic to each other. By hypothesis the
infinitesimal Kodaira-Spencer map for the underlying differentiable fam-
ily vanishes at each point of the parameter space. Hence by the discussion
above, so does the infinitesimal Kodaira-Spencer map for the complex ana-
lytic family at each point of B. Now apply (2) of theorem (3.2.8.3) of the
previous subsection QED

We next state the following stronger version of the above theorem.
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3.2.9.2 Theorem. A complex analytic family is trivial if and only if its
underlying differentiable family is trivial.

For a proof of this nontrivial theorem, see chap.4, sec. 2(c) of Kodaira’s
book [5]. The “only if” part of the statement of the above theorem is
obvious. It is only the “if” part which is nontrivial to prove; notice that
the previous theorem only guarantees that the complex analytic family is
locally trivial, but its triviality is not at all obvious.

3.2.10 The Global Kodaira-Spencer Map for a
Complex Analytic Family

We introduced in (3.2.3) the notion of a fundamental sequence of vector
bundles for a differentiable family; then we introduced the notion of a fun-
damental sequence of sheaves for a differentiable family in (3.2.5) following
which, in (3.2.6), we introduced the notion of a global Kodaira-Spencer map
for a differentiable family. We discuss below the corresponding notions for
a complex analytic family.

Let (M, B, φ) be a complex analytic family of compact complex man-
ifolds. For any holomorphic vector bundle (B,M, π) over M with total
space B and bundle projection π, let D(B) denote the sheaf over M of
germs of holomorphic sections of this vector bundle (a section of (B,M, π)
over M is simply a set-theoretic map M−→ B which when followed by π
gives the identity mapping ofM). Let DR(B) be the sheaf overM of germs
of those C∞ sections of (B,M, π) which are holomorphic along fibers of φ.

Let G be the holomorphic tangent bundle of M and F the sub-bundle
of G of tangent vectors along the fibers of φ. Let Θ = D(F) i.e., the sheaf
of germs of holomorphic sections of F (or the sheaf of germs of holomorphic
vector fields along the fibers of φ).

Let ΥB be the sheaf over B of germs of holomorphic sections of the
holomorphic tangent bundle of B and Υ := φ−1(ΥB) be its inverse image
sheaf (see (A.1)) onM. Finally let Π denote the subsheaf of D(F) consisting
of germs of holomorphic vector fields on M whose horizontal components
are constant along fibers of φ.

Then we have (analogous to the case of a differentiable family (3.2.3))
the short exact sequence of holomorphic vector bundles on M given by

0 −→ F −→ G −→ G/F −→ 0

called the fundamental sequence of vector bundles for the complex analytic
family (M, B, φ) and the short exact sequence of sheaves onM (cf. (3.2.5))
given by

0 −→ Θ −→ Π
j−→Υ −→ 0
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called the fundamental sequence of sheaves for the complex analytic family
(M, B, φ). Let U ⊂ B be any open subset. Then we have the following
short exact sequence

0 −→ Θ |MU
−→ Π |MU

j−→Υ |MU
−→ 0

over MU = φ−1(U) giving a corresponding long exact sequence in coho-
mology (see (A.8))

0 −→ H0(MU ,Θ |MU
) −→ H0(MU ,Π |MU

) −→

−→ H0(MU ,Υ |MU
) δU−→H1(MU ,Θ |MU

) −→ · · ·

where δU is the connecting homomorphism. Since H0(MU ,Υ |MU
) ∼=

H0(U,ΥB) = ΥB(U), we have (via δU ) the map

ρU : ΥB(U) −→ H1(MU ,Θ |MU
)

which for U sufficiently small and containing a point t ∈ B is called the
local Kodaira-Spencer map at that point. This map is linear over the ring
of holomorphic functions over U .

We next vary U in B and sheafify the presheaf corresponding to each
entry of the long exact sequence of cohomology groups mentioned above to
obtain (because of the universal properties of the sheafifications (see (A.1))
a long exact sequence of sheaves of cohomology groups

0 −→ H0(Θ) −→ H0(Π) −→ H0(Υ) δ−→H1(Θ) −→ H1(Π) −→ · · · .

Since H0(Υ) ∼= ΥB , we get (via δ) the homomorphism of sheaves

ρ : ΥB −→ H1(Θ)

which is called the global Kodaira-Spencer map for the complex analytic fam-
ily (M, B, φ). Note that ρ is linear over the sheaf of germs of holomorphic
functions on B.

We then have the following analogue of theorem (3.2.7.1).

3.2.10.1 Theorem.

1. Let (M, B, φ) be a complex analytic family of compact complex man-
ifolds. Let ρt : TtB −→ H1(Mt,Θt) and ρ : ΥB −→ H1(Θ) denote
respectively the infinitesimal Kodaira-Spencer map at t ∈ B and the
global Kodaira-Spencer map for this family. Then there exist canoni-
cal maps r1,t and r2,t such that the following diagram commutes

ΥB
ρ−−−−→ H1(Θ)

r1,t

y yr2,t

TtB
ρt−−−−→ H1(Mt,Θt)
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2. (M, B, φ) is locally trivial if and only if ρ vanishes.
3. ρ = 0 implies that ρt = 0 at each point t ∈ B but the converse is not

true (cf. assertion (2) of theorem (3.2.8.3)).

3.2.10.2 Remark. By thinking of any fixed fiber Mt = φ−1(t) as a
family over a base space consisting of a single point, we can similarly get
fundamental sequences of vector bundles and sheaves for the fiber over
t ∈ B.

In (3.2.9) we indicated the relationship of the infinitesimal Kodaira-
Spencer map at a point for a complex analytic family to the infinitesimal
Kodaira-Spencer map at the same point for the underlying differentiable
family. In the same way, we will indicate below the relationship of the
global Kodaira-Spencer map for a complex analytic family to the global
Kodaira-Spencer map for the underlying differentiable family.

3.2.11 The Relationship of the Global Kodaira-Spencer
Map for a Complex Analytic Family to that of
the Underlying Differentiable Family

Let (M, B, φ) be a complex analytic family of compact complex manifolds.
Let (B,M, π) be a holomorphic vector bundle on M. We want to under-
stand the relationship of H1(MU ,D(B) |U ) to H1(MU ,DR(B) |U ) where U
is an open subset of B,MU := φ−1(U) and D(B) (respectively DR(B)) is
the sheaf overM of germs of holomorphic sections of (respectively of germs
of C∞ sections which are holomorphic along the fibers of) the vector bundle
(B,M, π). Let Θ := D(F) and ΘR := DR(F) where F is the sub-bundle, of
the holomorphic tangent bundle G of M, of tangent vectors along fibers
of φ. Hence for the special case B = F, we will be able to deduce the
relationship between H1(Θ) and H1(ΘR).

This relationship is important because, while the global Kodaira-Spencer
map for the complex analytic family (M, B, φ) viz. ρ : ΥB −→ H1(Θ)
described in (3.2.10) has target H1(Θ), the global Kodaira-Spencer map for
the underlying differentiable family of (M, B, φ), written as ρR : ΥR

BR
−→

H1(ΘR), has target H1(ΘR) where BR denotes the underlying differentiable
manifold of B and ΥR

BR
denotes the sheaf associated to the C∞ tangent

bundle of BR.
Now consider the underlying differentiable family of (M, B, φ). Then

its fundamental sequence of vector bundles on M (see (3.2.3)) is given by

0 −→ FR −→ GR −→ GR/FR −→ 0.

For any complex vector bundle V = (V,M, p) over M, let V denote the
conjugate bundle of V,V∗ the dual bundle of V,Λ(V) the exterior algebra
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bundle of V and Λr(V) the r-th graded piece of Λ(V) called the r-th exterior
power of V. If W = (W,M, q) is another complex vector bundle over M,
VΛW denotes the exterior product of V and W. With these notations, let

F∗R(r, s) = (Λr(F∗R))Λ(Λs(F∗R)).

The C∞ sections of the complex vector bundle F∗R(r, s) will be called differ-
ential forms of type (r, s) and degree (r+ s) along the fibers of φ. Let A(r, s)
be the space of differential forms of type (r, s) along the fibers of φ and let
A := ⊕(r,s)A(r, s) be the space of differential forms of all degrees and types
along the fibers of φ. Then there exists a unique map dR : A −→ A called
exterior differentiation characterized by the following properties:

1. dR is an anti-derivation of degree 1;
2. if f : M −→ C is a complex-valued function on M (since functions

can be considered naturally as forms of degree zero) then the form
dRf restricted to any fiber of φ must be the differential of the function
f restricted to that fiber of φ — in other words, dRf is the gradient
of f along the fibers of φ;

3. d2
R = dR ◦ dR = 0.

A map of A into itself is said to be of type (µ, ν) if, for each (r, s), it
maps A(r, s) into A(r + µ, s+ ν). Then we have dR = ∂R + ∂R where ∂R is
of type (1, 0) and ∂R is its conjugate of type (0, 1).

Next consider (M, B, φ) as a complex analytic family. Let

0 −→ F −→ G −→ G/F −→ 0

be the fundamental sequence of vector bundles on M for this family
(see (3.2.10)). As we did for the underlying differentiable family above,
we write

G∗(r, s) = (Λr(G∗))Λ(Λs(G∗))
and similarly

F∗(r, s) = (Λr(F∗))Λ(Λs(F∗)).
The differentiable sections of G∗(r, s) will be called differential forms of type
(r, s) onM, while the differentiable sections of F∗(r, s) will be called differ-
ential forms of type (r, s) along the fibers of φ. Similarly, if B = (B,M, π)
is a complex-analytic vector bundle on M, then the differentiable sections
of B⊗G∗(r, s) and B⊗ F∗(r, s) will be called respectively B-forms of type
(r, s) and B-forms of type (r, s) along the fibers of φ.

Dualizing the fundamental sequence of vector bundles for the complex
analytic family in consideration, we get the following short exact sequence
of complex vector bundles on M:

0 −→ (G/F)∗ −→ G∗ −→ F∗ −→ 0
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from which we conclude that there is a natural projection F (r, s) of the
space of differential forms of type (r, s) onto the space of differential forms
of type (r, s) along the fibers of φ. Taking the direct sum over all (r, s),
we obtain a projection F of forms on M onto the space of forms along the
fibers of φ. Given any complex-analytic vector bundle B = (B,M, π), this
induces a projection, which we also denote by F , of the space of B-forms
onto the space of B-forms along the fibers of φ.

The exterior differential operator d operating on the differential forms
on M splits in the usual way, namely d = ∂ + ∂ where ∂ is an operator of
type (1, 0) and ∂ is the conjugate operator of type (0, 1). Further ∂ and ∂
also operate on B-forms on M.

We then have F ◦ ∂ = ∂R ◦ F .
Let D(B) be the sheaf over M of germs ζ of B-forms of type (0, 1)

satisfying ∂ζ = Fζ = 0. Now let ψ be a germ of DR(B). Then we have
F∂ψ = ∂RFψ = 0. Thus ∂ψ ∈ D(B). Conversely, if ζ ∈ D(B), then there
exists a germ ψ of a C∞ section of B such that ∂ψ = ζ. Now we have
∂RFψ = F∂ψ = Fζ = 0 which means that ψ ∈ DR(B). Further this ψ
belongs to the subsheaf D(B) if and only if ∂ψ = 0. Hence we have the
following short exact sequence of sheaves on M:

0 −→ D(B) i−→DR(B) ∂−→D(B) −→ 0.

Here i is the natural inclusion map. Let U be an open subset of B and
MU := φ−1(U). From the short exact sequence obtained from the above
short exact sequence by restricting to U , we obtain the following corre-
sponding long exact sequence of cohomology groups (see (A.8))

· · · −→ H0(MU ,DR(B) |MU
) ∂U−→H0(MU ,D(B) |MU

)
δ∗U−→

δ∗U−→H1(MU ,D(B) |MU
)
i∗U−→H1(MU ,DR(B) |MU

) −→ · · · .

Now take B = F, vary U in B and sheafify the presheaves defined by

U 7→ H1(MU ,D(F) |MU
) and U 7→ H1(MU ,DR(F) |MU

).

The maps i∗U of the long exact sequence above, as U varies, define a homo-
morphism of sheaves i∗ : H1(Θ) −→ H1(ΘR).

Now we have the following global analogue of the result obtained in
(3.2.9) relating the global Kodaira-Spencer map for a complex analytic
family to the global Kodaira-Spencer map for the underlying differentiable
family.

3.2.11.1 Theorem. Let (M, B, φ) be a complex analytic family of com-
pact complex manifolds and let the global Kodaira-Spencer map for the
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underlying differentiable family be denoted by ρR : ΥR
BR
−→ H1(ΘR) where

BR denotes the underlying differentiable manifold of B,ΥR
BR

denotes the
sheaf associated to its C∞ tangent bundle. Let ΥR

BR
⊗R C be the sheaf asso-

ciated to the complexification of this C∞ tangent bundle. Then we have
the following commutative diagram:

ΥB

i1
−→←−
p1

ΥB ⊕ΥB
∼= ΥR

BR
⊗R C ←↩ ΥR

BR

| | |ρ
y ρ̃Ry yρR

H1(Θ) i∗−−−−→ H1(ΘR)
(=)←−−−− H1(ΘR)

Recall that if a complex analytic family is such that its underlying differ-
entiable family is locally trivial, then the family is itself (complex analyt-
ically) locally trivial. This was proved in (3.2.9.1). We obtain the same
result below, but this time using the global Kodaira-Spencer maps. First
of all, we state some deep results which have analogues in the category of
schemes.

Let Bt be the restriction of a complex-analytic vector bundle (B,M, π)
on M to Mt = φ−1(t), t ∈ B and Ω(Bt) be the sheaf over Mt of germs of
holomorphic sections of Bt over Mt. Now we state the following nontrivial
results. For proofs, refer to the paper of Kodaira-Spencer [6], chap. I, sec. 2.

3.2.11.2 Theorem.

1. (Semicontinuity Principle) For each nonnegative integer q the
function on B that associates to t ∈ B the dimension of the vector
space Hq(Mt,Ω(Bt)) is an upper semicontinuous function.

2. (Cohomology and Base Change) If for each t ∈ B the dimen-
sion of the vector space Hq(Mt,Ω(Bt)) is the same, then the natural
restriction map

Hk(M,D(B)) −→ Hk(Mt,Ω(Bt))

is surjective for k = q and k = q − 1.
3. If for each t ∈ B the dimension of the vector space H1(Mt,Ω(Bt))

is the same, then ∪t∈BH1(Mt,Ω(Bt)) forms (the total space of) a
differentiable complex vector bundle over B in a canonical manner
whose sheaf of germs of C∞ sections is isomorphic to H1(D(B)).

4. If for each t ∈ B the dimension of the vector space H0(Mt,Ω(Bt)) is
the same, then for each t ∈ B, the homomorphism

i∗U : H1(MU ,D(B) |MU
) −→ H1(MU ,DR(B) |MU

)
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is injective for a sufficiently small spherical local complex coordinate
neighborhood U of t.

Now we use the above theorem to prove the following.

3.2.11.3 Theorem. If the underlying differentiable family of a complex
analytic family (M, B, φ) of compact complex manifolds is locally trivial,
then the complex analytic family is itself (i.e., complex analytically) locally
trivial.

Proof. By assertion (2) of theorem (3.2.10.1) it is enough to prove that
the global Kodaira-Spencer map ρ : ΥB −→ H1(Θ) vanishes. Since the
underlying differentiable family is locally trivial, all the fibers of this family
are biholomorphic to each other. Hence the dimension of the vector space
H0(Mt,Θt) is independent of t ∈ B. Now applying (4) of the previous
theorem to B = F, we see that i∗U is always injective for a sufficiently small
spherical local complex coordinate neighborhood U of t and this holds for
each t ∈ B. Hence the map i∗ : H1(Θ) −→ H1(ΘR) is injective. By
hypothesis we also know (from assertion (2) of theorem (3.2.7.1)) that the
global Kodaira-Spencer map for the underlying differentiable family van-
ishes. Now looking at the commutative diagram in theorem (3.2.11.1) we
conclude (since i∗ is injective and ρ̃R is the zero homomorphism) that ρ is
the zero homomorphism QED

3.2.11.4 Important Remarks. The notion of deformations of a com-
plex analytic space parametrized by another complex analytic space is a
generalization of the notion of complex analytic family (see (3.6.1.1)). This
notion was made precise by Grauert who in [11] extended all the results
of Kodaira-Spencer mentioned in this section. Further Grauert alongwith
Fischer proved in [12] the following nice result.

If a complex analytic family of compact complex manifolds has
all its fibers biholomorphic to each other, then this family must
be locally (complex analytically) trivial.
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3.3 Behaviour of Infinitesimal Kodaira-
Spencer Maps Under Change of the
Parameter

The results of this section apply to both complex analytic families and dif-
ferentiable families. So we omit adjectives and simply use the words “fam-
ily”, “map”, etc., instead of “complex analytic family”, “holomorphic map”
and so on (or “differentiable family”, “C∞ map”, etc.,), always assuming
that we have either the complex analytic category or the differentiable cat-
egory fixed for the discussion below.

3.3.1 “Chain Rule” for the Derivative of Complex
Structure

Let (M, B, φ) = {Mt := φ−1(t); t ∈ B} be a family of compact complex
manifolds. Let h : D −→ B be a morphism of manifolds. Then (by
(2.4.3.3) and (2.2.3.3) respectively for the complex analytic category and the
differentiable category) we have the induced family (h∗M, D, h∗φ). Recall
that if h(s) = t, then (h∗φ)−1(s) is (biholomorphic to) Mt = Mh(s) and
hence we may write (h∗M, D, h∗φ) = {Mh(s); s ∈ D}.

We now wish to relate the local deformations ofMt0 in a neighborhood of
t0 (for a fixed t0 ∈ B) to the local deformations of Mh(s0) in a neighborhood
of s0 (where h(s0) = t0). Recall (from theorem (2.3.2.4)) that there exists
a sufficiently small coordinate polydisc I ⊂ B with t0 ∈ I such that the
restricted family (MI , I, φ) has deformation space

MI = (∪lj=1(Vj × I))/ ∼I

where V1, . . . , Vl are the polydiscs which are glued via the transition func-
tions {fjk(zk, t0)} to give the compact complex manifold Mt0 and where the
equivalence relation ∼I is defined thus: if (zj , t) ∈ Vj×I and (zk, t′) ∈ Vk×I
then (zj , t) ∼I (zk, t′) if and only if t = t′ and zj = fjk(zk, t).

Choose a polydisc (i.e., a local coordinate neighborhood) J ⊂ D with
s0 ∈ J such that h(J) ⊂ I and consider the restriction of the induced
family (h∗M, D, h∗φ) to J . We may identify J with the graph GJ :=
{(h(s), s); s ∈ J} of h and hence by the construction of (2.4.3.3) or (2.2.3.3)
we get the deformation space of this restricted family as

(h∗M)J = (∪lj=1(Vj ×GJ))/ ∼J

where the equivalence relation ∼J is defined as follows: if (zj , h(s), s) ∈
Vj × GJ , (zk, h(s′), s′) ∈ Vk × GJ then (zj , h(s), s) ∼J (zk, h(s′), s′) if and
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only if s = s′ and zj = fjk(zk, h(s)). Again identifying GJ with J , we may
rewrite the above as follows:

(h∗M)J = (∪lj=1(Vj × J))/ ∼J

which shows that the restricted family ((h∗M)J , J, h∗φ) is simply obtained
by glueing V1 × J, . . . , Vl × J via the transition functions got by formally
substituting t = h(s) in the transition functions that define MI .

In this sense we see that the glueing data on (h∗M, D, h∗φ) are
locally actually governed by the glueing data locally on (M, B, φ)
and hence it is justified to say that the variation of complex struc-
tures in the family (h∗M, D, h∗φ) is induced locally by the variation
of complex structures in (M, B, φ).

Recall from (3.2.1.1) or (3.2.8.1) that for a tangent vector ∂
∂t ∈ TtB

(t ∈ B), the infinitesimal deformation of Mt was defined as ρt
(
∂
∂t

)
= ∂Mt

∂t =
θ(t). We called it the derivative of the complex structure of Mt along the
direction prescribed by the tangent vector ∂

∂t . We know from Calculus
that derivatives satisfy the chain rule: if t = h(s) and if ∂

∂t =
∑
λ

∂
∂tλ

,
then we have ∂

∂s =
∑
λ
∂tλ
∂s

∂
∂tλ

. An analogous property is satisfied by
infinitesimal deformations and hence an infinitesimal deformation may be
regarded as a “derivative” measuring the “instantaneous rate of change of
complex structure with respect to the parameter”. More precisely we have
the following.

3.3.1.1 Theorem (Chain Rule). Let (M, B, φ) = {Mt := φ−1(t); t ∈
B} be a family of compact complex manifolds and h : D −→ B be a mor-
phism of manifolds. Let (h∗M, D, h∗φ) = {Mh(s); s ∈ D} be the family
induced by h and s0 ∈ D such that h(s0) = t0 ∈ B. Then for any tan-
gent vector (∂/∂s) ∈ Ts0D, the infinitesimal deformation (or derivative of
complex structure) of Mh(s0) along ∂

∂s is given by the “chain rule”:

ρs0

(
∂

∂s

)
=
∂Mh(s0)

∂s
=

m∑
λ=1

∂tλ
∂s

∂Mt0

∂tλ

where ∂
∂t =

∑m
λ=1

∂
∂tλ
∈ Tt0B is the image of ∂

∂s under the differential
dhs0 : Ts0D −→ Tt0B and t = (t1, . . . , tm) are local coordinates at t0.
Hence we also have the following commutative diagram:

H1(Mh(s0),Θh(s0))
(=)−−−−→ H1(Mt0 ,Θt0)

ρs0
x xρt0

Ts0D
dhs0−−−−→ Tt0B
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corresponding to the pullback (or fiber product) commutative diagram:

h∗M −−−−→ M

h∗φ

y yφ
D

h−−−−→ B

Proof. In view of the discussion on the induced family preceding the state-
ment of this theorem, this is a straightforward verification QED

3.3.2 Indispensability of the Assumption of Regularity

Recall the construction in (2.8.2) of a family (M,C, φ) of Hopf surfaces
exhibiting the jump phenomenon at 0 ∈ C. Note that this family restricted
to U := C − {0} is actually trivial but the fiber M0 over 0 ∈ C is not
biholomorphic to any other fiber of this family. Consider the map h : C −→
C given by t = h(s) = s2. For simplicity, we denote the induced family
(h∗M,C, h∗φ) by (N ,C, π). By the theorem of the previous subsection,
the infinitesimal deformation along d

ds ∈ TsC of π−1(s) = Ms2 is given by

ρs

(
d

ds

)
=
dMs2

ds
=
dt

ds

dMt

dt
= 2s

dMt

dt
.

If s 6= 0, t = s2 ∈ U = C−{0} and since (M,C, φ) restricted to U is trivial,
we have dMt

dt = 0 and hence ρs vanishes identically for s 6= 0; further ρ0

also vanishes due to the above computation.
Hence the infinitesimal Kodaira-Spencer map at each point of

the base vanishes for the induced family (N ,C, π). However, this
family is not locally trivial since the fiber over 0 is not biholo-
morphic to any other fiber by construction.

Hence by theorem (3.2.7.3) or by assertion (2) of theorem (3.2.8.3), this
induced family cannot be a regular family. Note however that the restriction
of this family to U is regular! Explicit computations by Kodaira-Spencer
([6], chap. VI, sec. 15) verify that this is indeed the case; in fact, their
results are:

dim(H1(Mt,Θt)) =

{
4, t = 0
2, t 6= 0.

Recall that in (2.8.2) we mentioned that

dim(H0(Mt,Θt)) =

{
4, t = 0
2, t 6= 0
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and Kodaira-Spencer show that dim(H0(Mt,Θt)) = dim(H1(Mt,Θt)) for
each t ∈ C.

This example shows that the additional hypothesis of regularity, to con-
clude local triviality from the vanishing of the infinitesimal Kodaira-Spencer
maps at each point of the parameter space for a family of compact complex
manifolds, is indispensable.

3.4 The Theorems of Completeness and
Existence

Let M be a compact complex manifold and (M, B, φ) be a complex analytic
family of compact complex manifolds with t0 ∈ B such that Mt0 := φ−1(t0)
is biholomorphic to M . We then have the infinitesimal Kodaira-Spencer
map ρt0 : Tt0B −→ H1(M,Θ) which associates to every tangent vector ∂

∂t
at t0 to B, a cohomology class called the infinitesimal deformation of Mt0

along ∂
∂t , written as

θ(t) = ρt0

(
∂

∂t

)
=
∂M

∂t
∈ H1(M,Θ).

The infinitesimal deformations are thus certain elements of H1(M,Θ). The
question that naturally arises is whether each element θ ∈ H1(M,Θ) is
an infinitesimal deformation of M i.e., given such a θ, does there exist a
complex analytic family (M, B, φ) with embedded fiber Mt0 := φ−1(t0)
biholomorphic to M (for some t0 ∈ B) and a tangent vector ∂

∂t at t0 to B
along whose direction the infinitesimal deformation of M is precisely θ?

It is not clear that each θ should arise in this way. It turns out that if θ
arises in this way, then it has to satisfy certain additional conditions. Thus
if there exist cohomology classes θ which do not satisfy these additional
conditions, then obviously such θ are not infinitesimal deformations of M
and these are called “obstructions to deformation of M”. This leads to
“obstruction theory” which we describe below.

3.4.1 Primary Obstructions to Infinitesimal
Deformations

Let M be a compact complex manifold and let (M, B, φ) be a complex
analytic family with 0 ∈ B ⊂ Cm such that M0 := φ−1(0) is biholomorphic
to M . Taking a small local complex coordinate neighborhood ∆ of 0 ∈ B
contained in B (which is biholomorphic to a polydisc), we know that we
may write

φ−1(∆) =M∆ = (∪lj=1(Uj ×∆))/ ∼∆
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where U1, . . . , Ul are the polydiscs which are glued via the transition func-
tions {fjk(zk, 0)} to give the compact complex manifold M0

∼= M and the
equivalence relation ∼∆ is defined thus: if (zj , t) ∈ Uj × ∆ and (zk, t′) ∈
Uk×∆ then (zj , t) ∼∆ (zk, t′) if and only if t = t′ and zj = fjk(zk, t). Each
transition function fjk is holomorphic in zk as well as in t = (t1, . . . , tm) ∈
B ⊂ Cm and is defined on the nonempty intersection (Uj ×∆)∩ (Uk ×∆).

Recall that if ∂
∂t ∈ TtB is a tangent vector, we have

θ(t) = ρt

(
∂

∂t

)
=
∂Mt

∂t
∈ H1(Mt,Θt)

where θ(t) is obtained from the 1-cocycle {θjk(t)} ∈ Z1(Ut,Θt) (Ut := {Uj×
{t}; j = 1, . . . , l}) and the holomorphic vector fields θjk are given by

θjk(zj , t) =
n∑
α=1

∂fαjk(zk, t)
∂t

∂

∂zαj
, zk = fkj(zj , t)

where n is the dimension of M as a complex manifold. Further, on (Ui ×
∆) ∩ (Uj ×∆) ∩ (Uk ×∆) 6= ∅ we have the patching conditions

fαik(zk, t) = fαij(fjk(zk, t), t) (1 ≤ α ≤ n).

Differentiating along ∂
∂t we get the cocycle condition on {θjk(t)} namely:

θαik(zi, t) = θαij(zi, t) +
n∑
β=1

∂zαi

∂zβj
θβjk(zj , t) (1 ≤ α ≤ n)

where we have

θαjk(zj , t) =
∂fαjk(zk, t)

∂t
, zk = fkj(zj , t).

Now for any two given local holomorphic vector fields on Mt over the open
subset Uj × {t} of the form

v =
n∑
α=1

vαj

(
∂

∂zαj

)
, u =

n∑
α=1

uαj

(
∂

∂zαj

)

we define the Poisson bracket [v, u] by the formula:

[v, u] =
n∑
α=1

(v · uαj − u · vαj )
∂

∂zαj
.
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Then [v, u] has the following properties:

1. [v, u] does not depend on the choice of local coordinates (z1
j , . . . , z

n
j );

2. [v, u] is bilinear in u and v;
3. [v, u] = −[u, v].

Now set

θ̇αjk(zj , t) =
∂θαjk(zj , t)

∂t
, θ̇jk(t) =

n∑
α=1

θ̇αjk(zj , t)
∂

∂zαj
.

Then differentiating the cocycle conditions on {θjk(t)} totally with respect
to t along ∂

∂t and using the Poisson bracket defined above, we get the
following set of important relations:

θ̇ij(t)− θ̇ik(t) + θ̇jk(t) = [θij(t), θjk(t)]. (3.4)

Now for any 1-cocycle {ψjk(t)} ∈ Z1(Ut,Θt) we define

ζijk(t) = [ψij(t), ψjk(t)] if (Ui × {t}) ∩ (Uj × {t}) ∩ (Uk × {t}) 6= ∅.

Then ζijk(t) is a holomorphic vector field on (Ui×{t})∩ (Uj ×{t})∩ (Uk×
{t}) 6= ∅ and in fact, direct calculations reveal that {ζijk(t)} is actually a
2-cocycle i.e., {ζijk(t)} ∈ Z2(Ut,Θt) (see (A.9)).

In fact, we can extend the above definition of {ζijk(t)} to the case when
we are given not only a single 1-cocycle {ψjk(t)} but also another 1-cocycle
{ηjk(t)} by setting

ζijk(t) =
1
2

([ψij(t), ηjk(t)] + [ηij(t), ψjk(t)])

so that we have again that {ζijk(t)} ∈ Z2(Ut,Θt).
Let ψ(t), η(t), ζ(t) be the cohomology classes determined respectively by

the 1-cocycles {ψjk(t)}, {ηjk(t)} ∈ Z1(Ut,Θt) and the 2-cocycle {ζijk(t)} ∈
Z2(Ut,Θt). Thus ψ(t), η(t) ∈ H1(Mt,Θt) whereas ζ(t) ∈ H2(Mt,Θt).

We now extend the bracket to cohomology: [ψ(t), η(t)] := ζ(t). Then it
is routinely checked that this bracket is well-defined, bilinear in ψ(t) and
η(t) and further satisfies anti-commutativity: [ψ(t), η(t)] = −[η(t), ψ(t)].
Note that we have defined a bilinear map:

[−,−] : H1(Mt,Θt)×H1(Mt,Θt) −→ H2(Mt,Θt).

We can say more about this bilinear map. Let the short exact sequence of
sheaves on M given by

0 −→ Θ −→ Π
j−→Υ −→ 0
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be the fundamental sequence of sheaves for the complex analytic family
(M, B, φ) (see (3.2.10)). Then Θ is a sheaf of germs of Lie algebras over the
sheaf OC of germs of complex-valued differentiable functions on M which
are constant along the fibers of φ. Now a standard theorem from the
Theory of Cohomology with Coefficients in Sheaves says that the direct sum
H∗(Θ) := ⊕q≥0Hq(Θ) is a sheaf of graded Lie algebras over OC. Similarly,
H∗(Mt,Θt) := ⊕q≥0Hq(Mt,Θt) is a graded Lie algebra over C for each
t ∈ B. Further this graded Lie algebra structure is compatible with the
natural restriction maps Hq(Θ) −→ Hq(Mt,Θt). The bracket

[·, ·] : H1(Mt,Θt)×H1(Mt,Θt) −→ H2(Mt,Θt)

that we have defined above is just the multiplication in the Lie algebra
H∗(Mt,Θt) restricted to H1(Mt,Θt).

Now if we set {ψjk(t)} = {ηjk(t)} = {θjk(t)} in the above calculations
and further set t = 0 we obtain

ζijk(0) = [θij(0), θjk(0)], {ζijk(0)} 7→ ζ(0) ∈ H2(M,Θ).

If we set t = 0 in the formula (3.4) above and replace i by k there then we
obtain that

−θ̇jk(0) = θ̇kj(0)⇒ {θ̇jk(0)} ∈ C1(U0,Θ0)

that is, {θ̇jk(0)} is a 1-cochain with values in Θ0 = Θ relative to the open
cover U0 of M0 = M (see (A.9)).

Further, the differential δ1 : C1(U0,Θ0) −→ C2(U0,Θ0) is defined
(see (A.9)) by

δ1({θ̇jk(0)}) = {τijk(0)}; τijk(0) := θ̇jk(0)− θ̇ik(0) + θ̇ij(0).

But then we see by the formula (3.4) above that τijk(0) = ζijk(0) and
hence {ζijk(0)} is a coboundary (see (A.9)) and hence ζ(0) = 0. But since
we also have ζ(0) = [θ(0), θ(0)], we have proved the following.

3.4.1.1 Theorem. Let M be a compact complex manifold and
θ ∈ H1(M,Θ). If M occurs as a fiber of a complex analytic family (M, B, φ)
of compact complex manifolds — say with t0 ∈ B such that Mt0 := φ−1(t0)
is biholomorphic to M — and if the infinitesimal deformation of M along a
certain direction prescribed by ∂

∂t ∈ Tt0B is precisely θ, then it is necessary
that the element [θ, θ] ∈ H2(M,Θ) vanishes.

Motivated by the above theorem we make the following definition.

3.4.1.2 Definition. Let M be a compact complex manifold. An element
θ ∈ H1(M,Θ) is said to be obstructed if the corresponding element [θ, θ] ∈
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H2(M,Θ) is nonzero. If θ is obstructed, then the element [θ, θ] is said to
be a primary obstruction to infinitesimal deformation of complex structure
of M .

The reason for the adjective “primary” in the above definition will be
explained in (3.4.5) below.

Note that there do exist compact complex (even algebraizable) manifolds
M for which we can find an obstructed cohomology class θ ∈ H1(M,Θ).
Kodaira and Spencer in [6] give one such example: M := Tn × P 1

C where
Tn is a (possibly algebraic) n-dimensional complex torus, n ≥ 2.

3.4.1.3 Remark. The statement of the above theorem (3.4.1.1) and its
proof were discussed only for the case of a complex analytic family with
M embedded as one of the fibers of this family. However, it is clear that a
similar theorem can be stated and proved as well for a differentiable family
with M embedded as one of the fibers there.

3.4.2 Complete Families and the Theorem of
Completeness

Let M be a compact complex manifold occurring as fiber of φ over t0 ∈ B
in a complex analytic family (M, B, φ). We saw in the previous subsection
that if θ ∈ H1(M,Θ) is an infinitesimal deformation of M i.e., if θ is in the
image of the infinitesimal Kodaira-Spencer map ρt0 : Tt0B −→ H1(M,Θ)
then necessarily we must have that [θ, θ] = 0 in H2(M,Θ). However, if
[θ, θ] = 0 for some θ ∈ H1(M,Θ), we do not know if it is in the image of ρt0
for some suitable complex analytic family (M, B, φ) with M = φ−1(t0).

We could answer this question easily if we could find a complex ana-
lytic family (M, B, φ) with M = φ−1(t0) and such that the infinitesimal
Kodaira-Spencer map ρt0 : Tt0B −→ H1(M,Θ) is surjective, for then it is
obvious that every cohomology class arises from some infinitesimal defor-
mation of M . It turns out that families with this property are special in
the sense that they induce locally every infinitesimal deformation of M in
any complex analytic family. To make things more precise, we state the
following.

3.4.2.1 Definition. Let (M, B, φ) = {Mt := φ−1(t); t ∈ B} be a com-
plex analytic family of compact complex manifolds and let t0 be a point of
B. Let (N , D, π) be any complex analytic family of compact complex mani-
folds with s0 ∈ D such that Ns0 := π−1(s0) is biholomorphic to Mt0 . Then
we say that the complex analytic family (M, B, φ) is complete at t0 ∈ B
if for each such complex analytic family (N , D, π), there is a sufficiently
small neighborhood E ⊂ D of s0 and a holomorphic map h : E −→ B such
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that h(s0) = t0 and the induced family (h∗M, E, h∗φ) is equivalent to the
restriction (NE , E, π) of (N , D, π) to E ⊂ D. (The holomorphic map h
need not be unique.)

Hence we see that if (M, B, φ) is complete at t0 ∈ B then it contains all
the infinitesimal deformations of Mt0 = φ−1(t0) — even those coming from
arbitrary complex analytic families (N , D, π) with Ns0 := π−1(s0) ∼= Mt0 —
and further also contains all sufficiently small local deformations of Mt0

which may come from any arbitrary family (N , D, π) withNs0 := π−1(s0) ∼=
Mt0 .

We state the following obvious extension of the above definition of com-
pleteness at a point to global completeness.

3.4.2.2 Definition. A complex analytic family of compact complex man-
ifolds (M, B, φ) is said to be (globally) complete if it is complete at each
point t ∈ B.

Thus if (M, B, φ) is complete, then it contains all the infinitesimal defor-
mations of Mt for each t ∈ B and also all sufficiently small deformations of
Mt for each t ∈ B.

The next nontrivial theorem, due to Kodaira and Spencer [13], justifies
what we said in the beginning of this subsection.

3.4.2.3 Theorem of Completeness. Let (M, B, φ) be a complex ana-
lytic family of compact complex manifolds. Then (M, B, φ) is complete at
t0 ∈ B if the infinitesimal Kodaira-Spencer map at t0 viz. ρt0 : Tt0B −→
H1(Mt0 ,Θt0) is surjective.

We will just indicate the philosophy behind the proof of the above the-
orem as given by Kodaira in his book [5], chap. 6.

Let us first assume that (M, B, φ) is a complex analytic family and
h : D −→ B a holomorphic map. Consider the induced complex ana-
lytic family (h∗M, D, h∗φ). Then there is an obvious holomorphic map g :
h∗M −→M such that g maps the compact complex manifold (h∗φ)−1(s)
biholomorphically onto φ−1(h(s)) = Mh(s) for each s ∈ D i.e., the following
diagram commutes (cf. (2.4.3.3)):

h∗M g−−−−→ M

h∗φ

y yφ
D

h−−−−→ B

If we identify (h∗φ)−1(s0) = Mh(s0) × {s0} with Mh(s0) = φ−1(h(s0)) then
we can say that g extends the identity map on Mh(s0). The crucial first step
in the proof of the theorem of completeness is the following simple converse.
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3.4.2.4 Lemma. Let (M, B, φ) and (N , D, π) be complex analytic fam-
ilies of compact complex manifolds with t0 ∈ B, s0 ∈ D such that M =
φ−1(t0) = π−1(s0). Suppose that we can find a sufficiently small neigh-
borhood ∆ of s0 contained in D, a holomorphic map h : ∆ −→ B with
h(s0) = t0, and further a holomorphic map g : N∆ = π−1(∆) −→M such
that:

1. g maps π−1(s) biholomorphically onto φ−1(h(s)) for each s ∈ ∆ and
2. g restricted to π−1(s0) is the identity map on M .

Then the induced family (h∗M, D, h∗φ) is exactly the restriction (N∆,∆, π)
of (N , D, π) to ∆.

The proof of this lemma is obvious. First it is easy to verify (using
the construction of (2.4.3.3)) that the induced family is biholomorphically
equivalent to the restriction of the family onD to ∆. Then a suitable change
of coordinates for the induced family, which identifies the biholomorphic
map of (h∗φ)−1(s0) onto π−1(s0) with the identity map of M , does the job.

Given a complex analytic family (N , D, π) with s0 ∈ D such that
π−1(s0) ∼= Mt0 , Kodaira constructs the holomorphic maps h, g (satisfy-
ing the conditions of the above lemma) first as formal power series by a
method of solving infinitely many congruences using Čech cohomology —
a similar method is outlined in (3.4.5). He then proves that these for-
mal power series indeed converge to give the desired holomorphic maps.
He does this for any arbitrarily chosen complex analytic family (N , D, π)
with π−1(s0) ∼= φ−1(t0) and thus proves the theorem of completeness. The
hypothesis that the infinitesimal Kodaira-Spencer map at the point t0 ∈ B
for the family (M, B, φ) is surjective is used in the proof of the existence
of formal power series for g, h satisfying the desired properties.

3.4.3 Effective Families and the Number of Moduli

Let (M, B, φ) be a complex analytic family of compact complex manifolds
that is complete at t0 ∈ B. This is ensured, by the theorem of completeness
of the previous subsection, if the infinitesimal Kodaira-Spencer map ρt0 :
Tt0B −→ H1(Mt0 ,Θt0) is surjective. In this case we know that (M, B, φ)
contains all possible infinitesimal deformations of Mt0 . But it may happen
that two distinct tangent directions at t0 to B may give rise to the same
infinitesimal deformation of Mt0 . We would like to have a situation where
this does not happen i.e., a situation in which ρt0 is injective. Then ρt0
would give an isomorphism of Tt0B with H1(Mt0 ,Θt0). More generally, we
would like to have a situation where there are no “redundant directions”.
This naturally leads to the following.
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3.4.3.1 Definition. Let (M, B, φ) be a complex analytic family of com-
pact complex manifolds and t0 ∈ B. Then this family is said to be effec-
tive at t0 ∈ B if the infinitesimal Kodaira-Spencer map ρt0 : Tt0B −→
H1(Mt0 ,Θt0) is injective. We say that (M, B, φ) is effectively parametrized
or that t ∈ B is an effective parameter if (M, B, φ) is effective at each
t ∈ B.

Note that if (M, B, φ) is effectively parametrized, then at each t ∈ B,
distinct tangent directions give rise to distinct infinitesimal deformations of
Mt i.e., no two different tangent directions can define the same infinitesimal
deformation of Mt for each t ∈ B.

Now if M is a compact complex manifold and (M, B, φ) is a com-
plex analytic family of compact complex manifolds with t0 ∈ B such that
φ−1(t0) = M , then we would expect something special to happen if this
family were both complete and effectively parametrized. This is justified
by the following.

3.4.3.2 Theorem. Let M be a compact complex manifold and (M, B, φ)
a complete effectively parametrized complex analytic family of compact com-
plex manifolds with t0 ∈ B such that φ−1(t0) = M . Then we have the
following:

1. Let (N , D, π) be any complete effectively parametrized complex ana-
lytic family of compact complex manifolds with s0 ∈ D such that
π−1(s0) = M . Then both B and D have the same dimension as
manifolds.

2. Let (N , D, π) be a complex analytic family satisfying the hypotheses
of (1) above. Then there exists a domain E ⊂ D with s0 ∈ E and
an injective holomorphic map h : E −→ B (i.e., an open immer-
sion) mapping s0 onto t0 such that the family induced by h is equiv-
alent to the restriction of the family N to E. In this sense, an effec-
tively parametrized complete complex analytic family with fiber M is
uniquely determined, provided it exists, locally at the point over which
M is the fiber.

Proof. (1): Since φ−1(t0) = M = π−1(s0), and since (M, B, φ) is complete
implies it is complete at t0, there exists a domain E ⊂ D with s0 ∈ E and
a holomorphic map h : E −→ B with h(s0) = t0 such that (h∗M, E, h∗φ)
is equivalent to (NE , E, π). Let the dimension of E be l. If we choose E
sufficiently small so that it is covered by a single local complex coordinate
system with coordinates s = (s1, . . . , sl), then we have that the tangent vec-
tors

〈
∂
∂s1

, . . . , ∂
∂sl

〉
form a basis over C of TsE = TsD. But since (N , D, π) is

effectively parametrized, we see that so is its restriction (NE , E, π). Hence
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ρs : TsE −→ H1(Ns,Θs) is injective for each s ∈ E. Here, as usual,
Ns = π−1(s). But since (h∗M, E, h∗φ) is equivalent to (NE , E, π), we have
that Ns is biholomorphic to Mh(s) for each s ∈ E. Thus

〈
∂Ns
∂s1

, . . . , ∂Ns∂sl

〉
are linearly independent over C in H1(Ns,Θs) = H1(Mh(s),Θh(s)) for each
s ∈ E.

Next let the dimension of B be m and t = (t1, . . . , tm) be a local complex
coordinate in a sufficiently small neighborhood of t0 = h(s0) ∈ B. Then
choosing E to be smaller if necessary, we have that t = (t1, . . . , tm) = h(s)
and that

〈
∂Mt

∂t1
, . . . , ∂Mt

∂tm

〉
are linearly independent over C in H1(Mh(s),Θh(s))

= H1(Mt,Θt) for each t in this local complex coordinate neighborhood,
where we have used the fact that the image of the tangent space at t to
B in H1(Mt,Θt) by ρt has dimension m because (M, B, φ) is effectively
parametrized. By theorem (3.3.1.1) we have the following commutative
diagram:

H1(Mh(s),Θh(s))
(=)−−−−→ H1(Mt,Θt)

ρs

x xρt
TsD

dhs−−−−→ TtB

Further from the same theorem we also have by the chain rule:

ρs

(
∂

∂sµ

)
=
∂Ns
∂sµ

=
m∑
λ=1

∂tλ
∂sµ

∂Mt

∂tλ
, (1 ≤ µ ≤ 1).

This shows that the image of ρs is contained in the image of ρt for each
s ∈ E. Since

〈
∂Ns
∂s1

, . . . , ∂Ns∂sl

〉
are linearly independent over C as already

noted, this forces l ≤ m.
Now we carry out the above argument by reversing the roles of (M, B, φ)

and (N , D, π) to obtain m ≤ l, whence m = l as claimed.

Proof. (2): We have proved above that for each s ∈ E, ρs(TsD) = ρt(TtB) ⊂
H1(Mt,Θt) where t = h(s). Thus the determinant of the matrix(

∂tλ
∂sµ

)
is nonzero. But this matrix is precisely the Jacobian matrix of the holomor-
phic map h : E −→ B (written in terms of the local coordinates at s0 ∈ E
and t0 = h(s0) ∈ B). Hence h has to be injective and thus ∆ := h(E)
is a domain in B containing t0. Now take E sufficiently small, so that ∆
also becomes sufficiently small, in such a way that we may represent the
deformation space of the restricted family (M∆,∆, φ) as

M∆ = (∪kj=1(Uj ×∆))/∼∆
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where U1, . . . , Uk are the polydiscs which are glued via the transition func-
tions {fjk(zk, t0)} to give the compact complex manifold Mt0 and the equiv-
alence relation ∼∆ is defined thus: if (zj , t) ∈ Uj ×∆ and (zk, t′) ∈ Uk ×∆
then (zj , t) ∼∆ (zk, t′) if any only if t = t′ and zj = fjk(zk, t). Then we
may write (cf. (3.3.1))

NE = (∪kj=1(Uj × E))/∼E

where the equivalence relation ∼E is defined thus: if (zj , s) ∈ Uj × E
and (zk, s′) ∈ Uk × E then (zj , s) ∼E (zk, s′) if and only if s = s′ and
zj = fjk(zk, h(s)). Now since h : E −→ ∆ is biholomorphic, we consider h
as a coordinate transformation of one and the same parameter space (i.e.,
identify E and ∆ as biholomorphic complex structures on the same differ-
entiable manifold). Then (M∆,∆, φ) and (NE , E, π) can be considered as
the same complex analytic family but with different choices of coordinate
systems on NE and M∆ QED

Motivated by the above theorem, we state the following.

3.4.3.3 Definition. Let M be a compact complex manifold. Let
(M, B, φ) be a complete effectively parametrized complex analytic fam-
ily with t0 ∈ B such that φ−1(t0) = M . We define the dimension of B to
be the number of moduli of M .

Again let us emphasize that this definition of number of moduli of a com-
pact complex manifold does not depend on a particular choice of (M, B, φ)
because of the theorem just proved.

3.4.4 Examples of Complete Effectively Parametrized
Families: The Case of Complex Tori

Recall the complex analytic families of complex tori denoted by (B, S, φ)
and (C,M, ψ) constructed respectively in (2.6.1) and (2.6.2). Recall that
(C,M, ψ) is locally (over M) equivalent to (B, S, φ). We will show that
(B, S, φ) is a complete effectively parametrized family by showing that the
infinitesimal Kodaira-Spencer map is an isomorphism at each s ∈ S, for
then we may apply the theorem of completeness. Thus the number of mod-
uli for any complex torus Tn is defined and equals n2 = dim(H1(Tn,ΘTn)).
Notice that the dimension of S is also n2 by the very definition of S (it can
be identified naturally in an obvious manner with an open subset of Cn2

).
Notice that the completeness and effectiveness of the family B imply

that the family (C,M, ψ) is also complete and effectively parametrized,
since it is locally equivalent to (B, S, φ).

We have already mentioned in (2.6.2) that if n ≥ 2, then given any
nonempty open subset U of M , there exists a point t ∈ U such that the
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SL(2n,Z)-orbit of t intersects U in an infinite set of points: {tδ1, . . . tδi, . . . }.
These are infinitely many distinct points of U over which the fibers of ψ
are all biholomorphic to each other. Hence we see that the effectivity and
completeness of a family need not imply an injective parametrization in
any neighborhood of any point of the parameter space.

Now we indicate a proof of the fact that the family (B, S, φ) is complete
and effectively parametrized. Let us write as usual:

(B, S, φ) = {Bs := φ−1(s); s ∈ S}.

Further, as usual, let Θs denote the sheaf of germs of holomorphic vector
fields on Bs. Let p be the canonical locally biholomorphic covering map
from Cn × S −→ (Cn × S)/G =: B (see (2.6.1) and (1.5.2.1.2)).

Let {Ui; i ∈ N} be a locally finite covering of B where each Ui is chosen
sufficiently small so that its inverse image under p is a disjoint union of
infinitely many domains {Uij ; j ∈ N} of Cn×S each of which is biholomor-
phically mapped by p onto Ui. Choose one of the Uij for each i, say Ui1.
Let (z1, . . . , zn) be standard coordinates on Cn and s = (sαβ) ∈ S ⊂ Cn2

be coordinates on S induced (from the standard coordinates on Cn2
) via

its inclusion as an open subset of Cn2
as explained in (2.6.1). Thus we

get (z1, . . . , zn, s) as coordinates on Cn × S. Let (z1
i , . . . , z

n
i , s) be the

restriction of these coordinates on Cn × S to Ui1 for each i. Since p :
Ui1 −→ Ui is biholomorphic, we may consider, for each i, the coordinates
(z1
i , . . . z

n
i , s) on Ui1 as coordinates on Ui via p. We write for simplicity:

(z1
i , . . . , z

n
i , s) = (zi, s). Hence we get the local complex coordinate system

{(Ui, (zi, s)); i ∈ N} on B.
By the definition of B we have on Ui ∩ Uk 6= ∅:

zαi = zαk +mα
ik +

n∑
β=1

mn+β
ik sαβ , m

j
ik ∈ Z, (1 ≤ α ≤ n). (3.5)

Therefore the transition functions of B relative to the covering {Ui; i ∈ N}
are given by:

fαik(zk, s) = zαk +mα
ik +

n∑
β=1

mn+β
ik sαβ , m

j
ik ∈ Z, (1 ≤ α ≤ n).

Hence the infinitesimal deformation of Bs along (∂/∂sα0
β0

) is given by the
cohomology class θ(s) ∈ H1(Bs,Θs) defined by the 1-cocycle {θik(s)} where:

θik(s) =
n∑
γ=1

∂fγik(zk, s)
∂sα0
β0

∂

∂zγi
= mn+β0

ik

∂

∂zα0
i

. (3.6)
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Let Ψs be the sheaf of germs of C∞ vector fields of the form
∑
α ψ

α ∂
∂zα

over Bs. We have the obvious short exact sequence of sheaves on Bs given
by

0 −→ Θs
i−→ Ψs

∂̄−→ ∂̄Ψs −→ 0

from which we obtain a long exact sequence in cohomology (see (A.8)):

0 −→ H0(Bs,Θs)
i−→ H0(Bs,Ψs)

∂̄−→ H0(Bs, ∂̄Ψs)
δ∗−→ H1(Bs,Θs) −→

−→ H1(Bs,Ψs) −→ H1(Bs, ∂̄Ψs) −→ · · · .

It can be checked that the map H1(Bs,Ψs) −→ H1(Bs, ∂̄Ψs) of the above
long exact sequence is injective. Hence δ∗ is surjective. Hence we have:

H1(Bs,Θs) = H0(Bs, ∂̄Ψs)/∂̄H0(Bs,Ψs).

We shall use Čech cohomology for the calculations below (see the remarks
at the end of (A.9)). First of all, from the relations (3.5) above we get:

n∑
β=1

mn+β
ik (sαβ − sαβ) = zαi − zαi − (zαk − zαk ). (3.7)

By the definition of S, since s = (sαβ) ∈ S, the determinant of (s − s̄) is
nonzero; hence we can set u = (s− s̄)−1 = (uαβ). Then we get

mn+β0
ik =

n∑
γ=1

(zγk − z
γ
k )uβ0

γ −
n∑
γ=1

(zγi − z
γ
i )uβ0

γ . (3.8)

Now set on each nonempty intersection Uk ∩Bs

ψk =
n∑
γ=1

(zγk − z
γ
k )uβ0

γ

∂

∂zα0
k

.

Then from relations (3.6) and (3.8) we get on each nonempty intersection
Ui ∩ Uk ∩Bs

ψk − ψi =
n∑
γ=1

((zγk − z
γ
k )− (zγi − z

γ
i ))uβ0

γ

∂

∂zα0
i

= mn+β0
ik

∂

∂zα0
i

= θik(s),

where we have used the fact that ∂
∂z
α0
i

= ∂
∂z
α0
k

on Ui ∩ Uk. Let Us =
{Uks;Uks := Uk ∩ Bs 6= ∅}. Note that ψk is a section of Ψs over Uks and



104 3. Theory of Local Moduli: Infinitesimal Deformations

∂̄ψk− ∂̄ψi = 0 on Uks∩Uis 6= ∅. Hence these ∂̄ψk patch up to give a global
section ϕ(s) of ∂̄Ψs i.e., a section over Bs such that

ϕ(s)|Uks = ∂̄ψk =
n∑
γ=1

uβ0
γ

(
dzγk ⊗

∂

∂zα0
k

)
.

Now let c0 = {ψk} ∈ C0(Us,Ψs). Then ∂̄c0 = ϕ(s) and δc0 := {ψk −ψi} =
{θik(s)} (see (A.9)). By analyzing the way in which δ∗ is defined, it is
easy to see that these last two calculations imply that δ∗ϕ(s) = θ(s) where
θ(s) ∈ H1(Bs,Θs) is the cohomology class determined by {θik(s)}. Now
let H0,1(TBs) denote harmonic vector TBs-forms of type (0, 1) where TBs
denotes the tangent bundle of Bs. Then it can be checked that under the
Hodge-Dolbeault isomorphism we have:

H1(Bs,Θs) ∼= H0,1

∂̄
(Bs, TBs) ∼= H0,1(TBs) : θ(s) 7→ ϕ(s).

Also, since it turns out by explicit calculations that

H0,1(TBs) =

ϕ; ϕ =
n∑
α=1

n∑
β=1

cαβ

(
dzβ ⊗ ∂

∂zα

)
, cαβ ∈ C

 ,

we have the dimension of H1(Bs,Θs) as n2. Further, since the determinant
of u = (s− s̄)−1 is nonzero, the elements〈

ϕ(s) =
n∑
γ=1

uβ0
γ

(
dzγ ⊗ ∂

∂zα0

)
; 1 ≤ α0, β0 ≤ n

〉

are linearly independent. Hence the infinitesimal Kodaira-Spencer map
ρs : TsS −→ H1(Bs,Θs) is an isomorphism. Hence we have proved the
following.

3.4.4.1 Theorem. The complex analytic families (B, S, φ) and (C,M, ψ)
are complete and effectively parametrized. The number of moduli of any
complex n-dimensional torus B is defined and equals n2. We also have that
the dimension of H1(B,Θ) equals the number of moduli of B.

3.4.4.2 Remark. As mentioned in (2.7.1), a complex n-dimensional
torus Tn is algebraizable if and only if its period matrix is a Riemann
matrix. In this case Tn can be embedded as a closed submanifold of
some complex projective space PmC . Assume n ≥ 3. By Bertini’s The-
orem (cf. Hartshorne’s book: Algebraic Geometry, chap. II, sec. 8, cited
under the References at the end), for a sufficiently general hyperplane H
of PmC , the intersection M := Tn ∩H is a nonsingular hypersurface in Tn.
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Kodaira and Spencer prove in [6] that given a complex analytic family
{Mt; t ∈ B ⊂ Cm} with M0 = M, (0 ∈ B), there exists a complex analytic
family {Tnt ; t ∈ ∆ ⊂ B, 0 ∈ ∆} of n-dimensional complex tori with Tn0 = Tn

(for ∆ a sufficiently small polydisc) such that Mt ⊂ Tnt for t ∈ ∆ which
implies Tnt is algebraic for each t ∈ ∆. Hence {Tnt ; t ∈ ∆ ⊂ B} consists
purely of algebraic deformations.

Kodaira and Spencer construct a complete effectively parametrized com-
plex analytic family of algebraic n-dimensional tori and thus prove that the
number of (algebraic) moduli of any algebraic torus equals n(n + 1)/2.
However, we have just seen that the number of moduli of a complex n-
dimensional torus (whether algebraic or not) equals n2. The increase in the
number of moduli in this case is obviously because we allowed non-algebraic
deformations also. Note that if we allow only algebraic deformations, we
are imposing the additional condition on the deformations (tori) that their
period matrices should be Riemann matrices. This condition reduces the
number of effective parameters from n2 to n(n+ 1)/2.

3.4.5 Obstructions to Infinitesimal Deformation of
Complex Structure: A Reformulation

In this subsection, we continue with the study of obstruction theory begun
in (3.4.1). Recall from (3.4.1) that if M is a compact complex manifold
and θ ∈ H1(M,Θ) such that [θ, θ](6= 0) ∈ H2(M,Θ), then [θ, θ] is called
a primary obstruction to infinitesimal deformation of complex structure of
M . In fact, if θ were to correspond to some infinitesimal deformation of
M , then necessarily we have [θ, θ] = 0 (cf. theorem (3.4.1.1)).

We formulate below the notions of secondary obstructions, tertiary
obstructions, and so on. These are seen to vanish if H2(M,Θ) = 0. It then
seems natural to expect that in situations where H2(M,Θ) = 0, something
good might happen. This is indeed true and is expressed by the Theorem of
Existence described in the next subsection. But for now, we see how higher
order obstructions are defined and in the process reformulate the notion of
primary obstruction.

We will formulate the higher order obstructions by investigating the
following situation. Let θ ∈ H1(M,Θ) be given and let us assume that there
exists a complex analytic family (M,C, φ) with φ−1(0) = M and with the
infinitesimal deformation of M at 0 ∈ C along the direction prescribed by
the tangent vector d

dt given precisely by θ.
If we choose ∆ = {t ∈ C; |t| < r} to be a sufficiently small disc, then we

can write the restriction of M to ∆ as follows (cf. (2.4.4)):

M∆ = (U lj=1(Uj ×∆))/∼∆
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where each Uj is a polydisc in Cn with zj = (z1
j , . . . , z

n
j ) as complex coor-

dinates (where n is the dimension of M) and M∆ is the complex manifold
obtained by glueing the domains {Uj × ∆; j = 1, . . . , l} via the transition
functions {fjk(zk, t)} i.e., the glueing is determined by identifying points
equivalent under ∼∆ where (zj , t) ∈ Uj×∆ and (zk, t′) ∈ Uk×∆ are equiv-
alent under ∼∆ if and only if t = t′ and zj = fjk(zk, t). Each transition
function

fjk(zk, t) = (f1
jk(zk, t), . . . , fnjk(zk, t))

is a holomorphic function on the nonempty intersection (Uk×∆)∩(Uj×∆) ⊂
Uk × ∆. Further these transition functions satisfy the following patching
conditions:

(Ui ×∆) ∩ (Uj ×∆) ∩ (Uk ×∆) 6= ∅

⇒ fαik(zk, t) = fαij(fjk(zk, t), t), (1 ≤ α ≤ n). (3.9)

Now M = φ−1(0), so if we identify Uj × {0} with Uj , then U := {Uj ; j =
1, . . . , l} is a finite open covering for M with zj = (z1

j , . . . , z
n
j ) as local

complex coordinates on Uj .
Let us expand each component of each transition function as a power

series in t:

fαjk(zk, t) =
∞∑
ν=0

fαjk,ν(zk)tν . (3.10)

Since the transition functions for M relative to U are given by {fjk(zk, 0)},
we see that {fjk,0(zk)} are precisely these transition functions. Since M
is already given, we may assume that these transition functions are also
already given alongwith U .

Since θ ∈ H1(M,Θ) has been assumed to be the infinitesimal deforma-
tion of M along d

dt , we have by the very definition of infinitesimal defor-
mation (see (3.2.8)) that θ is represented by the element {θjk} ∈ Z1(U ,Θ)
where

θjk =
n∑
α=1

θαjk(zj)
∂

∂zαj
, (3.11)

and where
θαjk(zj) = fαjk,1(zk), zk = fkj,0(zj). (3.12)

Hence, starting with a given compact complex manifold M , a
finite system of local complex coordinates U = {(Uj , zj); 1 ≤ j ≤ l}
for M where Uj ⊂ Cn is a polydisc and zj is the coordinate on Uj
for each j, transition functions {fjk,0(zk)} relative to this cover,
a cohomology class θ ∈ H1(M,Θ) and a representative {θjk} ∈
Z1(U ,Θ) of θ such that (3.11) above holds, in order that θ may
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correspond to an infintesimal deformation of M , it is sufficient
if we could construct the holomorphic functions fjk(zk, t) on the
domains (Uk ×∆) ∩ (Uj ×∆) ⊂ Uk ×∆ (for some sufficiently small
disc ∆ ⊂ C containing the origin) such that they satisfy (3.9), (3.10)
and (3.12). For in such a case, (M∆,∆, φ) := {Mt := φ−1(t); t ∈ ∆} is
a complex analytic family defined by

M∆ = (∪lj=1(Uj ×∆))/∼∆

where ∼∆ is an equivalence relation (as described earlier) and
further for this family the infintesimal deformation at t = 0 along
the tangent vector d

dt is precisely given by θ.
Now in view of (3.10), it is even enough to find the coefficients fαjk,ν(zk)

there (for each ν = 2, 3, . . .) as holomorphic functions and then prove that
the expression on the right-hand-side of (3.10) converges for t ∈ ∆ (for ∆
sufficiently small) and further that (3.9) and (3.12) are also satisfied.

Before we continue further, we introduce an extension of the notion of
Čech cohomology (see (A.9)) with respect to the cover U on M as follows.

Let F be any sheaf of abelian groups on M (see (A.1)). An extended
1-cochain on U with values in F is a set {σjk} where for each nonempty
intersection Uj ∩Uk, σjk is a section of F over this intersection and σjj = 0
for each j.

An extended 2-cocycle on U with values in F is a set {σijk} where for
each nonempty intersection Ui ∩ Uj ∩ Uk, σijk is a section of F over this
intersection satisfying the conditions σiik = σikk = 0 for each i, k and
further on each nonempty intersection Uh ∩ Ui ∩ Uj ∩ Uk, we have:

σijk − σhjk + σhik − σhij = 0.

For any extended 1-cochain {σik} we define its coboundary as follows:

δ{σik} = {τijk}, τijk := σjk − σik + σij .

Then it is verified that δ{σik} = {τijk} is an extended 2-cocycle. Let
Ĉ1(U ,F) be the abelian group of all extended 1-cochains and let Ẑ2(U ,F)
be the abelian group of all extended 2-cocylces. Now we define the extended
2nd cohomology group relative to U with values in F to be the quotient:

Ĥ
2
(U ,F) = Ẑ2(U ,F)/δĈ1(U ,F).

Notice that if we compare the above definitions with the usual definitions
(A.9) of Čech cohomology relative to U with values in F , then we have:

Z2(U ,F) ⊂ Ẑ2(U ,F), C1(U ,F) ⊂ Ĉ1(U ,F);

Z2(U ,F) ∩ δĈ1(U ,F) = δC1(U ,F),
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and hence we have the inclusion of abelian groups

H2(U ,F) ↪→ Ĥ
2
(U ,F).

It can be verified using a partition of unity subordinate to U and Dolbeault’s

Lemma that if H2(M,Θ) = 0 then Ĥ
2
(U ,Θ) = 0 where Θ as usual is the

sheaf of germs of holomorphic vector fields on M .
Now we resume the discussion preceding the above (digression of) def-

initions. Given any formal power series in t of the form f(t) = Σ∞ν=0fνt
ν ,

we denote its n-th partial sum by Sn(f(t)):

Sn(f(t)) :=
n∑
ν=0

fνt
ν .

So suppose we start with arbitrary power series {fjk(zk, t)} given by (3.10)
and satisfying (3.12). We want these power series to be modified such that
they satisfy (3.9), for in such a case, θ does correspond to an infinitesimal
deformation of M as noted earlier. From (3.9) we get the following infinitely
many congruences, one for each positive integer ν, all of which put together
are equivalent to (3.9):

P(ν) : E(α, i, j, k, ν) := Sν(fαik(zk, t))

− Sν(fαij(S
ν(f1

jk(zk, t)), . . . , Sν(fnjk(zk, t)), t))

= 0 mod(tν), (1 ≤ α ≤ n).

Clearly P(1) holds, for this can be verified using the assumed relations
(3.12).

Let Γαijk,2(zk) be the coefficient of t2 in E(α, i, j, k, 2). Then Γαijk,2(zk)
is a holomorphic function on Ui ∩ Uj ∩ Uk(6= ∅) ⊂ M . Now it can be
verified that P(2) holds if and only if the functions fαjk,2 satisfy the following
conditions:∑
α

Γαijk,2(zk)
∂

∂zαi
=
∑
β

fβjk,2(zk)
∂

∂zβj
−
∑
α

fαik,2(zk)
∂

∂zαi
+
∑
α

fαij,2(zj)
∂

∂zαi
.

Now set

Γijk,2 =
∑
α

Γαijk,2(zk)
∂

∂zαi
, σjk,2 =

∑
β

fβjk,2(zk)
∂

∂zβj
.

In the above equations, zk, zj = fjk,0(zk) and zi = fij,0(zj) = fik,0(zk) are
local coordinates of one and the same point of M in Ui ∩ Uj ∩ Uk 6= ∅.
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Thus P(2) holds if and only if δ{σjk,2} = {Γijk,2}. In other words, if P(2)

holds then the element Γ2 ∈ Ĥ
2
(U ,Θ) defined by the extended 2-cocycle

{Γijk,2} is zero, Further, a calculation shows that Γ2 = 1
2 [θ, θ], where [θ, θ] is

considered as an element of the extended 2nd cohomology group relative to
the open cover U with values in Θ via the inclusion H2(U ,Θ) ↪→ Ĥ

2
(U ,Θ).

Hence we see that if there exist holomorphic functions {fjk,2} such that
P(2) were to hold then the obstruction [θ, θ] must vanish. This is the
essence of theorem (3.4.1.1).

Now conversely suppose that Γ2 = 1
2 [θ, θ] = 0. Hence there exists an

extended 1-cochain {σjk} ∈ Ĉ1(U ,Θ) with δ{σjk} = {Γijk,2}. Modify the
power series {fjk(zk, t)} by putting fjk,2 to be the coefficient functions of
σjk. Then it is easily verified that P(2) holds. Thus when Γ2 = 0, we are
able to get {fαjk,2(zk)} such that P(2) holds.

Again let Γ2 =0 and define Γαijk,3 to be the coefficient of t3 in E(α,i,j,k,3).
We can as before show that if Γ3, the extended 2nd cohomology class defined
by the extended 2-cocycle {Γijk,3}, vanishes, then there exist holomorphic
functions {fjk,3} such that P(3) holds.

Inductively, we can prove that if Γ2 = Γ3 = · · · = Γν = 0, then we may
define Γν+1 and that if this element vanishes, then there exist holomorphic
functions {fjk,ν+1} such that P(ν + 1) holds.

Hence we see that Γi ∈ Ĥ
2
(U ,Θ), i = 2, 3, . . . are indeed obstructions to

infinitesimal deformation of M , if they do not vanish. We thus call Γν+1

the ν-th obstruction. Hence Γ2 = 1
2 [θ, θ] is called the primary obstruction

associated to θ, provided it does not vanish. Note that Γν+1 is not consid-
ered to be defined unless all lower order obstructions are already zero i.e.,
unless we have Γ2 = · · · = Γν = 0. Moreover, note that Γν+1 depends on
the choice of U ; further, for each choice of U ,Γν+1 depends on the choice
of {fjk,ν} with δ{fjk,ν} = {Γijk,ν}.

However, if H2(M,Θ) = 0, then because Ĥ
2
(U ,Θ) = 0 also, we see that

all obstructions {Γν ; ν ≥ 2} corresponding to any element θ ∈ H1(M,Θ)
and relative to any cover U vanish. Hence, if H2(M,Θ) = 0, we are atleast
able to get formal power series of the form {fjk(zk, t)} satisfying (3.9),
(3.10) and (3.12). Of course, even then, (3.10) needs to be proved to
be convergent. Nevertheless, the preceeding formulation of obstructions
shows that the condition H2(M,Θ) = 0 can be expected to be a reasonably
good condition. This is how Kodaira and Spencer were inspired to take
H2(M,Θ) = 0 as the right hypothesis under which they could expect a
general theorem on existence of infinitesimal deformations to be true. This
is justified by their Theorem of Existence described in the next subsection
and also by Kuranishi’s more general existence theorem described in (3.6.3).



110 3. Theory of Local Moduli: Infinitesimal Deformations

Moreover, the above method of constructing formal power series by solving
congruences using Čech cohomology has been used by Kodaira-Spencer to
prove their Theorems of Existence and Completeness.

3.4.6 The Theorem of Existence and Number of
Moduli

The following fundamental theorem of Kodaira and Spencer asserts that
the hypothesis of vanishing of H2(M,Θ) for a compact complex manifold
M is indeed sufficient to ensure that every element of H1(M,Θ) corre-
sponds to some infinitesimal deformation of M . We have already explained
in detail in the previous subsection how this hypothesis arises in a nat-
ural way. The following theorem also gives necessary and sufficient con-
ditions under which the number of moduli of M is defined under such a
hypothesis.

3.4.6.1 Theorem of Existence. Let M be a compact complex manifold
such that H 2(M,Θ) = 0. Then we have the following.

1. There exists a complex analytic family (M, B, φ) = {Mt := φ−1(t); t ∈
B} with 0 ∈ B ⊂ Cm such that φ−1(0) = M and the infinitesimal
Kodaira-Spencer map ρ0 : T0B −→ H1(M,Θ) is an isomorphism.
Thus (M, B, φ) is both complete and effective at 0 ∈ B.

2. The following are equivalent:

(a) The number of moduli is defined for M .
(b) The restriction of the family (M, B, φ) of (1) above to a polydisc

∆ such that 0 ∈ ∆ ⊂ B is regular for ∆ sufficiently small.

If (either of) the above hold, then the restricted family (M∆,∆, φ)
is a complete effectively parametrized complex analytic family for
∆ sufficiently small and hence the number of moduli of M is m;
further, this number of moduli is also equal to the dimension of
H1(M,Θ). Moreover, ρt for t ∈ ∆ is an isomorphism for ∆ suffi-
ciently small.

3. If H0(M,Θ) = 0, then (b) of (2) above holds and (hence) the number
of moduli of M is defined and equals the dimension of H1(M,Θ).

Proof. For the proof of (1), refer to Kodaira’s book [5], sec. 5.3.
The proof of the implication “(a) ⇒ (b)” of (2) is as follows: Let µ

be the number of moduli of M . Hence there exists a complete effectively
parametrized complex analytic family (N , D, π), 0 ∈ D ⊂ Cµ, π−1(0) = M .
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Since (N , D, π) is complete at 0 ∈ D, there exists a sufficiently small disc
∆, 0 ∈ ∆ ⊂ B and a holomorphic map h : ∆ −→ D,h(0) = 0, such that
(M∆,∆, φ) is equivalent to (h∗N ,∆, h∗π).

Let t = (t1, . . . , tm) where the ti are local complex coordinates at 0 ∈ B.
Then

〈
∂
∂t1
, . . . , ∂

∂tm

〉
form a basis of T0B and since ρ0 is an isomorphism,〈

∂Mt

∂tλ
|t=0; 1 ≤ λ ≤ m

〉
form a basis of H1(M,Θ).

Let h(t) = s = (s1, . . . , sµ) where the sj are local complex coordinates
at 0 ∈ D. Since (N , D, π) is effective implies that it is effective at 0 ∈ D,〈
∂Ns
∂sν
|s=0; 1 ≤ ν ≤ µ

〉
are linearly independent in H1(M,Θ) where Ns :=

π−1(s). Thus µ ≤ m.
On the other hand, by the chain rule (3.3.1.1), the elements

〈
∂Mt

∂tλ
|t=0; 1 ≤

λ ≤ m
〉

(which form a basis of H1(M,Θ)) can be written in terms of the ele-
ments

〈
∂Ns
∂sν
|s=0; 1 ≤ ν ≤ µ

〉
that are linearly independent in H1(M,Θ); this

implies µ = m. Thus the number of moduli equals m = dim(H1(M,Θ)).
Now since (N , D, π) is effective, we have for each s ∈ D that dim(H1(Ns,

Θs)) ≥ dim(TsD) = µ. But by the Theorem of Upper-semicontinuity (see
assertion (1) of (3.2.11.2)), there exists a neighborhood {s ∈ D; |s| < ε} of
0 ∈ D such that

|s| < ε⇒ dim(H1(Ns,Θs)) ≤ dim(H1(N0,Θ0))

= dim(H1(M,Θ)) = m = µ.

Hence for |s| < ε, we have dim(H1(Ns,Θs)) = µ. Thus, the restriction of
the family N to this ε-neighborhood of 0 in D is regular.

Choose ∆ sufficiently small so that h(∆) ⊂ {s ∈ D; |s| < ε}. Then
(M∆,∆, φ) is regular because the pullback of a regular family is also reg-
ular.

A result depending on the theory of differentiable families of strongly
elliptic differential operators asserts that regularity of a family and its effec-
tivity at a point together imply its effectivity in a neighborhood of that
point. Hence (M∆,∆, φ) is effective for ∆ sufficiently small.

Further, for t ∈ ∆, we have that dim(H1(Mt,Θt)) = µ = m = dim(TtB).
Thus, for each t ∈ ∆, we see that ρt is an isomorphism. Now by the the-
orem of completeness (3.4.2.3), we see that (M∆,∆, φ) is an effectively
parametrized complete complex analytic family.

This settles the proof of the implication “(a) ⇒ (b)” of (2).
The latter part of the above argument settles the converse claim “(b) ⇒

(a)” of (2).
Note that all the assertions following (a) and (b) of (2) have also been

proved above.
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Proof. (3): We first note that since H0(M,Θ) = H2(M,Θ) = 0, by the
theorem of upper-semicontinuity we must have H0(Mt,Θt)=H2(Mt,Θt)=0
for each t in a sufficiently small neighborhood ∆ of 0 ∈ B. It can be shown
that if the upper-semicontinuous functions

t 7→ dim(Hi−1(Mt,Θt)), t 7→ dim(Hi+1(Mt,Θt))

are independent of t in some neighborhood of a point, then so is the function

t 7→ dim(Hi(Mt,Θt)).

Thus the restricted family (M∆,∆, φ) is regular QED

3.4.6.2 Remark. In proving the above theorem, Kodaira-Spencer make
crucial use of the hypothesis that H2(M,Θ) = 0. The natural question
that arises now is whether we can prove a similar theorem for an arbitrary
compact complex manifold M i.e., even if H2(M,Θ) 6= 0. It turns out that
there does exist a similar theorem for the general case, but one has to allow
the parameter space to be a complex analytic space (see (A.4) and (A.5)
of the Appendix) which in general may not be a manifold i.e., it may have
singular points. This generalization is due to Kuranishi [14], and we will
explain it in (3.6.3). Finally, one can ask more generally whether there is an
existence theorem for deformations of the complex analytic space structure
on a compact complex analytic space parametrized by another complex
analytic space (cf. (3.6.3.1)). It again turns out that there is such a general
theorem, proved by Grauert [15], using the Theory of Coherent Analytic
Sheaves (the notion of a coherent analytic sheaf is indicated in (A.7.5) of
the Appendix).

3.5 Deformations of Complex Fiber Bundles

The Theory of Kodaira-Spencer on deformations of compact complex mani-
folds described so far has been extended by them to the case of deformations
of complex fiber bundles. We indicate in this section the definitions rele-
vant to this case and state the main results. For more details, refer to the
paper of Kodaira-Spencer [6], chap. III.

3.5.1 Differentiable and Complex Analytic Families of
Complex Fiber Bundles

3.5.1.1 Definition. Let (M, B, φ) be a differentiable family of compact
complex manifolds. Let (B,M, π) be a differentiable fiber bundle over
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M with structure group a complex Lie group G. Let (P,M, π̃) be the
associated principal bundle with both fiber and structure group G. Let the
complex manifold structure on φ−1(t) be denoted by Mt, let Bt denote the
restriction of (B,M, π) to Mt and Pt denote the restriction of (P,M, π̃)
to Mt, for each t ∈ B. We say that (B,M, π) is a differentiable family of
complex fiber bundles over B if Pt is a holomorphic fiber bundle over Mt for
each t ∈ B.

Notice that, as t varies in B, we get various holomorphic fiber bun-
dles Bt, but these bundles are defined over different base spaces Mt. Fur-
ther, though (B,M, π) is called a family over B, it is actually a bundle
over M.

3.5.1.2 Definition. Let (M, B, φ) be a complex analytic family of com-
pact complex manifolds. Let (B,M, π) be a complex analytic fiber bundle
over M i.e., the principal fiber bundle (P,M, π̃) associated to (B,M, π) is
a holomorphic fiber bundle over M. We call (B,M, π) a complex analytic
family of complex fiber bundles over B if the underlying differentiable fiber
bundle of (B,M, π) is a differentiable family of complex fiber bundles over
the underlying differentiable manifold of B in the sense of the previous
definition.

3.5.1.3 Definition. Let (B,M, π) be a differentiable (respectively com-
plex analytic) family of complex fiber bundles over the differentiable (respec-
tively complex analytic) manifold B. If the family M of compact complex
manifolds is trivial i.e., it is equivalent to the family (M ×B,B, p2) where
M is a compact complex manifold, then (B,M, π) is said to be a differen-
tiable (respectively complex analytic) family of complex fiber bundles over M
parametrized by B; in such a case, if t′ ∈ B, and if Bt denotes the restriction
of the bundle (B,M, π) to Mt = π−1(t) ∼= M , then any bundle Bt consid-
ered as a bundle over M is said to be a C∞ (respectively complex analytic)
deformation of the bundle Bt′ over B.

3.5.1.4 Example. Let (M, B, φ) be a differentiable family of compact
complex manifolds and let its fundamental sequence of vector bundles (as in
(3.2.3)) be

0 −→ F −→ G −→ G/F −→ 0.

Recall from (3.2.4) that if G+ is the C∞ tangent bundle of M, then G is
a sub-bundle of the complexification CG+ of the first 2n components (n =
dimension of any fiber of φ) of G+. Further, F is a direct summand of the
complexification CF+ of the sub-bundle F+ of G+ of tangent vectors along
fibers of φ. From the explicit representations of the transition functions
that define F and G (see (3.2.3)), we see that while F is a differentiable
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family of complex fiber bundles over (M, B, φ),G is not a differentiable
family since its structure group is not a complex Lie group.

3.5.1.5 Remark. All the notions defined for families of compact com-
plex manifolds viz. triviality, local triviality, pullback, equivalence, etc.,
can be analogously defined for families of complex fiber bundles. One can
also formulate (cf. (2.3.2.6)) the problems of local moduli and global moduli
for deformations of a fixed complex fiber bundle over a compact complex
manifold.

3.5.2 Fundamental Sequences and Diagrams for
Families of Complex Fiber Bundles

Let (M, B, φ) be a differentiable family of compact complex manifolds,
(B,M, π) a differentiable family of complex fiber bundles over B and
(P,M, π̃) be the associated differentiable family of complex principal
bundles.

The total space P of the family (P,M, π̃) can be regarded as a differ-
entiable family of complex manifolds over B in an obvious manner viz. as
the family (P, B, φ◦ π̃) whose fibers are complex analytic principal bundles.
Let the fundamental sequence of vector bundles (see (3.2.3)) for this family
be given by

0 −→ FP −→ GP −→ GP /FP −→ 0.

Let FP be the sub-bundle of FP composed of those vectors which are tan-
gent to the fibers of π̃. Then we also have the following short exact sequence
of vector bundles

0 −→ FP −→ GP −→ GP /FP −→ 0.

Let G be the fiber (and structure group) of P. The group G operates by
right translation on P (where the transition functions operate as usual on
the left) and hence it operates on the above short exact sequences. Now let
us set

L = FP /G, M = FP /G and R = GP /G.

Then L is the bundle overM, with fiber the Lie algebra of G and associated
to the principal bundle (P,M, π̃) obtained by the adjoint action of G on its
Lie algebra (which is the tangent space to G at the point representing the
identity element of the group operation in G). Then we obtain the following
exact commutative diagram called the fundamental bundle diagram for the
family (P,M, π̃) over B of complex principal bundles:
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0 0 0x x x
0 −→ F −→ G −→ G/F −→ 0x x x
0 −→ M −→ R −→ G/F −→ 0x x x
0 −→ L −→ L −→ 0x x

0 0

where the short exact sequence

0 −→ F −→ G −→ G/F −→ 0

is as usual the fundamental sequence of vector bundles for the family
(M, B, φ). Next let Ξ,Σ and Φ respectively be sheaves of germs of C∞

sections of L,M and R whose restrictions to each fiber of φ are holomor-
phic. Then we get the short exact sequence of sheaves

0 −→ Ξ −→ Φ k−→Ψ −→ 0

where Ψ is the sheaf of germs of C∞ sections of G whose restrictions to
each fiber of φ are holomorphic. Further let

0 −→ Θ −→ Π
j−→Υ −→ 0

be the fundamental sequence of sheaves for the family (M, B, φ) as defined
in (3.2.5). If ΥB is the sheaf associated to the tangent bundle of B, then
its inverse image sheaf naturally is a subsheaf of the quotient sheaf Ψ/Θ
denoted by Υ. Then Π is the inverse image of Υ in Ψ under the canonical
map Ψ −→ Ψ/Θ. Let Γ be the inverse image sheaf of Π under the map k
above. Then we get the following short exact sequence of sheaves

0 −→ Ξ −→ Γ α−→Π −→ 0
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and we get the following exact commutative diagram of sheaves called the
fundamental sheaf diagram for the family (P,M, π̃) over B of complex prin-
cipal bundles:

0 0 0x x x
0 −→ Θ −→ Π −→ Υ −→ 0x x x
0 −→ Σ −→ Γ −→ Υ −→ 0x x x
0 −→ Ξ −→ Ξ −→ 0x x

0 0

3.5.2.1 Remark. By thinking of any fixed fiber Mt = φ−1(t) as a family
over a base space consisting of a single point, we can similarly get funda-
mental diagrams of vector bundles and sheaves for the fiber over t ∈ B.

3.5.3 The Global and Infinitesimal Kodaira-Spencer
Maps for a Family of Complex Fiber Bundles

Let (B,M, π) be a differentiable family of complex fiber bundles over the
differentiable family (M, B, φ) of compact complex manifolds and (P,M, π̃)
be its associated principal bundle. We continue using the notations of
(3.5.2) above. Since sheaf cohomology is a delta functor (see (A.8)), the
fundamental sheaf diagram for the associated family (P,M, π̃) gives rise to
an exact commutative cohomology diagram called the deformation diagram
for the family of bundles (B,M, π); this diagram is inset on page 120. In
writing this deformation diagram, we have used the fact that H0(Υ) ∼= ΥB .
The homomorphism

η : ΥB −→ H1(Σ)

is called the global Kodaira-Spencer map for the family (B,M, π) on B. Of
course, ρ is the global Kodaira-Spencer map for the family (M, B, φ) as
described in (3.2.6).
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3.5.3.1 Remarks.

1. Note that the map η is simply the global Kodaira-Spencer map for the
differentiable family (P, B, φ ◦ π̃) with the additional restriction that
the structure of complex fiber bundle be preserved under deformation.

It is because of this fact that one may expect the results
obtained for the global Kodaira-Spencer map for a family
of compact complex manifolds, to also hold for the global
Kodaira-Spencer map for a family of complex fiber bundles.

2. If (M, B, φ) is the trivial family (M×B,B, p2) (where M is a compact
complex manifold), then the map η can be lifted uniquely to a map
τ : ΥB −→ H1(Ξ) because of the canonical splitting Π ∼= Θ ⊕ Υ
(cf. (3.5.1.3)).

3. We could have considered complex analytic families instead of differ-
entiable families above and then we would have arrived at the defini-
tion of the global Kodaira-Spencer map for a complex analytic family
of complex fiber bundles over a complex analytic family of compact
complex manifolds.

4. If we work with a fixed fiber Mt = φ−1(t), t ∈ B, then since we
have a corresponding sheaf diagram at t ∈ B, we can similarly obtain
the corresponding infinitesimal deformation diagram at t ∈ B and thus
get the following infinitesimal Kodaira-Spencer map for the family of
complex fiber bundles in consideration at t ∈ B (see (3.2.3.1), (3.2.5.1)
and (3.2.10.2)):

ηt : TtB −→ H1(Mt,Σt).

Further, when (M, B, φ) is isomorphic to the trivial family (M×B,B, p2),
i.e., when we consider a family of complex fiber bundles over the fixed com-
pact complex manifold M parametrized by B, then we get a unique lifting
of ηt to the map

τt : TtB −→ H1(M,Ξt) = H1(M, END(Bt))

where each Mt is identified with M and END denotes the sheaf of endo-
morphisms of the corresponding vector bundle (which is the same thing
as the sheaf associated to the endomorphism bundle of the corresponding
bundle) (cf. description of L in (3.5.2)). This discussion applies to both
differentiable and complex analytic families of complex fiber bundles.

The following results show that the maps η, ηt are indeed the analogues
of the maps ρ, ρt for the case of families of complex fiber bundles. The
results hold irrespective of whether the family of complex fiber bundles in
consideration is differentiable or complex analytic.
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Deformation Diagram for (B,M, π)(B,M, π)(B,M, π)

...
...

...
...

...x x x x x
. . . −→ H1(Σ) −→ H1(Γ) −→ H1(Υ) −→ H2(Σ) −→ H2(Γ) −→ . . .x x x x x
. . . −→ H1(Ξ) −→ H1(Ξ) −→ 0 −→ H2(Ξ) −→ H2(Ξ) −→ . . .x x x x x
0 −→ H0(Θ) −→ H0(Π) −→ ΥB

ρ−→ H1(Θ) −→ H1(Π) −→ . . .x x x x x
0 −→ H0(Σ) −→ H0(Γ) −→ ΥB

η−→ H1(Σ) −→ H1(Γ) −→ . . .x x x x x
0 −→ H0(Ξ) −→ H0(Ξ) −→ 0 −→ H1(Ξ) −→ H1(Ξ) −→ . . .x x x x x

0 0 0
...

...

3.5.3.2 Theorem. With the above notations we have the following:

1. The family (B,M, π) is locally trivial over B if and only if η is the
zero homomorphism.

2. The family (B,M, π) is locally trivial over B if it is regular (i.e., the
dimension of H1(Mt,Ξt) is independent of t ∈ B) and ηt vanishes
identically for each t ∈ B.

3. If η is the zero homomorphism, then ηt is the trivial linear map for
each t ∈ B.

4. (Rigidity Principle) Let t′ ∈ B and let H1(Mt′ ,Ξt′) = 0. Then
there exists a neighborhood U of t′ in B restricted to which (B,M, π)
is trivial.

5. If (B,M, π) is a family of complex fiber bundles over a fixed compact
complex manifold M (i.e., (M, B, φ) ∼= (M × B,B, p2) where M =
φ−1(t′) = Mt′ for some t′ ∈ B) and if H1(M,Ξt′′) = 0 for a fixed
t′′ ∈ B, then there exists a neighborhood U to t′′ in B restricted to
which (B,M, π) is trivial.
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6. For each t ∈ B, ⊕q≥0H
q(Mt,Σt) and ⊕q≥0H

q(Mt,Ξt) are graded Lie
algebras. Let [·, ·] denote the restriction of the Lie algebra multiplica-
tion to the first graded pieces. Further let us assume that (B,M, π) is
a family of complex fiber bundles over a fixed compact complex man-
ifold M . Then for each point t ∈ B, any element ζ ∈ H1(M,Ξt)
necessarily satisfies [ζ, ζ] = 0 if it corresponds to an infinitesimal
deformation of Bt.

7. Let M ′ be a compact complex manifold and B′ a holomorphic vector
bundle such that H2(M ′, END(B′)) = 0. Then every element ζ ∈
H1(M ′, END(B′)) corresponds to an infinitesimal deformation of B′.
There exists a family of complex vector bundles (B,M, π) over the
trivial family (M ′ × ∆,∆, p2) of compact complex manifolds where
∆ ⊂ Cm is a sufficiently small polydisc with 0 ∈ ∆ such that B0 = B′
and further the infinitesimal Kodaira-Spencer map

τ0 : T0∆ −→ H1(M ′,Ξ0) = H1(M ′, END(B′))

is an isomorphism.

The assertions of the above theorem should be compared with (2) of
(3.2.7.1), (2) of (3.2.10.1), (3.2.7.3), (2) of (3.2.8.3), (3) of (3.2.7.1) com-
bined with results of (3.2.9), (3.2.7.5), (3) of (3.2.8.3), (3.4.1.1) and
(3.4.6.1).

We describe, in the following sections, the generalisations of the notions
of complex analytic family of compact complex manifolds and complex
analytic family of complex fiber bundles to the category of complex analy-
tic spaces and also analogues of these notions in the category of
schemes.

3.6 Kuranishi’s Theorem and Local Moduli
Spaces

3.6.1 Deformations of Complex Analytic Spaces

3.6.1.1 Definition of Analytic Family. Let B be a connected com-
plex analytic space (A.5.4) and let Mt be a given complex analytic space
for each t ∈ B. We say that {Mt; t ∈ B} is an analytic family of complex
analytic spaces parametrized by B if there exists a morphism φ : M −→ B
of complex analytic spaces (A.5.5) such that the following hold:

1. φ is flat (A.2);
2. φ−1(t) = Mt for each t ∈ B and
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3. if each Mt is a compact complex analytic space, then φ is proper
(A.7.2).

For any fixed complex analytic space Mt0 , t0 ∈ B, any other fiber of φ
viz. Mt is called a deformation of Mt0 . B is called the parameter space or the
base space and M is called the total space or deformation space associated
to this family. We denote the complex analytic family by (M, B, φ).

3.6.1.2 Comparison with the Definition of Kodaira-Spencer

Suppose (M, B, φ) = {Mt; t ∈ B} is an analytic family of compact com-
plex analytic spaces. Suppose in addition that B, Mt (t ∈ B) are all smooth
complex analytic spaces i.e., they are all complex manifolds, then it can be
shown that M is itself smooth and that the Jacobian of φ is of maximal
rank at each point of M. Since a smooth complex analytic space is the
same as a complex manifold, (M, B, φ) becomes a complex analytic family
of compact complex manifolds. Conversely, assume that ψ : N −→ T is
a morphism such that its Jacobian is of maximal rank, T is smooth, the
fibers of ψ are smooth and ψ is proper; then it can be shown that ψ is
flat, so that (N , T, ψ) is indeed a complex analytic family of compact com-
plex manifolds. Hence if we want to allow only smooth deformations of a
compact complex manifold parametrized by a smooth base space, then the
definition of an analytic family (M, B, φ) is reduced to requiring that φ
is a proper morphism whose Jacobian is of maximal rank everywhere; in
such a case the analytic family becomes a complex analytic family of com-
pact complex manifolds in the sense of Kodaira-Spencer which we stated
in (2.4.1.1).

3.6.1.3 Analytic Families and Deformation of Complex Analytic
Space Structure

Let (M, B, φ) = {Mt; t ∈ B} be an analytic family of compact complex
analytic spaces such that the fiber over each nonsingular point is also non-
singular. Recall that by definition, B is connected. It can then be shown
that all fibers are actually topologically isomorphic (more generally, any
proper smooth morphism of complex analytic spaces has the property that
all the fibers are topologically isomorphic). Of course, if the parameter
space is itself nonsingular, then we have seen in this case that all the fibers
are actually even diffeomorphic (see (2.3.1.1)).

Thus the notion of an analytic family makes precise the idea of
a family of varying complex analytic space structures on a fixed
topological space.
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3.6.2 The Infinitesimal Kodaira-Spencer Maps for an
Analytic Family of Complex Analytic Spaces

In the following discussion we indicate the definition of the infinitesimal
Kodaira-Spencer map at a point of the parametrizing complex analytic
space only for the case of an analytic family of complex manifolds. For the
most general discussion, see [11] and [15].

Let (M, B, φ) be an analytic family of compact complex manifolds. We
denote the fiber of φ over t ∈ B as Mt. Fix a point t ∈ B. Let the analytic
tangent space to B at t be denoted by TtB. Define C[ε] := C[x]/(x2). Any
tangent vector ∂ (an element of TtB) corresponds uniquely to a morphism
f = f(∂) of complex analytic spaces, from the first order infinitesimal
neighborhood ({t},C[ε]) at t ∈ B, to B. Hence, given ∂, we get an induced
family over ({t},C[ε]) which we denote by (f∗M, ({t},C[ε]), f∗φ).

Next, using Cech cohomology (A.9), it can be shown that the elements of
Ȟ

1
(Mt,Θt) ∼= H1(Mt,Θt) are in bijective correspondence with equivalence

classes of families parametrized by ({t},C[ε]) such that the fiber over the
closed point of the parameter space is isomorphic to Mt.

Thus, given an element ∂ of TtB, we get the morphism f as above and f
gives rise to the induced family (f∗M, ({t},C[ε]), f∗φ) which corresponds
to an element θ = θ(f) of H1(Mt,Θt) by what we have said in the previous
paragraph. Hence we obtain a map

ρt : TtB −→ H1(Mt,Θt), ∂ 7→ θ.

Since ({t},C[ε]) is the first order infinitesimal neighborhood of t ∈ B, the
induced family (f∗M, ({t},C[ε]), f∗φ) can be called an infinitesimal defor-
mation of Mt and the above map, which turns out to be a map of C-
vector spaces, is called the infinitesimal Kodaira-Spencer map for (M, B, φ)
at t ∈ B. It can be shown that if B is nonsingular i.e., B is a manifold, then
this map coincides with the infinitesimal deformation map for the complex
analytic family (M, B, φ) as defined earlier in (3.2.8.2).

3.6.3 Kuranishi’s Theorem and Local Moduli Spaces

The following theorem of Kuranishi [14] is a generalization of the Theorem
of Existence (3.4.6.1). Note that we do not assume that H2(M,Θ) = 0. For
a complete generalization, see Grauert [15].

3.6.3.1 Theorem of Existence. Let M be a compact complex mani-
fold. Then there exists an analytic family (M, B, φ) = {Mt := φ−1(t); t ∈
B} of compact complex analytic spaces and a point t′ ∈ B with Mt′ = M
such that the following hold.
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1. (M, B, φ) is complete at t′ i.e., given any analytic family (N , D, π)
with s′ ∈ D such that π−1(s′) = M , there exists a morphism (not
necessarily unique) of complex analytic spaces h : ∆ −→ B, where
∆ is a neighborhood of s′ in D and h(s′) = t′, such that the family
induced by h from (M, B, φ) and parametrized by ∆ is equivalent to
the restriction of (N , D, π) to ∆.

2. The infinitesimal Kodaira-Spencer map

ρt′ : Tt′B −→ H1(M,Θ)

is an isomorphism and the germ of B at t′ is determined up to a
non-canonical isomorphism. B can be chosen to be a complex ana-
lytic subset consisting of the common zeros of l holomorphic func-
tions on a polydisc in Cm where m = dimC(H1(M,Θ)) and l =
dimC(H2(M,Θ)).

3. If M has no “infinitesimal automorphisms”, i.e., H0(M,Θ) = 0, then
the morphism h of (1) above is uniquely determined and the germ of
B at t′ is also uniquely determined up to a canonical isomorphism.

4. If H2(M,Θ) = 0, then t′ is a nonsingular point of B i.e., the complex
analytic space structure of B restricted to some neighborhood of t′ ∈ B
is a manifold. Since t′ is a smooth point, the dimension of B at t′ (also
equal to the dimension of the germ of B at t′) equals the dimension
of H1(M,Θ) because of (2) above.

5. If H1(M,Θ) = 0, then for any analytic family (N , D, π) as in (1)
above, there exists a neighborhood of s′ restricted to which (N , D, π)
is a trivial family.

6. If there exist obstructed elements θ ∈ H1(M,Θ) i.e., such that [θ, θ] ∈
H2(M,Θ) is nonzero, then B has a singularity at t′.

7. There exists a neighborhood U of t′ such that (M, B, φ) restricted to
U is complete (i.e., complete at each point of U).

The assertions of the above theorem should be compared with results
obtained earlier for the smooth category, i.e., with (3) of (3.2.8.3), (3.4.1.1),
(3.4.3.2) and (3.4.6.1).

Motivated by the above theorem, we state the following.

3.6.3.2 Definition. With the notations of the above theorem, the germ
of B at t′ is called the local moduli space of M . The above theorem says
that if M has no infinitesimal automorphisms, then its local moduli space is
uniquely determined up to a unique isomorphism; further, if H2(M,Θ) = 0,
then this local moduli space is smooth.
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3.7 Examples of Local Moduli Spaces

3.7.1 Riemann’s Formula for Moduli: Local Moduli for
Curves

Riemann’s formula [16] states that the number of effective independent
complex parameters, on which the deformation of complex structure of a
compact Riemann surface M of fixed genus g depends, is given by the
dimension of the complex Lie group of holomorphic automorphisms of the
compact Riemann surface plus the number (3g − 3). Since any compact
Riemann surface of genus g ≥ 2 admits no continuous group of holomorphic
automorphisms, we see that the formula for the case g ≥ 2 is (3g − 3). Of
course, when g = 0, M has to be biholomorphic to the Riemann sphere
P 1

C. For an elementary proof of this, see [17], chap.V, theorem 8. So the
number of moduli of M is zero (notice that the number of moduli of PnC
is also zero for any positive integer n — see (3) of (3.2.8.3)). Next when
g = 1, M is an elliptic curve and the number of moduli is 1 as shown in
sec. 1.5 of chap. 1 or in (3.4.4.1). We assume that g ≥ 2 in the following
discussion.

By Kuranishi’s theorem (3.6.3.1), a local moduli space for M exists.
Since the (complex) dimension of M is 1, we have that H2(M,F) = 0 for
any sheaf F of abelian groups on M (say by a result of Grothendieck). Thus
H2(M,Θ) = 0, which implies that the local moduli space of M is smooth
and therefore has dimension equal to

dim(H1(M,Θ)) = dim(H0(M,K ⊗K))

because of Serre Duality where K is the canonical sheaf of M i.e., the
sheaf associated to the holomorphic cotangent bundle K (which is the dual
T ∗(M) of the tangent bundle T (M)) of M (see (4.4.2.2)). Alternatively,
we may also obtain this by directly using the theorem of existence (3.4.6.1)
of Kodaira-Spencer without appealing to Kuranishi’s theorem.

We will now use the following result: let L be a holomorphic line bundle
on a compact Riemann surface X of genus g ≥ 2, and let the degree of the
line bundle L (cf. (4.6.3.1)) be greater than (2g − 1); we then necessarily
have H1(X,L) = 0, where L is the sheaf of germs of holomorphic sections
of the line bundle L (for a proof of this result, see [18], (2.7)). Now using
the Riemann-Roch Theorem (see (4.6.3.5)) we have that

degree(K) = dim(H0(M,K))− dim(H1(M,K)) + (rank(K)) · (g − 1)

= g − dim(H0(M,OM )) + (g − 1) = 2g − 2,

where we have used the definition of genus and Serre Duality (see (4.4.2.4)).
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Since we have (see (4.6.3.4))

degree(K ⊗K) = 2 · degree(K) = 2(2g − 2) ≥ (2g − 1),

we get that dim(H1(M,K ⊗ K)) = 0. Again using the Riemann-Roch
theorem we have that the number of moduli of M is given by

dim(H0(M,K ⊗K)) = dim(H1(M,K ⊗K)) + degree(K ⊗K)− g + 1

= 0 + (4g − 4)− g + 1 = 3g − 3.

Hence the formula of Riemann coincides with our calculations. Note also
that, according to Teichmüller Theory, the number of moduli of M is given
by dim(H0(M,K⊗K)) (see [19]). Teichmüller’s theory relates to the study
of the elements of H0(M,K ⊗K). These are locally defined by expressions
of the form

ψj = ψj(zj) · dzj ⊗ dzj
where (Uj , zj) is a local complex coordinate chart on M and ψj(zj) is a
holomorphic function on Uj . Such elements are called holomorphic quadratic
differentials.

3.7.2 An Example where the Local Moduli Space has
Singularities

Let Tn be an n-dimensional complex torus (n ≥ 2). Consider the product
compact complex manifold M := Tn × P 1

C. Then Kodaira-Spencer show
in [6], chap.VI, sec.16, that there exists an element θ ∈ H1(M,Θ) such
that the element [θ, θ] ∈ H2(M,Θ) is nonzero. Hence the corresponding
family (M, B, φ) of Kuranishi’s theorem (3.6.3.1) with φ−1(t′) = M has a
singularity at t′ ∈ B (see assertion (6) of (3.6.3.1)). Thus the germ of B at
t′ cannot be smooth.

This example shows us why we need to allow possibly non-smooth
complex-analytic spaces as parameter spaces even if our primary aim was
to study only smooth deformations of a smooth complex manifold.

3.7.3 Local Moduli Spaces for Complex Tori

Let M be a complex n-dimensional torus. We have seen in (3.4.4.1) that
there exists a complete effectively parameterized complex analytic family
(B, S, φ) of deformations of M . We have also seen in (3.4.4) that since the
infinitesimal Kodaira-Spencer map is an isomorphism at each point of S
for this family (that is how we showed that it is effectively parametrized
and complete), we have dim(H1(M,Θ)) = n2 = dim(S). Hence the germ
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of S at each point s ∈ S is the local moduli space of the corresponding
torus Ms := φ−1(s). Since S is smooth, the dimension of each of these
local moduli spaces is n2. Of course, if n ≥ 2 we have seen in (2.6.2) that
we do not get an injective parametrization.

3.8 Deformations and Local Moduli for
Vector Bundles over a Compact Riemann
Surface

3.8.1 Families of Vector Bundles and the Infinitesimal
Deformation Maps

3.8.1.1 Family of Vector Bundles

Let X be a compact Riemann surface and V = (V,X, π) a holomorphic
vector bundle on X of rank n and degree d (see (4.6.3.3)). By an analytic
family of vector bundles of rank n and degree d over X parametrized by a
complex analytic space B is meant a complex analytic vector bundle V on
the product complex analytic space X × B such that for each t ∈ B, the
pullback Vt of V to X under the canonical inclusion

X ∼= X × {t} ↪→ X ×B

is a holomorphic vector bundle of rank n and degree d over X. If there
exists a point t′ ∈ B such that Vt′ is isomorphic to V , then we call Vt a
deformation of V over B for each t ∈ B. When B is smooth, this definition
coincides with the one given in (3.5.1.3).

3.8.1.2 Infinitesimal Deformation Maps for a Family

We continue with the notations of (3.8.1.1) above. Let (V, X × B,φ) be
an analytic family of holomorphic vector bundles over the compact Rie-
mann surface X parametrized by the complex analytic space B. This is by
definition a vector bundle on X × B and we shall simply denote it by V.
We denote the restriction of V to the fiber X ∼= X × {t} by Vt which is a
holomorphic vector bundle over X and call it the fiber of V over t ∈ B.

Fix a point t ∈ B. Let the analytic tangent space to B at t be denoted
by TtB. Any tangent vector ∂ (an element of TtB) corresponds uniquely
to a morphism f = f(∂) of complex analytic spaces, from the first order
infinitesimal neighborhood ({t},C[ε]) at t ∈ B, to B. We thus get an
induced analytic family of holomorphic vector bundles over X parametrized
by ({t},C[ε]) which we denote by f∗V.
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Next, using Čech cohomology (A.9), it can be shown that the elements of

Ȟ
1
(X, END(Vt)) ∼= H1(X, END(Vt))

are in bijective correspondence with equivalence classes of families parame-
trized by ({t},C[ε]) for each of which the corresponding fiber over the closed
point of this parameter space is isomorphic to Vt. Here END(Vt) denotes
the (locally free) sheaf over X of germs of endomorphisms of the bundle Vt.

Thus given an element ∂ of TtB, we have the morphism f as above,
and this gives rise to the induced family f∗V which corresponds to an
element θ = θ(f) of H1(X, END(Vt)) by what we have said in the previous
paragraph. Hence we obtain a map

τt : TtB −→ H1(X, END(Vt)), ∂ 7→ θ.

Since ({t},C[ε]) is the first order infinitesimal neighborhood of t ∈ B, the
induced family f∗V can be called an infinitesimal deformation of Vt and
the above map, which turns out to be a map of C-vector spaces, is called
the infinitesimal Kodaira-Spencer map for the family V at t ∈ B. It can
be shown that if B is nonsingular i.e., B is a manifold, so that this family
becomes a complex analytic family of holomorphic vector bundles, then the
infinitesimal deformation map for this complex analytic family as defined
earlier in (3.5.3) coincides with the above map.

3.8.2 Local Moduli for Simple Vector Bundles over a
Compact Riemann Surface

Let X be a compact Riemann surface and let V be a holomorphic vec-
tor bundle over X such that it has no nontrivial endomorphisms i.e., any
morphism (of holomorphic vector bundles) of V into itself is just given by
“multiplication by a complex number”; this is the same as requiring that
H0(X, END(V )) ∼= C. Such bundles V are said to be simple. So let V
be a simple bundle of rank n over X. Line bundles are always simple and
simple bundles of arbitrary rank exist if the genus of the compact Riemann
surface X is greater than 1.

The analogue of Kuranishi’s theorem (3.6.3.1) is also true for families of
holomorphic vector bundles over any fixed compact complex manifold and
parametrized by complex analytic spaces. Thus there exists an analytic
family of holomorphic vector bundles (V, X×B,φ) parametrized by a com-
plex analytic space B with t′ ∈ B such that the fiber of V over t′, which is
a holomorphic vector bundle over X, is isomorphic (as holomorphic vector
bundle) to V and further such that the infinitesimal deformation map

τt′ : Tt′B −→ H1(X, END(V ))
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is an isomorphism. For the existence of such a family for the case n = 1
of line bundles, see (4.6.6). Since X is of (complex) dimension 1, we have
that H2(X, END(V )) = 0. Thus we see that the point t′ ∈ B must be
a nonsingular point of B so that we actually get (locally at t′) a complex
analytic family.

Therefore also we see that the dimension of the local moduli space
(which by definition is the germ of B) at t′ ∈ B must be equal to the
dimension of the cohomology group H1(X, END(V )). We will compute
this dimension below.

To begin with, we note that the degree of the holomorphic vector bundle
END(V ) (whose associated sheaf of germs of holomorphic sections over X
is precisely the sheaf END(V )) is zero as the following calculation shows
(see (4.6.3.4)).

deg(END(V )) = deg(V ⊗ V ∗) = (rank(V )) · (deg(V ) + deg(V ∗))

= (rank(V )) · (deg(V )− deg(V )) = 0.

We have used above the fact that just as in the case of vector spaces, we
have an isomorphism of END(V ) with V ⊗ V ∗. Using the Riemann-Roch
theorem for vector bundles (see (4.6.3.5)) we have the required dimension
of the local moduli space for V as

dim(H1(X, END(V )))

= dim(H0(X, END(V )))− deg(END(V )) + (rank(END(V ))) · (g − 1)

= 1− 0 + n2(g − 1) = n2(g − 1) + 1,

where g is the genus of X. Thus the total number of independent effective
complex parameters, on which the structure of a simple holomorphic vector
bundle imposed on the fixed underlying topological vector bundle of V
depends, is n2(g − 1) + 1.

It can also be shown that in this moduli problem, one obtains an injec-
tive parametrization unlike the case of tori (2.6.2).

3.9 Deformation of Schemes and Geometric
Vector Bundles over Schemes

In this section, we will freely use the terminology explained in the Appendix.
We begin with the definition of algebraic deformation of a nonsingular
scheme of finite type over C and also of an algebraic vector bundle (a coher-
ent locally free sheaf of fixed rank (see (4.6.1))) over such a scheme paramet-
rized by a scheme over C. Of course, by a scheme over C, we mean a scheme
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together with a morphism from it into the one-point-scheme Spec (C).
Further, we always work only with closed points.

3.9.1 Algebraic Families of Schemes and Vector
Bundles

3.9.1.1 Definition. An (algebraic) family of schemes of finite type over C
parametrized by a (connected) scheme B over C is a morphism φ :M−→ B
of schemes over C such that:

1. φ is flat;
2. φ is of finite type i.e., if U = Spec(R) is any affine open subscheme

of B, then φ−1(U) is a union of finitely many affine open subschemes
Vi = Spec (Si) of M such that the natural homomorphisms of rings
R −→ Si (which actually define φ locally) make each Si into a finitely
generated R-algebra;

3. if t ∈ B is a closed point such that the scheme theoretic fiber Mt :=
M×B Spec (k(t))—where k(t) is the residue field at t, i.e., the quo-
tient of the local ring at t by the unique maximal ideal of that ring—
with underlying topological space φ−1(t) is proper over Spec (C), then
φ is required to be a proper morphism.

The family is denoted by (M, B, φ) = {Mt; t ∈ B}.
For any scheme M and a family (M, B, φ) = {Mt; t ∈ B} as above with

a point t′ ∈ B such that Mt′
∼= M , we call any other scheme theoretic fiber

Mt as a (global algebraic) deformation of M parametrized by B. The scheme
M is called the deformation space or the total space and B the parameter
space or base space for this family of deformations.

3.9.1.2 Remarks.

1. Let (M, B, φ) be a family of schemes of finite type over C and let
B also be a scheme of finite type over C. Then by (A.10) we get an
associated analytic family of complex analytic spaces parametrized
by a complex analytic space in the sense of definition (3.6.1.1).

2. Alternative Formulation Involving Jacobians. Suppose
(M, B, φ) = {Mt; t ∈ B} is an algebraic family of complete smooth
separated integral schemes of finite type over C with the parameter
space B also smooth over C. Here by a complete scheme over C we
mean a scheme over C whose morphism into Spec (C) (which makes
this scheme a scheme over C) is a proper morphism. Of course, a
scheme of finite type over C is complete if and only if the associ-
ated complex analytic space is compact (see (A.10.4.1)). Under these
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additional hypotheses, it can be shown that M is itself smooth and
that the Jacobian of φ is of maximal rank at each point of M (i.e.,
the differential of the map φ is surjective at each point of M). Con-
versely, if we assume that ψ : N −→ T is a morphism of schemes over
C such that its Jacobian is of maximal rank, T is smooth, the fibers
of ψ are smooth and ψ is proper then it can be shown that ψ is flat, so
that (N , T, ψ) is indeed an algebraic family of smooth schemes over
C. Hence if we want to allow only smooth deformations parametrized
by a smooth base space, then the definition of a family is simply a
proper morphism whose Jacobian is of maximal rank everywhere. In
this respect also compare with (3.6.1.2).

3.9.1.3 Definition. Let X be a scheme of finite type over C. By an alge-
braic vector bundle over X of rank n, we mean a coherent locally free sheaf of
OX-modules of rank n over X (see the beginning paragraph of (4.6.1)). Of
course, by the GAGA principle (A.10.5.1), if XHOL is a compact Riemann
surface, then the sheaf associated to any holomorphic vector bundle of rank
n over XHOL corresponds to a unique algebraic vector bundle of rank n
over X and conversely.

3.9.1.4 Remarks. Just as in the case of holomorphic vector bundles
over a complex manifold, we may define the following notions for the cate-
gory of schemes of finite type over C:

1. a family of algebraic vector bundles over a smooth scheme para-
metrized by a scheme;

2. a global algebraic deformation of an algebraic vector bundle over a
smooth scheme parametrized by a scheme;

3. equivalence of algebraic families of vector bundles over a fixed smooth
scheme and parametrized by a fixed scheme;

4. triviality and local triviality of an algebraic family of vector bundles,
and

5. pullback of algebraic families under morphisms of schemes.

Of course, due to definition (3.9.1.3), all the above definitions would
involve only coherent locally free sheaves and familiar operations on such
sheaves. For example, the pullback of an algebraic vector bundle (or even
of a family of algebraic vector bundles) corresponds to the inverse image
of the corresponding coherent locally free sheaf as defined in (A.3) which
turns out again to be coherent and locally free.
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3.9.2 Infinitesimal Deformation Maps for Algebraic
Families of Schemes

Let X be a nonsingular irreducible separated scheme of finite type over C
of dimension n. Let ΩX/C be its sheaf of Kähler differentials as defined in
(4.4.2.2). Let us define the tangent sheaf by

Θ = HOMOX (ΩX/C,OX),

where HOMOX (F ,G) denotes the sheaf of OX -module homomorphisms of
F into G i.e., the sheaf associated to the presheaf on X given by U 7→
HOMOX(U)(F(U),G(U)) where U is an open subset of X. We also define
the canonical sheaf of X by

ωX = Λn(ΩX/C),

where Λn(ΩX/C) denotes the n-th exterior power of the sheaf ΩX/C. Then
ΩX/C,Θ and ωX are coherent locally free sheaves of ranks n, n and 1 respec-
tively.

Using Čech cohomology, we can show that the elements of the cohomol-
ogy group

Ȟ1(X,Θ) ∼= H1(X,Θ)

are in a natural bijective correspondence with equivalence classes of triples
(M,Spec (C[ε]), φ) of algebraic families over Spec (C[ε]) such that the fiber
product schemeM×Spec (C[ε])Spec (C) is isomorphic toX (C[ε] was defined
in (3.6.2)).

Now we come to the definition of the algebraic analogue of the infinites-
imal Kodaira-Spencer map. Let (M, B, φ) be an algebraic family of non-
singular irreducible schemes of finite type over C and let t′ ∈ B be a closed
point such that the scheme theoretic fiber of φ over this point is isomorphic
to X. Hence (M, B, φ) is an algebraic family of global deformations of X
with base point t′ ∈ B.

Given any element ∂ of the Zariski tangent space Tt′B, we get a unique
morphism f : Spec (C[ε]) −→ B mapping onto t′ ∈ B. Then we have the
induced family f∗M over Spec (C[ε]) which gives an element θ = θ(f) of
H1(X,Θ) as indicated earlier. Define the map

ρt′ : Tt′B −→ H1(X,Θ) by ∂ 7→ θ.

Since Spec (C[ε]) is the first order infinitesimal neighborhood of t′ ∈ B, the
above family corresponding to ∂ on Spec (C[ε]) is called as the infinitesimal
deformation of X along the tangent direction at t′ ∈ B prescribed by ∂.

The map ρt′ is called the infinitesimal deformation map at t′ ∈ B for the
algebraic family under consideration and is the analogue of the Kodaira-
Spencer map (3.6.2) for a family of complex manifolds.
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Of course, when X is projective over C, by the GAGA principle
(A.10.5.1), the underlying complex analytic space of X viz. XHOL (A.10.1)
is a compact complex manifold, the sheaf associated to Θ of OXHOL -
modules viz. ΘHOL (A.10.2) is precisely the sheaf of germs of holomorphic
vector fields on XHOL and the Zariski tangent space Tt′B gets canonically
identified with the complex analytic tangent space of BHOL at t′. Then by
(4) of (A.10.5.1), the infinitesimal Kodaira-Spencer map for the associated
complex analytic family at t′ ∈ BHOL is the same as ρt′ above.

3.9.3 Infinitesimal Deformation Maps for Algebraic
Families of Algebraic Vector Bundles

Let X be a smooth scheme of finite type over C. Let V be an algebraic
vector bundle of rank n on X i.e., V is a coherent locally free sheaf of
OX -modules of rank n (3.9.1.3).

Let END(V) denote the sheaf of germs of OX -module endomorphisms
of V.

Using Čech cohomology, we can show that the elements of the cohomo-
logy group

Ȟ
1
(X, END(V)) ∼= H1(X, END(V))

are in bijective correspondence with isomorphism classes of coherent locally
free sheavesW on the product scheme X×Spec(C[ε]) such that the inverse
image OX -module of W under the canonical morphism

X ∼= X × Spec(C)
1X×φ−→ X × Spec(C[ε])

(where φ is the closed immersion of the closed point of Spec (C) into Spec
(C[ε])) is isomorphic to V. SuchW are algebraic families of algebraic defor-
mations of V parametrized by Spec (C[ε]) and hence are called infinitesimal
deformations of V.

Next, let U be an algebraic family of algebraic (rank n) vector bundles
over X parametrized by a scheme B of finite type over C. Fix a closed
point t ∈ B. Let Ut denote the algebraic vector bundle of rank n on X got
by pulling back U under the canonical morphism

X ∼= X × {t} 1X×φt−→ X ×B,

where φt : {t} ↪→ B is the closed immersion of the closed point t into B.
Given any element ∂ of the Zariski tangent space TtB, we get a unique

associated morphism f : Spec(C[ε]) −→ B mapping onto t ∈ B. Then
we have the induced family f∗U over Spec (C[ε]) which gives an element
θ = θ(f) of H1(X, END(Ut)) as indicated earlier. Define the map

τt : TtB −→ H1(X, END(Ut)) by ∂ 7→ θ.
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The map τt is called the infinitesimal deformation map at t ∈ B for the alge-
braic family under consideration and is the analogue of the Kodaira-Spencer
map for a family of holomorphic vector bundles over a fixed complex mani-
fold.

Of course, when X is projective over C, by the GAGA principle, the
infinitesimal Kodaira-Spencer map for the associated complex analytic
family at t ∈ BHOL is the same as τt above.

Deformation Theory in the context of schemes is explained in detail in
the book of Sernesi [38] and of Hartshorne [41].

We will not go into the technical definition of an “algebraic local moduli
space”. For details, see Schlessinger’s paper [20]. However, see (3) of
(4.6.7.3) and (4.7.3.6).

In the next chapter, we study the notion of a “global moduli space”.



4. Theory of Global
Moduli: Fine Moduli
Spaces and Coarse Moduli
Spaces

4.1 Overview of this Chapter

The notion of a family is fundamental to the formulation of every moduli
problem. We have already illustrated the notion of a family of varying
complex structures in chapter 2, and we have studied the local properties
of such families in the previous chapter. The general definition of a family,
which can be used to formulate a general moduli problem, is explained in
section 4.2.

Problems of moduli of complex structures are of the following two major
types: the problem of the variation of the complex manifold structure on
the underlying topological space of a compact complex manifold, and the
problem of the variation of the holomorphic vector bundle structure on the
underlying topological vector bundle of a holomorphic vector bundle over
a compact complex manifold.

The problem of moduli of a compact connected complex manifold is
explained in subsection 4.3.1. The simplest case of this problem is that cor-
responding to a compact connected complex manifold of dimension 1, which
is a compact Riemann surface. Among the compact Riemann surfaces, the
more simpler ones are the tori, which correspond to compact Riemann sur-
faces of genus 1. Thus, the problem of moduli of elliptic curves is the
simplest example of a problem of variation of complex manifold structures,
and this example is explained in subsection 4.3.3. Though this moduli prob-
lem is easily formulated, its solution involves nontrivial theory, as shown
by sections 4.7 and 4.8.

133
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Subsection 4.3.2 explains the formulation of the problem of moduli of a
holomorphic vector bundle on a compact Riemann surface.

The definition of a fine moduli space given in subsection 4.5.3 involves
the notion of a representable functor. Hence, the notion of a representable
functor is introduced earlier in subsection 4.4.1, and is illustrated with
examples in subsection 4.4.2. These naturally occurring examples serve the
following additional purpose: they are used to define the canonical sheaf
and the tangent sheaf to a nonsingular curve. These objects, alongwith the
Serre Duality Theorem and the Riemann-Roch Theorem, were already used
in computations in subsections 3.7.1 and 3.8.2 of the previous chapter.

The general notion of a family, defined in section 4.2, is used to define
a general moduli problem in functorial terms in subsection 4.5.1.

The best possible solution to a moduli problem, called a fine moduli
space, is defined in subsection 4.5.3. The abstract nature of this functorial
definition is clarified and made more transparent by the notion of a universal
family. The exact relationship between a fine moduli space and a universal
family is explained in 4.5.3.3.

A coarse moduli space is a less better solution to a moduli problem than
a fine moduli space, but in many moduli problems this is the best we are able
to get. The notion of a coarse moduli space is defined in subsection 4.5.4.
The functoriality of the definition involved is convenient only to state the
definition and to see immediately that every fine moduli space is also a
coarse moduli space. However, this definition is not practically useful and
hence an alternative definition is indicated. This version is easier to apply,
and in fact, is used to obtain the coarse moduli space for elliptic curves in
section 4.7.

There are necessary and sufficient conditions that can ensure that a
coarse moduli space is actually a fine moduli space. These conditions are
explained in 4.5.5.

The method of passing from the local moduli spaces to a global moduli
space is illustrated in the constructions of sections 4.6 and 4.7.

Given a compact Riemann surface of genus g, the abelian group of
isomorphism classes of line bundles of degree zero, with the tensor product
as the group operation, can be canonically given the structure of a complex
g-dimensional torus. This torus is called the Jacobian of the given compact
Riemann surface and it turns out to be algebraizable. The aim of section 4.6
is to construct the Jacobian and show that it is a fine moduli space for the
problem of moduli of degree zero holomorphic line bundles on the given
compact Riemann surface. The associated universal family is called the
Poincaré family, which is a complete effectively and injectively parametrized
family.
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The rank and the degree of a holomorphic vector bundle on a compact
Riemann surface are integer invariants of the underlying topological bundle.
Hence these are fixed for the problem of the variation of the holomorphic
structure of the bundle.

The definition of degree of a vector bundle involves the notion of the
Chern class of a line bundle. In order to define Chern classes, one has to
first identify isomorphism classes of line bundles with the elements of the
first cohomology group of the compact Riemann surface with values in the
sheaf of units associated to the sheaf of rings given by its structure sheaf.
Hence, the Picard group of a ringed space is defined in subsection 4.6.1,
following which, in subsection 4.6.2, Chern classes are defined.

The notion of the degree of a holomorphic vector bundle and its proper-
ties are explained in subsection 4.6.3. The famous Riemann-Roch Theorem
is also stated there.

The Jacobian is constructed in subsection 4.6.5, the properties of the
Poincaré family are discussed next in 4.6.6 and finally in 4.6.7, it is estab-
lished that the Jacobian is a universal classifying space.

The problem of moduli of elliptic curves admits a coarse moduli space
for its solution, but does not possess a fine moduli space. That the space of
complex numbers is a coarse moduli space for this problem, is the content
of section 4.7.

The elliptic modular function, defined on the upper-half complex plane
and associated to the natural family of elliptic curves parametrized by
this upper-half plane, can be generalized to any arbitrary family of elliptic
curves. This generalization is the crucial step in solving this moduli prob-
lem, and is dealt with in subsection 4.7.2. The coarse moduli space for
elliptic curves is obtained, using this generalization, in 4.7.3.

What are the reasons behind the non-existence of a fine moduli space
for elliptic curves? Answers to this question are given in section 4.8.

Subsection 4.8.1 explains how there exist local obstructions to the exis-
tence of tautological families at those points of the parameter space which
correspond to elliptic curves admitting more automorphisms than a general
elliptic curve.

There exist families of elliptic curves, which have isomorphic fibers,
but yet are not globally trivial. The existence of such families implies the
impossibility of obtaining a fine moduli space and hence such families are
called global obstructions. The construction of such a family is sketched in
subsection 4.8.2.
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4.2 The General Definition of a Family

4.2.1 Classification Problems and Families

Suppose we are given a set S of objects of a fixed type in Geometry and
an equivalence relation ∼S on S. Then we may form the set S/∼S of
equivalence classes. The set-theoretic classification problem is to find some
discrete invariants of objects of S such as maps f : S/∼S−→ Z which
partition S/∼S .

A structural classification problem attempts to put some “mathematical
structure” on S/∼S . A structural classification problem can be said to be
a “well-formulated” classification problem if the structure on S/∼S relates
satisfactorily and in a natural way to that on the elements of S.

Given a “mathematical structure” which we want to put on S/∼S , we
look at the category C whose objects are sets alongwith the given “mathe-
matical structure” and whose morphisms are maps of underlying sets that
“preserve” (or suitably relate to) the chosen mathematical structure. Our
aim primarily is to see if the elements of the underlying set |M | of a suitable
object M of C are in a natural bijective correspondence with the elements
of the set S/∼S , so that we may “transport the structure” on |M | to S/∼S .

Next, we require this structure to be naturally related to the structures
on elements of S. This requirement may be made more precise by the
notion of a “family of elements of S parametrized by an object of C” which
we define below. For a “well-formulated” classification problem, we want
the structure on S/∼S to reflect properties of “families of objects of S
parametrized by objects of C”. Before making the definition of a family, we
will assume that the category C satisfies certain conditions which we state
below.

4.2.2 Conditions on the Parameter Category CCC
The category C will be assumed to have the following properties:

1. The objects of C are sets with some additional mathematical structure
and the morphisms in C are maps of the underlying sets relating
suitably to the mathematical structure. Further, the underlying map
of a composition (in a given order) of a given finite set of morphisms
in C is the composition of the underlying maps corresponding to the
given morphisms in the same order. The collection of morphisms from
any object to any object in C is always a set.

2. Let S denote the category whose objects are sets and whose mor-
phisms are set-theoretic maps. Define the covariant functor | · | :
C −→ S by sending an object M of C to its underlying set |M |, and
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by sending a morphism f : M −→ N in C to the underlying mapping
of sets |f | : |M | −→ |N |. Then for each pair of objects N,M ∈ C, the
mapping of sets induced by the above functor

HomC(M,N) −→ HomS(|M |, |N |)

must be injective (here HomA(M,N) denotes the collection of mor-
phisms from an object M to another object N in a given category A).
Another way of saying this is that a morphism in C is uniquely deter-
mined if the corresponding map of the underlying sets is uniquely
determined.

3. There exists a base point object denoted by P ∈ C such that its under-
lying set |P | consists of a single point and there exists a canonical
identification of the set HomC(P,M) with |M | for each M ∈ C in the
sense that if f : M −→ N is a morphism in C, then the underlying
map of sets |f | : |M | −→ |N | is just given by the natural map

HomC(P,M) −→ HomC(P,N)

defined by ψ → f ◦ ψ. We are now ready to make the following
definition.

4.2.3 Definition. We continue with the same notations as above i.e., let
S be a set of objects in Geometry and ∼S be an equivalence relation on this
set S. Let C be a category satisfying (4.2.2). The classification problem is to
put on the set S/∼S the structure of an object of C in a natural manner. A
functor of families of objects of S is a contravariant functor FAM : C −→ S
which satisfies the following conditions:

1. FAM(P ) = S;
2. for each object T of C, there is given an equivalence relation ∼T on

the set FAM(T ) such that when T = P , ∼T reduces to the already
given equivalence relation ∼S ;

3. for each morphism φ : T1 −→ T2 in C, the corresponding map of sets

FAM(φ) : FAM(T2) −→ FAM(T1)

takes ∼T2 -equivalent families to ∼T1-equivalent families.

4.2.4 Remarks on the Above Definition

1. For any object T ∈ C, the elements of FAM(T ) are called families of
objects of S parametrized by T .
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2. Hence (1) of the above definition says that families parametrized by
the base point object P are just objects of S themselves. Further,
condition (2) of the above definition says that the equivalence relation
on families parametrized by P is just the equivalence on S already
given.

3. For a morphism φ : T1 −→ T2 in C, the corresponding map of sets

FAM(φ) : FAM(T2) −→ FAM(T1)

is denoted by φ∗. For any family F parametrized by T2, the family
φ∗F is called the pullback to T1 of F by φ. It is also called the
family on T1 induced by φ. The operation φ 7→ φ∗ is functorial by
definition. Further, if F is a family parametrized by T ∈ C and if t
is a point of the underlying set |T | of T , since there is a canonical
identification |T | = HomC(P, T ) due to which we think of t as a
morphism φt : P −→ T in C, then the element of S given by φ∗t (F ) is
called the fiber of F over t and is often denoted by Ft.

4. Condition (3) of the above definition may also be stated as follows:
the pullback operation on families is compatible with the equivalence
relations on the respective families.

4.2.5 The Functor of Equivalence Classes of Families

Given a functor FAM of families of objects of S as in (4.2.3) above, since
we want to classify objects of S up to ∼S-equivalence, we can define a
contravariant functor called the functor of equivalence classes of families of
objects of S as follows. This is the functor F : C −→ S defined by F(T ) =
FAM(T )/ ∼T ; in other words, for each object T ∈ C, F(T ) is the set of
∼T -equivalence classes of families of objects of S parametrized by T . Notice
that F(P ) = S/∼S .

Next let φ : T1 −→ T2 be a morphism in C and

φ∗ = FAM(φ) : FAM(T2) −→ FAM(T1)

be the corresponding map of sets. Then we define the mapping F(φ) :
F(T2) −→ F(T1) by sending the ∼T2-equivalence class, of a family F
parametrized by T2, to the ∼T1 -equivalence class, of the family φ∗(F )
parametrized by T1. This is well-defined because the pullback operation
on families is compatible with the equivalence on families.

Thus we get the functor F of equivalence classes of families of objects
of S parametrized by objects of C.

In the next section, we illustrate how functors like FAM and F arise
naturally in situations involving classification problems.
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4.3 Examples of Functors of Families

4.3.1 Example: Problem of Moduli of a Compact
Complex Manifold

Let M be a compact connected complex manifold. Let MC∞ denote the
underlying differentiable manifold of M . We wish to study those structures
of complex manifold that can be imposed on MC∞ which also occur as
deformations of the complex structure M on MC∞ .

Let S denote the set of pairs of the form (MC∞ , {(Uj , zj); j ∈ N}) where
{(Uj , zj); j ∈ N} is a system of local complex coordinates on MC∞ that
endows MC∞ with the structure of a complex manifold which occurs as a
deformation of M .

We define the equivalence relation ∼S on S by declaring two elements
of S to be equivalent if and only if they give rise to biholomorphic complex
structures on MC∞ .

This discussion applies to both complex analytic families and differ-
entiable families. Therefore the words “family”, “deformation”, “mani-
fold”, “map of manifolds” should be replaced throughout by the words
“complex analytic family”, “holomorphic deformation”, “complex mani-
fold”, “holomorphic map” respectively, or throughout by the words “differ-
entiable family”, “C∞ deformation”, “differentiable manifold”, “C∞ map”
respectively.

Let C denote the category whose objects are pairs of the form (B, t0)
where B is a connected manifold and t0 a point of B called the base point
and whose morphisms are maps of manifolds that preserve base points. Let
S denote the category whose objects are sets and whose morphisms are set-
theoretic maps. Define the association FAM : C −→ S as in (2.5.1). As
checked in (2.5.1), it is clear that FAM is a functor of families of objects
of S parametrized by objects of C that naturally gives rise to the functor
F of equivalence classes of families.

4.3.2 Example: Problem of Moduli of Vector Bundles
on a Compact Riemann Surface

Fix a compact Riemann surface X. Let S denote the set of isomorphism
classes of holomorphic vector bundles on X of fixed rank n and fixed degree
d (see (4.6.3.3)). Let ∼S denote “equality in S” so that S/∼S= S.

Suppose we want to bijectively parametrize isomorphism classes of holo-
morphic vector bundles (in S) by a Hausdorff reduced complex analytic space
(see (A.7.1)). Then we consider the category C whose objects are Hausdorff
reduced complex analytic spaces and whose morphisms are morphisms
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of complex analytic spaces. For the base point object P ∈ C, take the
nonsingular complex analytic space (manifold) consisting of a single point
|P | = {p}. Then C is a category satisfying (4.2.2).

Define a family of holomorphic vector bundles in S parametrized by T ∈ C
to be the isomorphism class [V ] of a holomorphic vector bundle V = (V,X×
T, pV ) of rank n on X × T such that for each point t = φt ∈ |T | ↔ φt ∈
HomC(P, T ) (see (3) of (4.2.2)), the pullback of this vector bundle to X by
the following composition

X ∼= X × P
1X×φt
↪→ X × T

(which is a holomorphic vector bundle on X of rank n denoted by Vt)
has degree d. Next, for each T ∈ C, define the equivalence relation ∼T
on FAM(T ) by [V1] ∼T [V2] ⇔ V1 is isomorphic to the tensor product
V2 ⊗ p∗T (L) where pT : X × T −→ T is the canonical projection onto
the second factor, L is a holomorphic line bundle on T , and p∗T (L) is the
pullback of L by pT to X × T .

The motivation for the above definition of equivalence ∼T is given by
the following non-trivial result.

4.3.2.1 “See-Saw” Theorem. Let X be a connected compact complex
manifold (respectively an integral separated scheme of finite type over C
such that the structure morphism X −→ Spec (C) is proper). Let T be any
reduced complex analytic space (respectively any reduced scheme of finite
type over C). Let L be a holomorphic line bundle (respectively an algebraic
line bundle — a coherent locally free sheaf of rank 1) over the product X×T .
Then the subset T0 of T defined by

T0 = {closed points t ∈ T ; (1X × φt)∗(L) is trivial on X × P ∼= X},

is an analytic subset (respectively a Zariski-closed subset) of T . Further
if p0

2 : X × T0 −→ T0 is the canonical projection onto the second factor
and i0 : T0 −→ T is the canonical inclusion, then we must have the fol-
lowing isomorphism of holomorphic (respectively algebraic) line bundles on
X × T0:

(1X × i0)∗(L) ∼= (p0
2)∗(M),

where M is some holomorphic (respectively algebraic) line bundle on T0.

For the proof of this theorem in the complex analytic category, see [21]
(Appendix A); for a proof in the algebraic category see [9], (chap. II, sec. 5).

We now explain the implication of the above theorem regarding the
choice of an equivalence relation on families.
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We consider the simplest case viz. n = 1 corresponding to the moduli
problem of holomorphic line bundles of fixed degree.

For classes [V1] and [V2] of holomorphic line bundles in S parametrized
by T ∈ C, since the representatives V1 and V2 are by definition holomorphic
line bundles on X × T , we are naturally tempted to define

[V1] ∼T [V2] if and only if V1
∼= V2 as holomorphic line bundles.

Of course, in such a case, it is clear that for each t ∈ |T |, we will have
(V1)t ∼= (V2)t as holomorphic line bundles on X. However, conversely if
W1 and W2 are respectively representatives of two families of holomorphic
line bundles [W1] and [W2] in S parametrized by T ∈ C such that they are
fiberwise isomorphic i.e., (W1)t ∼= (W2)t for each point t of T , then due to
the above theorem, we get only that

W1
∼= W2 ⊗ p∗T (M)

for some holomorphic line bundle M on T . Therefore W1 and W2 need not
be isomorphic as holomorphic line bundles on X × T . This shows that our
definition of ∼T as isomorphism of representative holomorphic line bundles
is more restrictive than our original definition.

Later on, we shall define a “fine moduli space” (in (4.5.3)) which is the
best global solution one could hope to get to a moduli problem. In case a
fine moduli space exists (this is indeed the case for holomorphic line bundles
of degree zero — see (4.6.7.2)), we shall show later (in (4.5.3.3.3)) that the
equivalence relation on families is determined by the equivalence relation
on S. Therefore, with the definition of ∼T as isomorphism of representa-
tive holomorphic line bundles, we would be unable to get a fine moduli
space.

Therefore, the above discussion justifies our original definition of ∼T
namely

[W1] ∼T [W2]⇔W1
∼= W2 ⊗ p∗T (M)

for some holomorphic line bundle M on T .
For a morphism φ : T1 −→ T2 in C, we define the pullback φ∗[V ] of an

element [V ] ∈ FAM(T2) as follows: φ∗[V ] := [(1X ×φ)∗(V )] ∈ FAM(T1).
It is then routinely verified that FAM is indeed a functor of families of
vector bundles is S parametrized by Hausdorff reduced complex analytic
spaces and hence gives rise to the functor F of equivalence classes of families
given by F(T ) = FAM(T )/∼T .

4.3.2.2 Remark. In the above discussion, if we replace “holomorphic
vector bundle” by “algebraic vector bundle”, “complex analytic space” by
“reduced separated scheme of finite type over C”, “morphism of complex
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analytic spaces” by “morphism of schemes over C” respectively and take
P = Spec (C), C to be the category of reduced separated schemes of finite
type over C, and work only with closed points (i.e., for T ∈ C, |T | denotes
only the closed points of the underlying topological space of T ), then we
get verbatim a functor of families naturally arising in Algebraic Geometry.
Note that X is algebraizable and since each holomorphic vector bundle on
X corresponds to a locally free sheaf (it corresponds to its sheaf of germs of
sections), by the GAGA principle (A.10.5.1), we see that each holomorphic
vector bundle on X has a unique structure of algebraic vector bundle over
the algebraic scheme structure on X.

4.3.3 Example: Problem of Moduli of Elliptic Curves

Recall from chapter 1 that a compact Riemann surface of genus 1 is called
an elliptic curve and recall from (1.5.2.6.2) that it can be embedded as a
closed complex submanifold of 2-dimensional complex projective space P 2

C.
By the GAGA principle (A.10.5.1), (the conformal equivalence class of) an
elliptic curve actually corresponds to (the algebraic isomorphism class of)
a projective algebraic scheme over Spec (C) viz. a projective nonsingular
irreducible 1-dimensional scheme over Spec (C), which also we shall refer
to as an elliptic curve (over Spec (C)).

Let S be the set whose elements are pairs of the form (E, e) where E is
an elliptic curve and e ∈ E is a closed point.

Let ∼S be the equivalence relation on S given by (E, e) ∼S (E′, e′) ⇔
there exists an isomorphism of E onto E′ carrying e onto e′. Since each
elliptic curve comes with an algebraic group structure, we see that the group
of automorphisms of an elliptic curve is transitive, so that S/∼S is precisely
the set of isomorphism classes of elliptic curves.

Suppose we want to bijectively parametrize isomorphism classes of ellip-
tic curves (elements of S/∼S) by a Hausdorff reduced complex analytic space
(A.7.1). Then we consider the category C whose objects are Hausdorff
reduced complex analytic spaces and whose morphisms are morphisms of
complex analytic spaces (A.5.5). For the base point object P ∈ C, take the
nonsingular complex analytic space (manifold) consisting of a single point
i.e., |P | = {pt}. Then C is a category satisfying (4.2.2).

Following (3.6.1.1), we define a family of elliptic curves parametrized by
T ∈ C to be an analytic family (F, T, p) together with a section s of p, where
F ∈ C, the morphism p : F −→ T (in C) is proper, flat and with each fiber
p−1(t), (t ∈ T ) an elliptic curve. We may, of course, equivalently require
that p be proper and smooth instead of requiring that p be proper and flat.

When T is nonsingular, i.e., a manifold, then F is also a manifold and
the differential of the map p is of maximal rank at each point of F so that
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the above definition reduces to that of Kodaira-Spencer (see (2.4.1.1) and
(3.6.1.2)).

We shall denote a family p : F −→ T alongwith the given section s
as above simply by (F, s) and denote (for each t ∈ T ) its fiber p−1(t) by
(Ft, s(t)) ∈ S.

Thus FAM(T ) is the set of families of elliptic curves parametrized by
T ∈ C alongwith prescribed sections.

Let the equivalence relation ∼T on FAM(T ) be given by (F, s) ∼T
(F ′, s′) ⇔ F and F ′ are equivalent as families over T by an isomorphism
of F onto F ′ which when composed with s gives s′.

Given a family (F, s) ∈ FAM(T ) and a morphism φ : T ′ −→ T in C, we
define the pullback of the family (F, s) by φ, denoted φ∗(F, s) ∈ FAM(T ′)
to be (T ′×TF, φ∗s) where (T ′×TF ) is the fibered product (A.7.3) of T ′ and
F over T with respect to the maps p and φ and where φ∗s is the section of
φ∗p induced by s.

It is routinely verified that FAM is indeed a contravariant functor of
families from C to S, which naturally gives rise to the functor F of equiva-
lence classes of families from C to S, defined by F(T ) = FAM(T )/∼T .

4.3.3.1 Remark. In the above discussion, if we take for C the category
of separated reduced schemes over C, P := Spec (C), let |T | for T ∈ C
denote only the closed points of T , and consider algebraic families of elliptic
curves over Spec (C) parametrized by objects of C to be families in the
sense of definition (3.9.1.1) alongwith prescribed sections, then we obtain
the contravariant functors FAM and F from C to S respectively of families
and of equivalence classes of families of elliptic curves over C.

We have already indicated in (2.5.2) the notion of a moduli problem
in terms of the notion of a functor of families. The best kind of solution
that one may expect for a moduli problem is called a fine moduli space. In
order to understand clearly what this term means, we need to understand
the notion of a representable functor which is what we describe in the next
section. Further, for many moduli problems, one does not get a fine moduli
space but what one often gets is another type of solution to the moduli
problem called a coarse moduli space. In order to motivate this concept,
we need Yoneda’s Lemma which is purely a category-theoretic result and
is also proved in the next section.

4.4 Representable Functors

4.4.1 Yoneda’s Lemma

The notion of a representable functor is inspired by the intuition that the
“structure” of an object in a “good” category (e.g., a category satisfying
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(4.2.2)) must be completely prescribed by the knowledge of all (“allowed
maps”) morphisms into it from every other object of that category. This is
in fact true and the result is called Yoneda’s lemma which we prove in this
section in (4.4.1.4).

The relevance of the notion of a representable functor to classification
problems is the following. From a well-formulated classification problem
arises a functor F which when evaluated at a “base-point-space” equals the
set of equivalence classes of objects on which we want to discover a “good
structure” (cf. (4.3)). Now consider the category C of objects with the
“good structure”. Every object in this category gives rise to a representable
functor (4.4.1.2). Furthermore, this functor evaluated at a “base-point-
space” gives back the underlying set of the object which it represents (recall
(3) of (4.2.2)). Now if the functor arising from the classification problem is
isomorphic to such a functor defined by an object of the category, then the
structure on the set of equivalence classes of objects that we want to classify
(transported from the structure on the object of the category) “behaves
well” with respect to F in the sense that we get a “universal family” — see
(4.5.3.3). We begin with the following.

4.4.1.1 Definition. Let C be a category. Note that if X ∈ C is an object
of C, then

HomC(−, X) : C −→ S

is a contravariant functor, where S denotes the category whose objects are
sets and whose morphisms are set-theoretic mappings, and HomC(X,Y )
denotes the collection of morphisms from X to Y in C. We define a con-
travariant functor F : C −→ S to be representable if there exists a natural
equivalence (i.e., isomorphism of functors):

Φ : F
∼=−→ HomC(−, X)

for some object X of C. We also say that the pair (X,Φ) represents F . That
the pair (X,Φ) is uniquely defined up to a unique isomorphism (if it exists)
will be implied by Yoneda’s lemma (4.4.1.5).

4.4.1.2 Remark. For any X ∈ C, the functor FX := HomC(−, X) is
representable by definition. It is represented by the pair (X, 1FX ) where
1FX is the identity natural equivalence on FX .

4.4.1.3 Definition. Let C be a category and X be an object of C. Let
FUNCT(Co,S) denote the category whose objects are covariant functors,
from Co (Co is just the category C with arrows reversed) to S, and whose
morphisms are natural transformations of functors. This is a full subcategory
of the category of (covariant) functors. Define the functor
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h : C −→ FUNCT(Co,S)

by X 7→ hX where hX : Co −→ S is the covariant functor which is defined
by Y 7→ hX(Y ) := HomC(Y,X) ∈ S.

4.4.1.4 Lemma (Yoneda). Let C be a category and X an object of C.
The we have:

(a) if F : C −→ S is any contravariant functor, then the natural transfor-
mations of functors from HomC(−, X) to F are in a natural bijective
correspondence with the elements of F (X);

(b) the functor h (defined above) is an equivalence of C with a full sub-
category of the category of functors.

Proof. (a) Send a given natural transformation

α : HomC(−, X) −→ F

to pα := (α(X))(1X) ∈ F (X) where 1X is the identity morphism
of X. Conversely, given an element p ∈ F (X), define the natural
transformation αp : HomC(−, X) −→ F by (αp(Y ))(φ) = (F (φ))(p) ∈
F (Y ) for each Y ∈ C and φ ∈ HomC(Y,X). Then the associations
α 7→ pα and p 7→ αp are inverse to each other.

(b) For any object X ′ in C, set F = HomC(−, X ′) and apply part (a)
QED

4.4.1.5 Remark. From Yoneda’s lemma we see that if a contravariant
functor is represented by a pair as in (4.4.1.1), then the pair is determined
uniquely up to a unique isomorphism.

4.4.1.6 Remark. We may also define a covariant functor F : C −→ S
to be representable if it is functorially isomorphic to HomC(X,−) for some
object X in C.

4.4.2 Examples of Representable Functors

4.4.2.1 Example from Commutative Algebra: Existence of
Universal Derivations

Let A,R denote commutative rings. Let A be an R-algebra and M an A-
module. By a derivation of A over R we mean an R-linear map D : A −→M
such that

D(ab) = a ·D(b) + b ·D(a), ∀ a, b ∈ A.
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Then D(R) = 0 and the set of such derivations naturally forms an A-module
denoted by DerR(A,M). We thus get a covariant functor

DerR(A,−) : ModA −→ ModA.

Here ModA denotes the category of all A-modules. This functor is rep-
resentable (see Lang [22], chap. XIX, sec. 3). Equivalently, there exists
an A-module Ω and a universal derivation d : A −→ Ω such that for
D ∈ DerR(A,M), there exists a unique A-homomorphism f : Ω −→ M
with D = f ◦ d and the association D 7→ f gives a functorial isomorphism

Φ : DerR(A,−) ∼−→ HomA(Ω,−).

In other words, the pair (Ω,Φ) represents DerR(A,−).

4.4.2.2 Remarks: The Canonical Sheaf and Tangent Sheaf of a
Compact Riemann Surface

Let X be a compact Riemann surface and let TX , T ∗X denote respectively its
holomorphic tangent and cotangent (line) bundles. By the GAGA principle
(A.10.5.1), since X can be embedded as a closed submanifold of some com-
plex projective space, there is a complex projective algebraic curve C, and
coherent locally free sheaves of OC-modules TC (called the tangent sheaf)
and ωC (called the canonical sheaf) such that, in the notations of (A.10.2)
we have

CHOL = X, (TC)HOL = T̃X and (ωC)HOL = T̃ ∗X ,

where for a holomorphic vector bundle V on X, Ṽ denotes the associated
sheaf over X of germs of holomorphic sections of V .

Over any affine open subscheme U = Spec (A) ↪→ C (see (A.4.3) and
(A.6.3)), consider the coherent sheaf ΩU/C over U which is the sheaf asso-
ciated to the module (in the sense of (A.6.9)) of universal derivations of
A over C as described above in (4.4.2.1). For various such affine opens Ui
which cover C, the sheaves ΩUi/C glue together to give a coherent locally
free sheaf of rank one (invertible sheaf) which we denote by ΩC/C. Then
we have

TC = HOMOC (ΩC/C,OC) and ωC = ΩC/C.

If g is the genus of X i.e., X is topologically a sphere with g handles
attached, then we have that g = dimCH0(C, ωC).
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4.4.2.3 Example from Algebraic Geometry: Existence of
Dualizing Sheaves

Let k be any field. Let X be a proper scheme over Spec (k) (i.e., the given
morphism from X to Spec (k) which makes X a scheme over k is a proper
morphism (A.6.7)) of dimension n.

Let Xc denote the category whose objects are coherent OX -modules
(A.6.9) and whose morphisms are morphisms of OX -modules (A.3). Let
FDVSc denote the category whose objects are finite dimensional vector
spaces over k and whose morphisms are k-linear maps. Given F in Xc, we
get the following contravariant representable functor

HomXc(−,F) : Xc −→ FDVSc.

Note also that the “top cohomology functor with values in a coherent OX -
module” (see (A.8)) viz.

Hn(X,−) : Xc −→ FDVSc,

is a covariant functor. Hence the functor

Hn(X,−)∗ : Xc −→ FDVSc,

which assigns to each F ∈ Xc, the dual of the k-vector space Hn(X,F), is a
contravariant functor. A dualizing sheaf for X is a coherent sheaf ωoX ∈ Xc

which represents this contravariant functor. In other words we must have
an isomorphism of functors

Φ : Hn(X,−)∗ ∼−→ HomXc(−, ωoX)

so that the pair (ωoX ,Φ) represents Hn(X,−)∗. Grothendieck has shown
that dualizing sheaves do exist.

4.4.2.4 Remark: Serre Duality on a Compact Riemann Surface

We continue with the notations of (4.4.2.2). The canonical sheaf ωC is a
dualizing sheaf for C. A related result is the Serre Duality Theorem which
states that if V is a holomorphic vector bundle on X,V ∗ its dual, Ṽ and
Ṽ ∗ the corresponding sheaves over X (of germs of holomorphic sections)
and K = Θ∗, the sheaf associated to the holomorphic cotangent bundle of
X, then we have canonical isomorphisms of C-vector spaces

H1(X, Ṽ )∗ ∼= H0(X,K ⊗ Ṽ ∗).

Of course, all the above statements can also be made in terms of C and
algebraic vector bundles over C. Note that by combining the above with
the GAGA principle (A.10.5.1), we have the following expressions for the
genus g of X (or C)

g=dimC(H0(C, ωC))=dimC(H1(C,OC))=dimC(H1(X,OX))=dimC(H0(X,K)).
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4.4.2.5 Example from Algebraic Topology: Classification of
Principal GGG-Bundles

Let H denote the category whose objects are topological spaces and whose
morphisms are homotopy-equivalence classes of continuous maps. For an
object B ∈ H, we have the contravariant representable functor

HomH(−, B) : H −→ S

where S denotes the category of sets and set-theoretic mappings.
Let G be a topological group (e.g., a Lie group). For X ∈ H, let kG(X)

denote the set of isomorphism classes of numerable principal G-bundles
over X. Since the pullbacks of a principal G-bundle by homotopic maps
are isomorphic, we get a contravariant functor

kG(−) : H −→ S.

Next, let ω be a principal G-bundle over B ∈ H. We define a natural
transformation (morphism) of functors

ΦB,ω : HomH(−, B) −→ kG(−)

as follows:

[f : X → B] ∈ HomH(X,B) 7→ [f∗ω] ∈ kG(X),

where we use [−] to denote homotopy equivalence class or isomorphism
class as relevant to the context of the usage.

It is a theorem of Milnor that kG(−) is representable. In fact, he con-
structs a topological space BG (called the universal classifying space asso-
ciated to the given G) and a principal G-bundle ωG on BG (called the
universal principal G-bundle on BG) such that the pair (BG,ΦBG,ωG) rep-
resents kG(−).

4.5 Functorial Definitions: Moduli Problems,
Fine Moduli Spaces and Coarse Moduli
Spaces

4.5.1 Moduli Problems

4.5.1.1 Definition. Let the following data be given:

1. an object X of a category C (C satisfying (4.2.2));
2. a collection of objects S, belonging to a category whose objects and

morphisms are defined intrinsically in terms of X;
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3. an equivalence relation ∼S on S;
4. a functor of families FAM of objects of S parametrized by elements

of C as in (4.2.3).

The problem of (global) moduli of S addresses the following questions:

1. to find an object M in C such that the elements of the underlying set
of M are bijective in a canonical way to the elements of the set of
equivalence classes S/∼S ;

2. to investigate the ways in which the properties of families influence
the structure of M .

Now, by Yoneda’s lemma (4.4.1.4), we know that the structure on M is
uniquely determined by the representable functor HomC(−,M). Hence we
may investigate how the properties of the functor FAM influence mor-
phisms into M . More explicitly, we may pose the following questions:

1. given Y ∈ C, V ∈ FAM(M) and φ ∈ HomC(Y,M) we have the
induced family F = φ∗V on Y . We may ask conversely if to each
family F on Y there is associated a morphism φF : Y −→ M and a
family VF on M such that φ∗F (VF ) = F ;

2. we could ask if there exists a single family V on M which affirmatively
answers (1) above for every family F on Y ;

3. still better, we could ask if there exists a single family V on M which
affirmatively answers (2) above for every Y ∈ C.

If we are able to answer (3) of the above in the affirmative, then the
families parametrized by each Y ∈ C determine all the morphisms Y −→M ,
so that any known properties of the functor FAM should possibly translate
into properties of the functor HomC(−,M) which determines M . This is
what we mean when we require that the structure of an object of C on S/∼S
should relate naturally to and reflect properties of families of objects of S
parametrized by elements of C

Since we do not want to distinguish between equivalent objects of S,
we could have posed all the above questions in terms of the functor F of
equivalence classes of families induced by the functor FAM as explained
in (4.2.5).

4.5.2 Examples of Moduli Problems

The examples of section 4.3 above, viz. (4.3.1) through (4.3.3), are all
examples of moduli problems naturally occurring in Geometry and these
may be called the fundamental nontrivial examples.

Note that in the latter two of these examples and in the first example
with M a compact projective manifold, the set S is a collection of complex
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analytic objects each of which also has a unique algebraic structure due
to the GAGA principle. Hence not only can we investigate if the elements
of S could be parametrized by a suitable complex analytic space but also
it makes sense to ask if a parametrization could be given by a scheme
over Spec (C). Of course, in the former case the families of objects of S
considered should be complex analytic families, whereas in the latter we
must consider only algebraic families.

Corresponding to each of these cases, we thus obtain respectively a
“complex analytic version” and an “algebraic version” of the problem of
moduli of elements of S modulo the equivalence ∼S . The study of the
relationships between the properties of these two moduli functors not only
draws from the deep interplay of complex analytic geometry and algebraic
geometry over an algebraically closed field of characteristic zero, but also
enriches this interplay by providing new insight.

We shall completely characterize the complex analytic version of the
moduli functor of example (4.3.2) for the case n = 1, d = 0 in section 4.6
following which, in section 4.7 we shall completely characterize both ver-
sions (complex analytic and algebraic) of the moduli functor of example
(4.3.3).

4.5.3 Fine Moduli Spaces

4.5.3.1 Definition. Given a moduli problem as in (4.5.1) above, a fine
moduli space is a pair (M,Φ) with M ∈ C, which represents (in the sense of
(4.4.1.1)) the functor F of equivalence classes of families. The pair (M,Φ)
is determined uniquely up to a unique isomorphism due to Yoneda’s lemma
(4.4.1.4).

The existence of a fine moduli space is clearly the best solution that we
can expect of a moduli problem, since in such a case all the questions posed
in (4.5.1) are answered in the affirmative. We will see this in some detail
below.

4.5.3.2 Remark. Let (M,Φ) be a fine moduli space. Then for each
T ∈ C, we have a bijection

Φ(T ) : F(T )
∼=−→ HomC(T,M)

making ∼T -equivalence classes of families of objects of S parametrized by
T to correspond uniquely to all the morphisms T −→M .

Taking for T a base-point-object P , we get a bijection of the set of
equivalence classes of objects of S with the underlying set of M . Hence
we may transport any structure (e.g., topological, differentiable, complex
analytic or algebraic) on M to S/∼S .
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In order to answer how this structure on S/∼S naturally reflects proper-
ties of families of objects of S parametrized by objects of C, just note that
for any given family V on T ∈ C, the set-theoretic map

|T | −→ S/∼S : t 7→ [Vt],

where Vt is the fiber of V over t ∈ T (see (3) of (4.2.4)) and [−] denotes
∼S-equivalence class, is actually a morphism from T to M and is in fact
the unique morphism corresponding (via Φ(T )) to the ∼T -equivalence class
of V !

Notice that the bijection

Φ(M) : F(M)
∼=−→ HomC(M,M)

defines a unique ∼M -equivalence class of families parametrized by M viz.
Φ(M)−1(1M ), where 1M is the identity morphism of M in C. This will turn
out to be a “universal family” which we formally define below.

4.5.3.3 Universal Families

4.5.3.3.1 Definition. Given a moduli problem as in (4.5.1) above, a
universal family for this problem consists of a family U = U(M), of objects
of S parametrized by an object M of C called the (associated) universal
classifying space, satisfying the following universal property: for every family
F parametrized by each T ∈ C, there exists a unique morphism φF : T −→
M such that the corresponding map due to the (contravariant!) functor F
viz.

F(φF ) : F(M) −→ F(T ),

maps the ∼M -equivalence class of U to the ∼T -equivalence class of F .
In other words, every family arises as a pullback of U by a unique

morphism into M .
The connection between the concept of a universal family and a fine

moduli space is summarized in the following.

4.5.3.3.2 Proposition. Let (M,Φ) be a fine moduli space. Then any
family representing the ∼M -equivalence class Φ(M)−1(1M ) is a universal
family and M its associated universal classifying space. Conversely, if
U(N) is a universal family parametrized by its associated universal clas-
sifying space N ∈ C, then the pair (N,Ψ) is a fine moduli space, where for
each T ∈ C, we define

Ψ(T ) : F(T ) −→ HomC(T,N), [F ] 7→ φF ,

where φF is obtained from the hypotheses on U(N).
We omit the proof since it is a formal verification.
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4.5.3.3.3 Remarks. We can deduce the following two important prop-
erties of a fine moduli space from the discussion so far. We explicitly
mention them here because their validity can be used in some instances to
prove the existence of a fine moduli space (see (4.5.5)).

1. Let U be a universal family on M . Then for each point m ∈ M ,
the fiber Um of U over m is in the same ∼S-equivalence class as
represented by m itself.

2. If two families parametrized by a fixed object of C are fiberwise ∼S-
equivalent, then they are themselves equivalent as families.

Thus we deduce that if a fine moduli space exists, then the equivalence
relation on families is completely determined by the equivalence relation ∼S
on objects of S.

Motivated by the previous proposition, we make the following alterna-
tive definition of fine moduli space.

4.5.3.3.4 Definition. Given a moduli problem as in (4.5.1), we may
define a fine moduli space to be a pair (U = U(M),M) consisting of a
universal family U on the associated universal classifying space M ∈ C. It
is clear that such a pair is uniquely determined up to a unique isomorphism
due to the previous proposition and Yoneda’s lemma (4.4.1.4).

4.5.3.3.5 Remarks. If one examines the proof of the previous propo-
sition, which consists purely of simple category-theoretic verifications, one
then sees that a contravariant functor G : A −→ S is represented by a
pair (M,Φ),M ∈ A, if and only if the element Φ(M)−1(1M ) of G(M) is a
universal element in a sense similar to (4.5.3.3.1).

This universal element corresponds to d : A −→ Ω in (4.4.2.1); also the
trace map of the Serre Duality Theorem given by the “sum of residue maps”
in (4.4.2.3) and finally, in (4.4.2.5) it corresponds to the universal principal
G-bundle ωG on the universal classifying space BG.

4.5.4 Coarse Moduli Spaces

For many important moduli problems addressed in the context of categories
such as those of complex analytic spaces, of schemes over C, etc., it is
observed that a fine moduli space does not exist except under additional
restrictions.

It is clear that, for those moduli problems where there exist families
exhibiting the jump phenomenon (see (2.8.2)), a fine moduli space—or even
a coarse moduli space more generally—cannot exist even as a non-Haudorff
topological space (or, in the context of the category of schemes, cannot
exist even as a non-separated scheme.)



4.5. Moduli Problems, Fine and Coarse Moduli Spaces 153

We will explain later (in (4.8.2)) how one can construct “global obstruc-
tions” to the existence of a fine moduli space, when some of the objects to
be parametrized have nontrivial automorphisms. Further, in many such
cases, it can be shown that we cannot even obtain a tautological family — a
notion weaker than that of a universal family — so that there cannot exist
a universal family.

Another way to see why some moduli problems don’t have a fine moduli
space is by finding families that have all their fibers mutually equivalent,
but which as families are nontrivial. This situation occurs, for example,
in the problem of moduli of curves — see (4.8.2). But, as we saw in the
previous subsection, the existence of a fine moduli space implies that the
equivalence relation on families is completely determined by the equivalence
relation on the objects to be parametrized.

However, it happens that in many moduli problems, we may obtain
a “coarse moduli space” which still retains some of the good properties
of a fine moduli space. We define this notion below. It must be noted
that we may, in some situations, first prove that a moduli problem has a
coarse moduli space and then construct a universal family to show that it
is actually a fine moduli space. This is discussed in the next subsection and
is exploited in (1) of (4.6.7.3).

4.5.4.1 Definition. Given a moduli problem as in (4.5.1), a coarse mod-
uli space is a pair (M,Φ) where M ∈ C and

Φ : F −→ HomC(−,M)

is a natural transformation (i.e., a morphism of functors) such that the
following hold:

1. for a base-point-object P ∈ C, the mapping of sets Φ(P ) is bijective;
2. for any object N ∈ C and any natural transformation

Ψ : F −→ HomC(−, N),

there exists a unique natural transformation

Ω : HomC(−,M) −→ HomC(−, N)

such that Ψ = Ω ◦ Φ.

4.5.4.2 Remarks.

1. It trivially follows from the above definition that a fine moduli space
is always a coarse moduli space.
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2. Condition (1) of the above definition implies that the set S/∼S of
equivalence classes of objects to be classified is identified by Φ(P )
with the underlying set of M . This naturally defines on S/∼S a
structure making it an object of C (viz. M).

3. Let us discuss condition (2) of the above definition. Since Φ(P ) is a
bijection, we have that Ω(P ) = Ψ(P ) ◦ Φ(P )−1. By Yoneda’s lemma
(4.4.1.4), Ω corresponds uniquely to the morphism (Ω(M))(1M ) ∈
HomC(M,N). Further, the underlying map of sets for this morphism
is precisely Ω(P ). Thus we can say that Ω(P ) actually has the struc-
ture of a morphism in C. This observation may be used to give an
alternative definition of coarse moduli space (as we will see in propo-
sition (4.5.4.5)). To discuss a more general observation, we first state
the following.

4.5.4.3 Definition. Let P be a base-point-object of C. Given a bijective
map of sets

α : S/∼S= F(P )
∼=−→ HomC(P,M) = |M |,

and given a family F parametrized by T ∈ C we define the set-theoretic
map

νF : |T | = HomC(P, T ) −→ HomC(P,M) = |M |, h 7→ α([h∗F ]),

where we note that h∗F is the family on P induced by h, hence an object
of S; [h∗F ] denotes its equivalence class and hence is an element of F(P ) =
S/∼S .

The connection of the above map νF to a coarse moduli space is explained
in the following.

4.5.4.4 Proposition. Let (M,Φ) be a coarse moduli space. Take for α
in the above definition, the bijection given by Φ(P ). Then:

1. for any T ∈ C and any family F parametrized by T , the set-theoretic
mapping νF has the structure of a morphism of C i.e. it is the under-
lying map of the morphism (Φ(T ))([F ]);

2. for any T ∈ C and any natural transformation

Ψ : F −→ HomC(−, T ),

the map of sets Ψ(P ) ◦ α−1 : |M | −→ |T | has the structure of the
morphism Ω(P ) in C.

The proof is a straightforward formal verification and we omit it.
The above proposition suggests that the pair (M,α) may characterize

(M,Φ). We have the following result in this direction.
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4.5.4.5 Proposition. Let M ∈ C be an object alongwith a bijective map
of sets

α : S/∼S= F(P )
∼=−→ HomC(P,M) = |M |

such that the following hold:

1. for any T ∈ C and any family F parametrized by T, νF has the struc-
ture of a morphism ν̃F : T −→M in C;

2. for any T ∈ C and any natural transformation

Ψ : F −→ HomC(−, T ),

the map of sets Ψ(P ) ◦ α−1 : |M | −→ |T | has the structure of a
morphism Ω̃P : M −→ T in C.

Then we have the following:

(i) the association
Φ : F −→ HomC(−,M)

defined for each T ∈ C by

Φ(T ) : F(T ) −→ HomC(T,M), [F ] 7→ ν̃F ,

where ν̃F is given by (1) above, is a natural transformation;

(ii) (M,Φ) is a coarse moduli space and α = Φ(P ).

The proof is a formal verification and so we omit it.
Motivated by the above proposition, we state the following.

4.5.4.6 Remarks.

1. We may define a coarse moduli space to be the pair (M,α = Φ(P ))
equivalently instead of the pair (M,Φ).

2. As a result of the above proposition, it is easy to check that a coarse
moduli space (M,Φ) is uniquely defined up to a unique isomorphism,
provided it exists. For, let (M,Φ) and (M ′,Φ′) be two coarse moduli
spaces and let (M,α) and (M ′, α′) be the corresponding pairs. By
the above proposition, we see that the set-theoretic map α′ ◦ α−1 :
|M | −→ |M ′| has the structure of a morphism f from M to M ′ and
it is easy to check by symmetry that this morphism is actually an
isomorphism. Further, this is the unique isomorphism that satisfies
|f | ◦ α = α′. In the next two sections, we give an example of a fine
moduli space, and an example of a moduli problem that has no fine
moduli space but does have a coarse moduli space, respectively.

Meanwhile, we note the following clear distinction between a fine mod-
uli space and a coarse moduli space with respect to the equivalence
relation on families.
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4.5.4.7 Remark. It follows from the above discussion that the existence
of a coarse moduli space does not imply any specific restriction on the
choice of equivalence relation on families. However in contrast, as noted in
(4.5.3.3.3), the equivalence relation on families is determined by the equiv-
alence relation on S if a fine moduli space were to exist.

4.5.5 When is a Coarse Moduli Space a Fine Moduli
Space?

We have the following proposition that answers the above question. At this
point, also recall (4.5.3.3.3).

4.5.5.1 Proposition. Let (M,Φ) be a coarse moduli space. Then (M,Φ)
is a fine moduli space if and only if the following conditions hold:

1. there exists a family U parametrized by M such that for each point
m ∈ |M |, the fiber of U over m viz. Um has ∼S-equivalence class
Φ(P )−1(m);

2. the equivalence relation ∼S completely determines the equivalence rela-
tion on families, in the sense that if two families parametrized by the
same base are fiberwise equivalent, then they are themselves equivalent
(as families).

Proof. It is easy to see that condition (1) is the same as requiring that Φ(T )
is surjective for each T ∈ C and that condition (2) is the same as requiring
that Φ(T ) is injective for each T ∈ C QED

In the next section, we discuss an example of a fine moduli space.

4.6 Example of a Fine Moduli Space: Holo-
morphic Line Bundles and the Jacobian

We discuss in this section the moduli problem of (holomorphic) line bundles
on a compact Riemann surface which is a special case of (4.3.2).

We consider only line bundles of a certain kind viz. those of “degree
zero”. More generally, we will need the notion of the “degree” of any
holomorphic vector bundle on a compact Riemann surface. The following
preliminaries are toward the definition and properties of this notion. After
these preliminaries, we give the precise formulation in the fourth subsection.

4.6.1 The Picard Group of a Ringed Space

Let X be a ringed space i.e., a pair (X,OX) as in (A.2). Let F be a sheaf
of OX -modules as defined in (A.3). We say F is locally free if there exists
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an open cover {Ui} of X such that for each index i, the restriction F|Ui
is isomorphic, as a sheaf of OX |Ui-modules, to a direct sum of copies of
OX |Ui :

F|Ui ∼= ⊕α∈SiOα, Oα := OX |Ui (α ∈ Si).
We define the rank of F on Ui to be the cardinality of the set Si.

If the underlying topological space of X is connected, then the rank of a
locally free sheaf is the same on each open subset of X and is hence called
the rank of the locally free sheaf. A locally free sheaf of rank one is also
called a invertible sheaf.

We have the following result whose proof is straightforward.

4.6.1.1 Proposition. Let X be a ringed space. If L,M are invertible
sheaves on X, then so is L ⊗M := L ⊗OX M (the sheaf associated to the
presheaf on X given by U 7→ L(U)⊗OX(U)M(U), U an open subset of X).
Define L−1 = HOMOX (L,OX) (the sheaf associated to the presheaf on X
given by U 7→ HomOX |U (L|U ,OX |U ), U an open subset of X). Then we
have that

L−1 ⊗ L ∼= HOMOX (L,L) ∼= OX .
Motivated by the above proposition, we state the following.

4.6.1.2 Definition. Let X be a ringed space. Let Pic(X,OX) or simply
Pic(X) denote the set of isomorphism classes of invertible sheaves on X.
Then under the operation ⊗, Pic(X) is a group, called the Picard Group of
X.

Using Čech cohomology (A.9), one easily checks the following.

4.6.1.3 Theorem. Let X be a ringed space. Then Pic(X) ∼= H1(X,O∗X)
where O∗X denotes the sheaf of abelian groups on X whose sections over an
open subset U of X are the units in the ring of sections of OX over U , with
multiplication as the (abelian) group operation.

In the next subsection, we describe the notion of “Chern class” of a line
bundle on a compact Riemann surface.

4.6.2 The Chern Class of a Line Bundle

Let X be a compact Riemann surface. Regard X as a ringed space i.e., the
pair (X, CX) where CX is the sheaf of germs of continuous complex-valued
functions on X. Then we can prove the following.

4.6.2.1 Theorem. Given an element l ∈ Pic(X, CX) ∼= H1(X, C∗X) rep-
resented with respect to an open covering {Ui} of X by the non-vanishing
continuous complex-valued functions gij on Ui ∩ Uj, associate the isomor-
phism class of the topological line bundle (topological vector bundle of rank 1)
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on X defined by taking {gij} as the transition functions relative to the cov-
ering {Ui}. Then this association is an isomorphism.

Next we regard X as the ringed space (X,OX) where OX is as usual the
sheaf of germs of holomorphic functions on X. We then have the following
analogue of the previous theorem.

4.6.2.2 Theorem. Given an element l ∈ Pic(X,OX) ∼= H1(X,O∗X)
represented with respect to an open covering {Ui} of X by the non-vanishing
holomorphic functions gij on Ui ∩ Uj, associate the isomorphism class of
the holomorphic line bundle (holomorphic vector bundle of rank 1) on X
defined by taking {gij} as the transition functions relative to the covering
{Ui}. Then this association is an isomorphism.

Next we define Chern classes.

4.6.2.3 Definition. Starting with the morphism of short exact sequences
of sheaves on X given by

0 −−−−→ Z −−−−→ OX −−−−→ O∗X −−−−→ 0y y y
0 −−−−→ Z −−−−→ CX −−−−→ C∗X −−−−→ 0

(where Z represents the constant sheaf on X, whose stalk at each point of X
is simply Z), where the vertical arrows represent the obvious natural maps,
the injections are the canonical inclusions and where the surjections are
given by the exponential maps f 7→ e2πif (i =

√
−1), we get the following

exact commutative diagram from the corresponding morphism of long exact
sequences in cohomology (this follows from the fact that sheaf cohomology
is a delta functor—see (A.8)):

H1(X,O∗X) b−−−−→ H2(X,Z)y y(=)

H1(X, C∗X) b′−−−−→ H2(X,Z)

It can be checked that

H1(X, CX) = H2(X, CX) = H2(X,OX) = 0.

Thus b is a surjection and b′ is an isomorphism. Let L be a topological
(respectively holomorphic) line bundle on X and let it define an element of
H1(X, C∗X) (respectively an element of H1(X,O∗X)) which we denote by [L]
(see (4.6.2.1) and (4.6.2.2)). Define for this line bundle its (first) topological
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Chern class (respectively (first) holomorphic Chern class) to be the element
c′1(L) := −b′([L]) ∈ H2(X,Z) (respectively to be the element c1(L) :=
−b([L]) ∈ H2(X,Z)). Thus we have the following results.

4.6.2.4 Theorem.

1. Every topological line bundle on a compact Riemann surface can be
endowed with the structure of a holomorphic line bundle.

2. Every topological line bundle on a compact Riemann surface is char-
acterized (up to isomorphism) by its topological Chern class.

3. The underlying topological line bundle of a holomorphic line bundle
on a compact Riemann surface is characterized (up to isomorphism)
by its holomorphic Chern class.

In the next subsection, we define the “degree” of a holomorphic vector
bundle on a compact Riemann surface.

4.6.3 The Degree of a Vector Bundle

Let Ar denote the sheaf of germs of C∞-differential r-forms on the under-
lying C∞-manifold of a compact Riemann surface X for each r, r = 0, 1, 2.
Then we have the following exact sequence of sheaves on X:

0 −→ C −→ A0 d0−→A1 d1−→A2 −→ 0

where di : Ai −→ Ai+1 is the exterior differential operator on i-forms
for i = 0, 1. Here C denotes the constant sheaf on X (with stalk C at each
point of X) which is naturally a subsheaf of the sheaf A0 of complex-valued
C∞-functions on X.

This exact sequence is called a resolution of the sheaf C and further has
the following property: the cohomology groups Hi(X,C) can be calculated
by applying the global-sections functor Γ(X,−) (see (A.8)) to the sequence
given by

0 −→ A0 d0−→A1 d1−→A2 −→ 0,

and then by computing the cohomology of the resulting sequence. Thus we
get the following de Rham isomorphism:

H2(X,C) = H0(X, d1A1)/d1H0(X,A1).

Now given υ ∈ H2(X,C), choose (by the above isomorphism) a representa-
tive global 2-form ω ∈ H0(X, d1A1). Then the map

I ′ : H2(X,C) −→ C, υ 7→
∫
X

ω
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(where the integration is with respect to the canonical orientation on the
underlying C∞-manifold of X due to its complex manifold structure) is
well-defined due to Stokes’ Theorem, since

ϕ ∈ d1H0(X,A1) =⇒
∫
X

ϕ = 0.

Recall that we have a canonical (actually injective) map H2(X,Z) −→
H2(X,C) corresponding to the natural inclusion of constant sheaves Z ↪→ C
on X. Let the composition of this map with I ′ be denoted I : H2(X,Z) −→
C. We are now ready to state the following.

4.6.3.1 Definition. Let L be a holomorphic line bundle on the compact
Riemann surface X and denote its isomorphism class by [L] ∈ H1(X,O∗X).
We define the degree of L by the formula

deg(L) := I(c1(L))

where c1(L) is the Chern class of L as defined in (4.6.2.3) above.
We then have the following result which characterizes line bundles of

degree zero.

4.6.3.2 Theorem.

1. I maps H2(X,Z) onto Z ⊂ C.
2. A holomorphic line bundle L is of degree zero if and only if its first

Chern class c1(L) = 0.

We next generalize the above notion of degree to holomorphic vec-
tor bundles of arbitrary rank—this will enable us to state the famous
“Riemann-Roch” theorem, which we have already used in computations
in (3.7.1) and (3.8.2).

4.6.3.3 Definition. Let V be a holomorphic vector bundle of rank n on
the compact Riemann surface X. Define the determinant bundle of V to be
the n-th exterior power bundle of V viz. Λn(V ) and denote it by Det (V ).
This bundle is just the holomorphic line bundle on X with transition func-
tions given by the determinants of the matrices representing the transition
functions of V in GL(n,C) relative to a fixed open cover for X. We then
define the degree of the vector bundle V by the formula

deg(V ) := deg(Det(V )).

This notion of degree has the following properties.
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4.6.3.4 Lemma.

1. If we have a short exact sequence of vector bundles on X given by

0 −→ V ′ −→ V −→ V ′′ −→ 0,

then deg(V ) = deg(V ′) + deg(V ′′).
2. If V ∗ denotes the dual bundle of V , then deg(V ∗) = −(deg(V )).
3. If V1 and V2 are vector bundles on X, then we have

deg(V1 ⊗ V2) = rank(V1) · deg(V2) + rank(V2) · deg(V1).

We now state the following nontrivial theorem, which is of fundamen-
tal use in numerical calculations in the Theory of Moduli. The theorem
computes the degree of a vector bundle in terms of its rank, the Euler
characteristic of the sheaf associated to this vector bundle and the Euler
characteristic of the structure sheaf of X.

4.6.3.5 Riemann-Roch Theorem for Vector Bundles. Let V be a
holomorphic vector bundle of rank n on a compact Riemann surface X of
genus g. Let Ṽ denote the (coherent analytic locally free rank n) sheaf of
germs of holomorphic sections associated to V . Then the degree of V is
given by the formula

deg(V ) = dimC(H0(X, Ṽ ))− dimC(H1(X, Ṽ )) + n(g − 1).

4.6.3.6 Remark. Let Θ denote the sheaf of germs of holomorphic vector
fields on X and let W ∗ denote the dual of a holomorphic vector bundle W
on X. Since we have

H1(X, Ṽ )∗ ∼= H0(X,K ⊗ Ṽ ∗)

by the Serre Duality Theorem stated in (4.4.2.4), we can rewrite the Riemann-
Roch formula as

deg(V ) = dimC(H0(X, Ṽ ))− dimC(H0(X,Θ∗ ⊗ Ṽ ∗)) + n(g − 1).

In the next subsection, we formulate the problem of moduli for line bundles
of degree zero on a compact Riemann surface.

4.6.4 The Moduli Problem for Degree Zero Line
Bundles

Let X be a compact Riemann surface. We recall the moduli problem
described in (4.3.2) for the particular case n = 1, d = 0. The corresponding
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functor F of equivalence classes of families will be denoted henceforth by
PIC0

X : C −→ S with notations as in (4.3.2).
Let X be the algebraic curve associated to X (i.e., XHOL = X in the

notation of (A.10.1)) and recall that every holomorphic line bundle on X
has a unique structure of algebraic line bundle (which is a coherent locally
free sheaf of rank 1) on X from (A.10.5.1).

In the above formulation of PIC0
X , if we replace X by X and take for

C the category of reduced and separated schemes over C, then we get a
contravariant moduli functor which we denote by PIC0

X : C −→ S.

4.6.4.1 Remarks.

1. Note that both functors PIC0
X and PIC0

X can be regarded as con-
travariant functors into the category of abelian groups and group
homomorphisms.

2. Let us denote by P the category of projective reduced separated
schemes over C and by PHOL the category of reduced Hausdorff com-
plex analytic spaces which can be embedded into some projective
space PnC over C so that there is an equivalence of categories between
P and PHOL by the GAGA principle (A.10.5.1). Then the restric-
tions of the functors PIC0

X and PIC0
X to PHOL and P respectively

can be identified.

4.6.5 Construction of the Jacobian

In this subsection, we construct using cohomology theory, the “Jacobian”
of a compact Riemann surface which will later turn out to be a universal
classifying fine moduli space for families of holomorphic line bundles of
degree zero on the compact Riemann surface.

Let X be a compact Riemann surface of genus g. Recall that g =
dimC(H1(X,OX)) = dimC(H0(X,Θ∗)).

It can be shown that if R denotes the constant sheaf of abelian groups
with stalk (R,+) at each point of X, then we have an isomorphism of the
R-vector space H1(X,R) with the underlying R-vector space of the complex
vector space H1(X,OX).

Next, the short exact sequence of sheaves on X given by

0 −→ Z −→ OX −→ O∗X −→ 0

described in (4.6.2.3) gives rise to a long exact sequence of cohomology
groups (see (A.8)) from which we can extract the following short exact
sequence of abelian groups

0 −→ H1(X,Z) −→ H1(X,OX) −→ PIC0
X(P ) −→ 0,
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where P denotes the degenerate one-point complex manifold and where
we have used the facts that the canonical map H1(X,Z) −→ H1(X,OX)
is injective and that PIC0

X(P ) is exactly the set, of isomorphism classes
of holomorphic line bundles of degree zero on X, which is considered as
an additive subgroup of the abelian group Pic(X,OX) ∼= H1(X,O∗X) as in
(4.6.1).

Now H1(X,Z) is a lattice in the 2g-dimensional R-vector space H1(X,R).
But, as we have stated above, this vector space is naturally isomorphic to
the underlying real vector space of the complex vector space H1(X,OX),
so that we may consider H1(X,Z) as a lattice in the complex vector space
H1(X,OX). The quotient of H1(X,OX) by this lattice is a complex g-
dimensional torus as explained in (1.5.2.2.1). But the above short exact
sequence implies that, as abelian groups, we have the isomorphism
H1(X,OX)/H1(X,Z) ∼= PIC0

X(P ). Therefore the abstract group PIC0
X(P )

can be given the structure of a complex g-dimensional torus such that the
abelian group structure is induced from a complex Lie group structure. The
resulting complex structure on PIC0

X(P ) is denoted by Pic0(X).
It can be shown that the period matrix of the complex torus Pic0(X)

is a Riemann matrix and hence it is algebraizable by (2.7.1.1). The asso-
ciated algebraic scheme over C has underlying set of closed points given
by PIC0

X(P ) and is denoted by Pic0(X ) where X is the algebraic scheme
associated to X.

In view of the above construction, we state the following.

4.6.5.1 Definition. We call Pic0(X) as the Jacobian of the compact
Riemann surface X and denote it simply as J or J(X). Similarly, we call
Pic0(X ) as the Jacobian of the curve X and denote it simply as J or J (X ).
The scheme J is called an abelian variety because it has a natural structure
of commutative group scheme over C (the group axioms can be defined
and verified entirely in terms of morphisms of schemes) and is an integral
separated nonsingular scheme of finite type over C which is also proper over
Spec (C).

4.6.5.2 Remark. When X is an elliptic curve, it can be shown that
J(X) may be identified with X and that J (X ) may be identified with X .

4.6.6 Local Moduli for Degree Zero Line bundles and
the Poincaré Family

Using the Theories of Cohomology, Descent of Principal Bundles and Cov-
ering Spaces, one may construct the Poincaré Bundle P (a holomorphic line
bundle) over X × J(X) for a compact Riemann surface X, where J(X)
is the Jacobian of X as constructed in the previous subsection. We will
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later show that P is a universal family of holomorphic line bundles of
degree zero on X parametrized by J(X). For the construction of P, see
M.S.Narasimhan’s article [18]. We state the following results which are
obtained as by-products of this construction.

4.6.6.1 Theorem. Let X be a compact Riemann surface and J := J(X)
be its Jacobian. Then there exists a holomorphic line bundle P = (P, X ×
J, π) on the product complex manifold X × J called the Poincaré bundle
which has the following properties:

1. for each holomorphic line bundle L on X of degree zero, if jL ∈ |J | is
the corresponding point on J , then the fiber PjL of the family P over
jL (i.e., the pullback of P to X via the composition

X ∼= X × P
1X×φjL
↪→ X × J,

where P denotes the degenerate one-point complex manifold and the
point jL of J is canonically identified with the morphism φjL : P −→
J mapping onto jL) as holomorphic line bundle on X is of degree zero
and is isomorphic to L itself—in other words, the isomorphism class
of PjL is jL itself;

2. for each point j ∈ J , the infinitesimal Kodaira-Spencer map for the
family P of holomorphic line bundles on X parametrized by J

ηj : TjJ −→ H1(X, END(Pj))

is an isomorphism.

4.6.6.2 Remarks.

1. Due to the See-Saw theorem (4.3.2.1), we see that P is uniquely deter-
mined, up to tensor product, with the pullback to X × J of some
element of Pic(J).

We shall fix a Poincaré bundle P for the rest of this section.
2. For a holomorphic vector bundle V on the compact Riemann surface
X we have the canonical isomorphism

END(V ) ∼= Ṽ ⊗ V ∗,

where END denotes the sheaf (of germs of holomorphic sections) asso-
ciated to the holomorphic vector bundle of endomorphisms of V , V ∗

denotes the dual bundle of V and W̃ denotes the sheaf associated
to a holomorphic vector bundle W on X. In particular, if L is a
holomorphic line bundle on X, we have the canonical isomorphisms

END(L) ∼= L̃⊗ L∗ ∼= L̃⊗ L̃∗ ∼= L̃⊗ (L̃)−1 ∼= OX ,
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since for L̃ ∈ (Pic(X),⊗) the inverse is precisely L̃∗ (see (4.6.1.1)).
Therefore we get the identification

H1(X, END(Pj))
∼=−→ H1(X,OX).

Now, TjJ and H1(X,OX) are both complex vector spaces of the same
dimension g. By explicit calculations we may check that ηj is an
injective map and hence conclude that this map is an isomorphism.

4.6.6.3 Corollary (Local Moduli for Degree Zero Line Bundles).
For each holomorphic line bundle L of degree zero on a compact Riemann
surface X, the germ of J = J(X) at the point jL corresponding to L is the
local moduli space for L and is smooth of dimension (equal to the dimension
of J which is) g where g is the genus of X. The Poincaré bundle P is a
complete effectively and injectively parametrized family on J .

Completeness of P at each point of J is proved by applying the analogue
of the Theorem of Completeness (3.4.2.3), for families of holomorphic vector
bundles, to the family P in view of (2) of the previous theorem.

Effectivity of P follows from the fact that the Kodaira-Spencer map is
injective at each point of J as guaranteed by (2) of the previous theorem.

J is smooth by its very construction (see the previous subsection) and
is of complex dimension g as explained there.

Finally we note that the family P is injectively parametrized because of
(1) of the previous theorem. Recall that these results were discussed more
generally in (3.8.2).

4.6.7 Fine Moduli for Line Bundles

Recall the contravariant functor of equivalence classes of families of holo-
morphic line bundles of degree zero on a compact Riemann surface X from
(4.6.4) denoted by PIC0

X : C −→ S. We continue to use the notations of
(4.6.4).

Recall that |J | = H1(X,OX)/H1(X,Z) as abelian groups so that we
have a natural bijection

α : PIC0
X(P )

∼=−→ HomC(P, J) = |J |

because of the short exact sequence

0 −→ H1(X,Z) −→ H1(X,OX) −→ PIC0
X(P ) −→ 0

as noted already in (4.6.5). Our first result is the following.
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4.6.7.1 Proposition. For any T ∈ C and any family F of holomorphic
line bundles of degree zero on X parametrized by T , the set-theoretic map

νF : |T | = HomC(P, T ) −→ HomC(P, J) = |J |, h 7→ α([h∗F ]),

has the structure of a morphism ν̃F : T −→ J in C.

Proof. For t ∈ |T | let Ft be the fiber of F over t (which is a holomorphic
line bundle of degree zero on X) and let jt be its isomorphism class in
|J |. Since the Poincaré bundle P is a complete family as indicated in the
previous subsection, there exists an open neighborhood Ut of t in T and a
morphism in C:

ft : Ut −→ J, ft(t) = jt,

such that the pullback of P by ft is equivalent over Ut to the restriction
of F to Ut : f∗t (P)∼Ut F |Ut from which we get the following implications
(using the See-Saw theorem (4.3.2.1))

f∗t (P) ∼= F |Ut ⊗ p∗Ut(L) on X × Ut ⇒ Pft(t′) ∼= Ft′ for each t′ ∈ Ut,

where L is some holomorphic line bundle on Ut.
The map νF (introduced in (4.5.4.3)) in the present notation is simply

given by
νF : |T | −→ |J |, t 7→ jt.

Let t′ ∈ Ut and ft(t′) = j′. Then we get

Pj′ ∼= Ft′ ⇒ [Pj′ ] = jt′ ⇒ j′ = jt′

by the property (1) of P mentioned in theorem (4.6.6.1). Thus we have
ft(t′) = jt′ . Hence the underlying set-theoretic map of ft coincides with
the restriction of the map νF to Ut. But t being arbitrary, we see that the
morphisms ft patch up to give a unique global morphism fF : T −→ J whose
underlying set-theoretic map is simply νF so that we can take ν̃F = fF .

Note that the objects of C are reduced and Hausdorff, which guarantees
that fF is the unique morphism whose underlying set-theoretic map is νF
QED

Next we define the association

Φ : PIC0
X(−) −→ HomC(−, J)

for each object T ∈ C by the set-theoretic map

Φ(T ) : PIC0
X(T ) −→ HomC(T, J)
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which sends the ∼T -equivalence class [F ] of a family F parametrized by T
to ν̃F :

Φ(T ) : [F ] 7→ ν̃F .

This map is well-defined since ν̃F depends only on the equivalence class [F ]
of F .

It is routine to check that the above association Φ is a contravariant
functor.

For g ∈ HomC(T, J), if we set F := g∗(P), then by the above proof we
have that ν̃F = g. Therefore we infer that Φ is surjective.

Next we prove that Φ is injective as well. To this end, let F1 and F2 be
two families parametrized by T ∈ C such that

ν̃F1 = ν̃F2 ⇔ Φ(T )([F1]) = Φ(T )([F2]).

Therefore, looking at the underlying set-theoretic maps, we get νF1 =
|ν̃F1 | = |ν̃F2 | = νF2 . But for t ∈ |T |, we have by the very definitions
that

νF1(t) = [(F1)t] and νF2(t) = [(F2)t].

This implies that for each t we must have (F1)t ∼= (F2)t. Remembering that
Fi are by definition holomorphic line bundles on X × T and applying the
See-Saw theorem (4.3.2.1), we get F1 ∼T F2 ⇒ [F1] = [F2] so that Φ(T ) is
indeed injective as claimed for each T ∈ C.

To sum up all that we have proved in the above discussion, we state the
following.

4.6.7.2 Theorem (Fine Moduli for Line Bundles). Let X be a com-
pact Riemann surface, J = J(X) its Jacobian and P be a fixed Poincaré
bundle on X × J . Then the contravariant global moduli functor PIC0

X :
C −→ S is representable. The representing pair may be taken to be (J,Φ),
where Φ is as defined above. Equivalently, the representing pair may also
be taken to be (J,P). Thus J is a fine moduli space for holomorphic line
bundles of degree zero on X and P is the universal family for families of
such line bundles.

Before we end this section, we note the following.

4.6.7.3 Remarks.

1. We could have proved the above theorem in the following way also.
First of all, one verifies that the hypotheses of (4.5.4.5) are satis-
fied. Hence (J,Φ) is a coarse moduli space for the moduli problem
associated to PIC0

X . Next, the hypothesis (1) of (4.5.5.1) is satisfied
by U := P due to assertion (1) of theorem (4.6.6.1). Finally, the
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hypothesis (2) of (4.5.5.1) is satisfied because of the See-Saw theo-
rem (4.3.2.1). Hence one concludes from (4.5.5.1) that (J,Φ) is a fine
moduli space with universal family P.

2. The functor PIC0
X is also representable and the representing scheme

turns out to be Pic0(X ) = J = J (X ) (here X is the scheme asso-
ciated to X and Pic0(X ) is the scheme associated to J = J(X) =
Pic0(X) with notations as in (4.6.5.1)). Just as we have obtained
the global fine moduli space J(X) by glueing local moduli spaces,
the scheme J (X ) can also be similarly obtained. The existence of an
algebraic local moduli space for any algebraic line bundle on a complete
scheme is guaranteed by Schlessinger’s Theorem [20], and that such
local moduli spaces indeed glue to give the fine moduli scheme J (X )
can be deduced by applying Artin’s results [30].

3. Algebraic Local Moduli Space for a Line Bundle of Degree
Zero. Whenever an algebraic moduli functor is representable, such as
PIC0

X , then the algebraic local moduli space of an element of PIC0
X (P )

(where P = Spec (C)) turns out to be the affine scheme given by the
completion of the local ring at the point of the representing classifying
space. Hence, for j ∈ PIC0

X (P ) = |J |, the algebraic local moduli
space is Spec (ÔJ ,j) (where R̂ denotes the completion of a local ring
R). Now the natural question is: what is the relationship between the
algebraic local moduli space and the complex analytic local moduli
space? The answer to this is: ÔJ ,j ∼= ÔJ,jHOL .

In the next section, we discuss an example of a moduli problem which
has a coarse moduli space for its solution but for which there cannot exist
a fine moduli space.

4.7 The Necessity of the Concept of a Coarse
Moduli Space: The Example of Elliptic
Curves

We recall the problem of moduli of elliptic curves described in (4.3.3). We
denote respectively by MHOL

1 and MALG
1 the complex analytic and algebraic

moduli functors of equivalence classes of families of elliptic curves. More
precisely, MHOL

1 : H −→ S is the contravariant functor, from the category
H of reduced Hausdorff complex analytic spaces, to the category S of sets,
defined for each T ∈ H by

MHOL
1 (T )
={complex analytic families of elliptic curves parametrized by T}/∼T ,
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where ∼T denotes complex analytic equivalence of families parametrized
by T and MALG

1 : A −→ S is the contravariant functor, from the category
A of reduced separated schemes over Spec (C), to the category S, defined
for each T ∈ A by

MALG
1 (T ) = {algebraic families of elliptic curves parametrized by T}/ ∼T ,

where ∼T denotes algebraic equivalence of families parametrized by T .
We shall construct a global coarse moduli space, for the problem of

moduli of elliptic curves, by glueing local moduli spaces. This method is
similar to that of the previous section, where we constructed a global fine
moduli space for the problem of moduli of degree zero line bundles on a
compact Riemann surface, by glueing local moduli spaces. The “glueing of
local moduli spaces” is implicitly achieved when one uses the existence of
local moduli spaces to prove that the corresponding moduli functor has a
fine (or a coarse) moduli space for its solution.

To begin with, in the following, we recall the existence of local moduli
for elliptic curves (already established in generality — for complex tori of
arbitrary dimension — in (3.4.4)).

4.7.1 Local Moduli for Elliptic Curves

Consider the natural complex analytic family (M, U, φ) of elliptic curves
(complex tori of complex dimension 1) parametrized by the upper half-
plane U described in (2.4.2). For each τ ∈ U , the fiber of this family
Mτ := φ−1(τ) is an elliptic curve T (τ) = C/L(τ) where L = L(τ) =
{n+mτ ; n,m ∈ Z} is the associated lattice.

At each point τ ∈ U , the infinitesimal Kodaira-Spencer map for this
family

ρτ : TτU −→ H1(Mτ ,ΘMτ
),

is a nonzero map of complex vector spaces of dimension 1 and therefore it
is an isomorphism. Hence using the Theorem of Completeness (3.4.2.3) we
obtain the following.

4.7.1.1 Theorem (Local Moduli for Elliptic Curves). The natural
complex analytic family (M, U, φ) of elliptic curves parametrized by the
upper half-plane U is a complete effectively parametrized family. Further,
for each elliptic curve E, if we choose τ ∈ U such that Mτ := φ−1(τ) is
isomorphic to E, then the germ of U at τ is the local moduli space of T and
this germ is smooth and is of complex dimension 1.

We next define the “elliptic modular function” associated to a family of
elliptic curves.
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4.7.2 The Elliptic Modular Function JFJFJF Associated to
a Family FFF

Recall from (1.5.2.6.3) that for (M, U, φ) = M ∈ MHOL
1 (U), we have the

automorphic functions λ : U −→ C and J : U −→ C. While λ is invariant
only under a proper subgroup of PSL(2,Z), recall that the elliptic modular
function J is PSL(2,Z)-invariant. Recall further that both λ and J are
holomorphic, that λ never assumes the values {0, 1} and that J is related
to λ by the formula

J(τ) =
4
27

(1− λ(τ) + (λ(τ))2)3

(λ(τ))2(1− λ(τ))2

for each τ ∈ U . Finally recall from (1.5.3.1) that since

Mτ
∼=Mτ ′ ⇔ J(τ) = J(τ ′),

we get a biholomorphic map J̃ from the Riemann surface U/PSL(2,Z) to
C. Since the underlying set of this Riemann surface is naturally identi-
fied with the set of conformal equivalence classes of elliptic curves, for any
elliptic curve E, the quantity J̃([E]) is a unique well-defined complex num-
ber called the j-invariant of E which completely characterizes the conformal
equivalence class [E] of E.

We will henceforth denote J by JM and λ by λM. The reason for this
notation will become clear from the following discussion.

Consider an arbitrary family F ∈MHOL
1 (T ), written more explicitly as

p : F −→ T , where T ∈ H. We define the set-theoretic map

JF : |T | −→ |C|, JF (t) = J̃([Ft]) = J̃([p−1(t)]),

where for an elliptic curve E, [E] denotes its isomorphism class.
Then our fundamental result about JF is the following.

4.7.2.1 Theorem. The set-theoretic map JF defined above has the struc-
ture of a morphism in H i.e., it has a unique structure of a global holomor-
phic function on T .

Notation. We will also denote (by abuse of notation) the corresponding
holomorphic function by JF .

Proof. Fix t ∈ T and consider the elliptic curve Ft. Then there exists τ ∈ U
such that Mτ

∼= Ft where M ∈ MHOL
1 (U) is the natural family of elliptic

curves parametrized by the upper half-plane U . By theorem (4.7.1.1), M
is a complete complex analytic family of elliptic curves, hence there exists
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a neighborhood Ut of t ∈ T , and a (not necessarily unique) morphism
f : Ut −→ U (in H) with f(t) = τ , such that the pullback family f∗M is
equivalent to the restriction of F to Ut:

f∗M ∼Ut F |Ut .

Thus, for each s ∈ Ut, Fs is biholomorphic to the elliptic curve Mf(s).
Hence we have for s ∈ Ut that (JF |Ut)(s) = (JM ◦f)(s) which implies that
JF restricted to Ut is a holomorphic function. Since our choice of t ∈ T
was arbitrary, JF is a global holomorphic function on T QED

4.7.2.2 Remark. Continuing with the notations of the above proof, we
see that we can locally define a holomorphic function

λ(Ut,f) : Ut −→ C, s 7→ (λM ◦ f)(s).

Since f is not unique, the above definition depends on f and hence we do not
get a global holomorphic function on T which generalizes the holomorphic
function λM : U −→ C, unlike the case of the holomorphic function JF :
T −→ C which does generalize JM : U −→ C as we proved above.

It is clear that the global holomorphic function JF restricted to Ut is
related to the locally defined function λ(Ut,f) by the formula

J =
4
27

(1− λ(Ut,f) + (λ(Ut,f))2)3

(λ(Ut,f))2(1− λ(Ut,f))2
,

since a similar formula relates λM and JM.
Next consider the “algebraic version” MALG

1 of the moduli functor
MHOL

1 . Let F ∈ MALG
1 (T ) be an algebraic family of elliptic curves (over

Spec (C)) parametrized by T ∈ A where we recall that A denotes the cat-
egory of reduced separated schemes over Spec (C). Further recall that if
P := Spec (C), then for each T ∈ A, |T | = HomA(P, T ) denotes the set of
closed points of T . We may, as in the complex analytic case, define the
set-theoretic map

JF : |T | −→ C, t 7→ J̃([(Ft)HOL])

for each closed point t ∈ T , where (Ft)HOL is the unique underlying com-
pact Riemann surface of genus 1 associated to Ft by the GAGA principle
(A.10.5.1).

Note that C is precisely the set of closed points |A1
C,x| of the affine line

(scheme) over C: A1
(C,x) := Spec (C[x]).

It is natural to expect the following analogue of the previous theo-
rem. For a proof, see e.g., the beautiful article of Mumford-Suominen [23],
chap. 3.
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4.7.2.3 Theorem. There exists a unique structure of morphism in A
on the above map JF i.e., there is a global regular function T −→ A1

(C,x) :=
Spec (C[x]) whose restriction to closed points of T is precisely the set-
theoretic map JF . Further, for each closed point t ∈ T , there exists a
(Zariski) open neighborhood Ut and a regular function on this neighborhood

λUt : Ut −→ A1
C,x,

such that the restriction of the regular function (associated to JF ) to Ut is
related to λUt by the formula

J =
4
27

(1− λUt + (λUt)
2)3

(λUt)2(1− λUt)2
.

4.7.2.4 Notation. By abuse of notation, we will denote the global reg-
ular function corresponding to JF also by JF itself.

Motivated by the discussion above, we state the following.

4.7.2.5 Definition. Let F be a complex analytic family (respectively
an algebraic family) of elliptic curves parametrized by a reduced Hausdorff
complex analytic space T (respectively by a reduced separated scheme T
over C) and JF be the associated global holomorphic function (respectively
the associated global regular function) defined on T as described in the
above theorems of this subsection. We call JF the elliptic modular function
associated to the family F .

4.7.3 The Coarse Moduli Space for Elliptic Curves

Let P2
C denote the projective scheme of dimension 2 over Spec (C) so that

its associated complex analytic space is simply the 2-dimensional com-
plex projective space P 2

C over C considered naturally as complex manifold:
(P2

C)HOL = P 2
C (see (A.6.7)).

Let {X,Y, Z} be a set of homogeneous coordinates on P2
C naturally giving

rise to homogeneous coordinates on P 2
C which we also denote by {X,Y, Z}.

Let λ ∈ C − {0, 1} and consider the reduced closed subscheme Eλ of
P2

C defined by the vanishing of the following homogeneous polynomial of
degree 3:

pλ(X,Y, Z) := Y 2Z −X(X − Z)(X − λZ).

Then it can be checked that Eλ is irreducible, separated, nonsingular, of
finite type and of dimension 1 over Spec (C). Further, the genus of this
curve, defined to be the number of C-linearly independent global algebraic
differentials, may be computed to be equal to 1. Thus Eλ is an elliptic
curve over Spec (C).
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Next consider the analytic subset of P 2
C defined by the vanishing of

pλ(X,Y, Z) and give it the natural structure of reduced complex analytic
subspace. This subspace is verified to be connected and smooth so that it
is actually a closed submanifold of P 2

C of dimension 1. Thus it is a compact
Riemann surface embedded in P 2

C. The genus of this compact Riemann
surface is verified to be 1, so it is actually an elliptic curve. It turns out
that this elliptic curve is in fact isomorphic to (Eλ)HOL. All this may be
deduced at once from the results of (A.10), in particular from the GAGA
principle.

Recall from (1.5.2.6) that associated to τ ∈ U , where U denotes the
upper half-plane in C, we have the lattice L = L(τ) = {n+mτ ; n,m ∈ Z}
and the Weierstrass ℘-function satisfying the differential equation

(℘′(z))2 − 4(℘(z))3 + g2℘(z) + g3 = 0,

using which the elliptic curve C/L = Mτ is biholomorphically embedded
onto the closed submanifold of P 2

C defined by the vanishing of the polyno-
mial

P (x0, x1, x2) = x0x
2
1 − 4x3

2 + g2x
2
0x2 + g3x

3
0,

where the xi are the homogeneous coordinates. Then, as stated in (1.5.2.6.3),
we have the j-invariant of this elliptic curve as

JM(τ) =
g3

2

g3
2 − 27g2

3

.

Now, if we solve for µ 6= 0, 1 from the equations

g2 =
1
3
· (4)1/3 · (µ2 − µ+ 1), g3 =

1
27
· (µ+ 1) · (2µ2 − 5µ+ 2),

which are the relations arising from a linear change of coordinates that
transforms P (x0, x1, x2) to pµ(X,Y, Z) which defines the elliptic curve Eµ,
then for each such value of µ, we clearly have (Eµ)HOL ∼=Mτ .

It is verified that λM(τ) satisfies the above equations in µ.
Choosing τ ∈ U such that λM(τ) = λ, we get the j-invariant of Eλ as

4
27

(1− λ+ λ2)3

(λ)2(1− λ)2
.

Hence we have proved the following.

4.7.3.1 Theorem. The value of the function

j(λ) =
4
27

(1− λ+ λ2)3

(λ)2(1− λ)2
, (λ 6= 0, 1),

characterizes the elliptic curve Eλ over Spec (C) up to isomorphism.
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We continue with the notations introduced from the beginning of this
section.

The elliptic modular function J̃ : U/PSL(2,Z)
∼=−→C gives rise to a

set-theoretic bijection

α := |J̃ | : MHOL
1 (P ) = S/∼S

∼=−→HomH(P,C) = |C|,

where S/∼S is the set of isomorphism classes of elliptic curves and P denotes
the degenerate one-point manifold.

We use the same map α as above to get a set-theoretic bijection between
MALG

1 (P ) = S/∼S and |A1
C,x| = C where P will always denote Spec (C) in

the context of the functor MALG
1 .

With these notations, we state the following.

4.7.3.2 Proposition. For any T ∈ H (respectively T ∈ A) and any fam-
ily F parametrized by T i.e., F ∈ MHOL

1 (T ) (respectively F ∈ MALG
1 (T )),

the set-theoretic map νF : |T | −→ |C| (respectively νF : |T | −→ |A1
C,x|)

defined by t 7→ α([Ft]) has the structure of a morphism T −→ C in H
(respectively the structure of a morphism T −→ A1

C,x in A.)

Proof. From the results of the previous subsection, we see that JF is the
unique structure of morphism on νF QED

Next define the associations

JHOL : MHOL
1 −→ HomH(−,C), JALG : MALG

1 −→ HomA(−,A1
C,x)

for each T ∈ H and each T ′ ∈ A by the set-theoretic maps

JHOL(T ) : MHOL
1 (T ) −→ HomH(T,C),

JALG(T ′) : MALG
1 (T ′) −→ HomA(T ′,A1

C,x)

which are in turn defined by

F 7→ JF , and F ′ 7→ JF ′ .

Then in view of the previous proposition, it is easy to prove the following.

4.7.3.3 Proposition. The associations JHOL, JALG are natural trans-
formations i.e., morphisms of functors.

We will show that (C, JHOL) and (A1
C,x, J

ALG) are coarse moduli spaces
for MHOL

1 and MALG
1 respectively. Now in view of (4.7.3.2) and (4.5.4.5),

it is enough to check the hypothesis (2) of (4.5.4.5).
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To the above end, let R := C[x, (x(1 − x))−1] be the localisation of
the polynomial ring C[x] (in the variable x over C) with respect to the
multiplicative subset {1, f, f2, . . . , } with f = x(1− x).

Then C := Spec (R) is an affine scheme of finite type over C (see (A.4.3)
and (A.6.3)) whose associated complex analytic space in the sense of
(A.10.1) is just the complement of {0, 1} in the complex plane: CHOL =
C− {0, 1}. Note that C ∈ A, CHOL ∈ H.

We will “put together” the elliptic curves Eλ, (λ 6= 0, 1) (respectively
(Eλ)HOL) to obtain a family over C (respectively over CHOL) with param-
eter λ.

Consider the reduced closed subscheme E of P2
C × C defined by the

vanishing of the following polynomial which is homogeneous of degree 3 in
X,Y, Z and is of degree 1 in x:

p(X,Y, Z, x) := Y 2Z −X(X − Z)(X − xZ).

The canonical projection onto the second factor: P2
C × C −→ C induces a

projection p : E −→ C.
The E constructed above is checked to be a separated scheme of finite

type over C so that E ∈ A.
Further, for each closed point λ ∈ C, the fiber of p over λ is simply the

elliptic curve Eλ described in the beginning of this subsection.
It is checked that p is proper (say because projective spaces are com-

plete) and is also smooth (or flat).
To sum up, p : E −→ C is an element of MALG

1 (C).
Using the results of (A.10), we see that pHOL : EHOL −→ CHOL =

C− {0, 1} is an element of MHOL
1 (CHOL).

It is clear from the above discussion that the elliptic modular function
associated to this family viz. JEHOL : CHOL −→ C is precisely the holo-
morphic function j : CHOL −→ C defined earlier.

Note that j itself is the underlying morphism of complex analytic spaces
associated to a morphism of affine schemes of finite type over C (which we
will also denote by j) given by

j : C = Spec (C[x, (x(1− x))−1]) −→ Spec (C[x]) = A1
C,x

canonically corresponding to the C-algebra homomorphism

C[x] −→ C[x, (x(1− x))−1], x 7→ j(x)

where j is the rational function defined in theorem (4.7.3.1).
With this (abuse of) notation we denote by j the elliptic modular func-

tion associated to E as well as EHOL. We are now ready to prove the
following key result.
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4.7.3.4 Theorem. Let T ∈ H and T ′ ∈ A be given respectively along-
with natural transformations

ΨHOL : MHOL
1 −→ HomH(−, T ), ΨALG : MALG

1 −→ HomA(−, T ′).

Then each of the following natural set-theoretic maps

ΨHOL(P ) ◦ α−1 : |C| −→ |T | and ΨALG(P ) ◦ α−1 : |A1
C,x| −→ |T ′|

has a unique structure of morphism.

Proof. Since ΨALG and ΨHOL are morphisms of functors, the families E
and EHOL with elliptic modular function j give rise to the morphisms

g′ := ΨALG(C)([E]) :C −→ T ′ and g :=ΨHOL(CHOL)([EHOL]) :CHOL−→T

respectively.
Consider the morphism (j, g′) : C −→ A1

C,x × T ′ (respectively the mor-
phism (j, g): CHOL −→ C× T ). From the formula defining j one deduces
easily that j is surjective and that (j, g′) (respectively (j, g)) is proper.
Now since the image of a proper map is closed, we have that the set
Γ′ := Image (j, g′) (respectively the set Γ := Image (j, g)) is closed and
irreducible in A1

C,x × T ′ (respectively is closed and connected in C× T ).
A simple computation shows that the morphism p′ : Γ′ −→ A1

C,x (respec-
tively the morphism p : Γ −→ C) induced by the canonical projection onto
the first factor A1

C,x×T ′ −→ A1
C,x (respectively by C×T −→ C) is injective.

Since j is surjective, so are p and p′.
Now by the famous Zariski’s Main Theorem both p and p′ are isomor-

phisms.
Finally define the morphisms

f ′ := p′2 ◦ (p′)−1 : A1
C,x −→ T ′ and f := p2 ◦ (p)−1 : C −→ T

where p′2 (respectively p2) is induced by the canonical projection onto the
second factor from A1

C,x×T ′ (respectively by the canonical projection onto
the second factor from C× T ). We then have f ′ ◦ j = g′, f ◦ j = g.

Remembering that ΨALG and ΨHOL are morphisms of functors, a com-
putation reveals that the underlying set-theoretic map of f ′ (respectively
of f) is precisely ΨALG(P ) ◦ α−1 (respectively ΨHOL(P ) ◦ α−1) QED

Using the conclusions of proposition (4.7.3.2) and the above theorem as
hypotheses and applying (4.5.4.5), we obtain the following main result of
this section.

4.7.3.5 Theorem (Coarse Moduli for Elliptic Curves). The pair
(C, JHOL) (respectively (A1

C,x, J
ALG)) is a coarse moduli space for the prob-

lem of moduli of elliptic curves associated to the moduli functor MHOL
1

(respectively MALG
1 ).
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4.7.3.6 Remark (Algebraic Local Moduli Space for an Elliptic
Curve). The algebraic local moduli space for an elliptic curve with invari-
ant j is Spec (ÔY,j) where Y = A1

C,x and we have the isomorphism of rings
ÔY,j ∼= ÔC,j (see (3) of (4.6.7.3)).

The main aspect in which the problem of moduli of elliptic curves differs
from that of moduli of line bundles considered in the previous section is that
one cannot obtain a fine moduli space for the former. We shall highlight
the reasons that imply the non-existence of a fine moduli space for elliptic
curves in the next section.

4.8 The Non-existence of a Fine Moduli Space
for Elliptic Curves

4.8.1 Local Obstructions to Existence of a Tautological
Family

Given a moduli functor (of equivalence classes of families) as in (4.5.1), we
have seen that the requirement that there exists a fine moduli space, for
the moduli problem associated to this functor, is equivalent to the existence
of a universal family (cf. (4.5.3.3.2)). We will show in this subsection how
such a universal family cannot exist for the problem of moduli of elliptic
curves. We shall in fact show in this case that there does not even exist a
“tautological family” — a notion weaker than that of universal family —
which we define below.

4.8.1.1 Tautological Families

Let FAM : C −→ S be a functor of families associated to a moduli problem
as in (4.5.1) and let F : C −→ S be the functor of equivalence classes of
families naturally arising from FAM (see (4.2.5)).

4.8.1.1.1 Definition. A pair (F, β) where F ∈ FAM(T ) for some object
T ∈ C and where β is a set-theoretic mapping of S/∼S onto |T | is called
a tautological family for the moduli functor F : C −→ S if the following
conditions are satisfied:

1. The map β is a bijection of sets

β : F(P ) = S/∼S
∼=−→HomC(P, T ) = |T |,

which identifies ∼S-equivalence classes of objects of S with the under-
lying points of T . Here, as usual, P denotes a base-point-object of C
(see (4.2.2));
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2. For each point t ∈ |T | (thought of as a morphism φt ∈ HomC(P, T )),
the ∼S-equivalence class of the fiber Ft of F at t (viz. [φ∗t (F )] ∈
F(P ) = S/∼S) is equal to that determined by t via β i.e., β−1(t).

4.8.1.1.2 Example. Considering the problem of moduli of degree zero
line bundles on a compact Riemann surface X, we see from assertion (1) of
(4.6.6.1) that the Poincaré bundle P is a tautological family.

More generally, every universal family is indeed a tautological family
(cf. (1) of (4.5.3.3.3)).

It’s clear that the non-existence of a tautological family implies the non-
existence of a universal family (or what is the same, of a fine moduli space)
— this is how we show below that the problem of moduli of elliptic curves
does not have a fine moduli space for its solution.

By analyzing various examples from the Theory of Moduli, it is known
that whenever a set of objects in Geometry has to be classified (modulo iso-
morphism or some suitable equivalence relation), then one can never hope
to obtain a fine moduli space (i.e., a universal family) if there exist objects
in this set that admit nontrivial automorphisms. We shall explain later the
meaning of this statement, in the context of the moduli problem of elliptic
curves. To that end, we first describe below the group of automorphisms
of an arbitrary elliptic curve.

4.8.1.2 The Group of Automorphisms of an Elliptic Curve

We state the following theorem, whose proof is nontrivial — see [23],
chap. 3, or Hartshorne’s book Algebraic Geometry, chap. IV, sec. 4, listed
under the References at the end. Using the GAGA principle (A.10.5.1),
we see that the group of automorphisms of the elliptic curve is the same
irrespective of it being considered as a compact Riemann surface of genus
1 or as a projective nonsingular integral curve over Spec (C) of genus 1.

4.8.1.2.1 Theorem. Let E be an elliptic curve and let [E] denote its iso-
morphism class, considered as an element of S = MHOL

1 (P ) = MALG
1 (P )

where P is a degenerate smooth one-point-space. Let J̃ : U/PSL(2,Z)
∼=−→C

be the (holomorphic) elliptic modular function and α : S
∼=−→C be the set-

theoretic bijection underlying this function. Then the group of automor-
phisms G(E) of the elliptic curve E is given up to isomorphism as additive
abelian group by:

G(E) ∼=


Z/2Z if α([E]) 6= 0, 1;
Z/6Z if α([E]) = 0;
Z/4Z if α([E]) = 1.
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Thus, the two elliptic curves E characterised by j-invariants α([E]) = 0
and 1 respectively are precisely those admitting extra automorphisms. More
explicitly, on the elliptic curve E(−1) given by the equation Y 2Z = X3 −
XZ2 with j-invariant 1 we have the automorphism of order 4 given by
X 7→ −X, Y 7→ (

√
−1)Y and on E(−ω) with normalized equation Y 2Z =

X3 − Z3 of j-invariant 0 there is the automorphism of order 6 given by
X 7→ ωX, Y 7→ −Y where ω denotes a nonreal cube root of unity.

4.8.1.3 Local Obstruction to the Existence of a Tautological
Family on C

We have shown in the previous subsection (see theorem (4.7.3.5)) that
(C, JHOL) (respectively (A1

C,x, J
ALG)) is a coarse moduli space for the func-

tor MHOL
1 (respectively MALG

1 ). One naturally asks if these coarse moduli
spaces have the additional property of being fine moduli spaces. This is
the same as asking if there exist universal families. Since the notion of
a universal family is stronger than that of a tautological family, one first
therefore asks if there exists a tautological family on C (respectively on
A1

C,x). We shall show below that no such tautological family can exist, so
that (C, JHOL) and (A1

C,x, J
ALG) cannot be fine moduli spaces.

We shall arrive at a contradiction by supposing that there exists a tauto-
logical family (F, β) on C (respectively on A1

C,x). Then for each point x ∈ C
(for each closed point x ∈ A1

C,x) we have JF (x) = J̃([Fx]) = J̃(β−1(x)).
Without loss of generality we may assume β to be the underlying set-
theoretic map of J̃ : U/PSL(2,Z)

∼=−→C so that JF becomes simply the
identity morphism on C (respectively on A1

C,x). Now by the results of
(4.7.2) we have for each x ∈ C (respectively for each closed point x ∈ A1

C,x)
a neighborhood V and a holomorphic function (respectively a regular func-
tion) λ on V such that

JF (y) =
4
27

(1− λ(y) + (λ(y))2)3

(λ(y))2(1− λ(y))2
= y

for each y ∈ V (respectively for each closed point y ∈ V ). We consider two
cases below.
Case 1: Local Obstruction at x = 0. Consider the point x = 0. Notice
that this point corresponds to the elliptic curve with j-invariant 0 which
admits extra automorphisms (see (4.8.1.2.1)). Since JF (0) = 0, the function
λ2−λ+ 1 vanishes at 0 and hence JF vanishes triply at 0. But this cannot
happen since JF is the identity morphism.
Case 2: Local Obstruction at x = 1. Consider next the point x = 1. Note
again that this point corresponds to the elliptic curve with j-invariant 1
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which admits extra automorphisms (see (4.8.1.2.1)). Now we must have
λ(1) = −1; for if y ∈ V such that λ(y) = −1, then we have also y =
JF (y) = 1 by the formula which relates λ locally to JF as above. Clearly
the function (JF − 1) vanishes at x = 1. Further we have

(JF − 1)′ = J ′F =
dJF
dx

=
dJF
dλ
· dλ
dx

and
dJF
dλ

∣∣∣∣
(λ=−1)

= 0,

so that (JF − 1)′ also vanishes at x = 1. Thus, JF assumes the value 1
with multiplicity greater than 1 which is again impossible since JF is the
identity morphism.

From the above discussion, the following results are easily deduced.

4.8.1.3.1 Proposition. Let T ∈ H (respectively T ∈ A) and F be a
family parametrized by T i.e., F ∈MHOL

1 (T ) (respectively F ∈MALG
1 (T )).

Then JF is ramified at each point t ∈ T (respectively at each closed point
t ∈ T ) at which JF assumes either of the values 0 or 1.

4.8.1.3.2 Note. This proposition implies that the natural transforma-
tions JHOL and JALG cannot be surjective. Hence the pairs (C, JHOL)
and (A1

C,x, J
ALG) cannot be fine moduli spaces.

4.8.1.3.3 Theorem (Local Obstruction to Existence of Tautologi-
cal Families). It is impossible to find any neighborhood V of any given
point of C (respectively of any given closed point of A1

C,x) and a family F
parametrized by V whose fibers are mutually non-isomorphic (as elliptic
curves) and such that an elliptic curve with extra automorphism occurs as
one of the fibers of F .

Compare the above result with the remarks at the end of subsection 2.6.2.

4.8.1.3.4 Corollary. The pairs (C, JHOL) and (A1
C,x, J

ALG) cannot be
fine moduli spaces.

4.8.1.3.5 Remark. It is natural to hope that if we exclude the elliptic
curves admitting extra automorphisms from the present classification, i.e.,
consider the moduli problem of parametrizing the set of elliptic curves with
j-invariant different from 0 and 1, then there may exist a tautological family.
This turns out to be true and it can be shown that there exists a tautological
family in this case on C−{0, 1} for the holomorphic version of this moduli
problem and on C = Spec (C[x, (x(1 − x))−1]) for the algebraic version.
See for example Mumford’s lecture [24].

We next turn to describe “global obstructions” to the existence of a fine
moduli space for the problem of moduli of elliptic curves.
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4.8.2 Global Obstructions to Existence of a Fine
Moduli Space

We have seen in the previous subsection that the coarse moduli spaces

(C, JHOL) and (A1
C,x, J

ALG)

cannot be fine moduli spaces. We now show that there can never exist fine
moduli spaces for these moduli problems. We will prove this by showing
the existence of certain families — “global obstructions” — which will con-
tradict the existence of a universal family on the classifying space of any
given coarse moduli space.

The discussion below depends on the fact that there exists a nontrivial
automorphism on any elliptic curve (see (4.8.1.2.1)). The presence of such
an automorphism allows us to construct a family F , parametrized by a
suitable base T , which is locally trivial but not globally trivial. Now if
(M,Φ) were a coarse moduli space, then for any chosen point t ∈ |T |, we
have the equality of morphisms (since F is locally trivial)

(Φ(T ))([F ]) = (Φ(T ))([T × Ft])
= constant morphism φ : T −→M, t′ 7→ Φ(P )([Ft]),

where T ×Ft
p1−→T denotes the trivial family parametrized by T with fiber

type Ft. However, we also have that F is not equivalent (under ∼T ) to
T × Ft since F is not globally trivial. Thus we see that Φ(T ) itself is not
injective. Hence (M,Φ) cannot be a fine moduli space. Notice also that
requiring that (M,Φ) be a fine moduli space is equivalent to requiring that
there exist a universal family U on M (see (4.5.3.3.2)). But if such a U
existed, then we would have (by the very definition of a universal family)
that F ∼T φ∗(U) ∼T T × Ft which is a contradiction.

4.8.2.1 Remarks.

1. Such an F as above may thus be called a global obstruction to the
existence of a fine moduli space.

2. More generally, using an argument similar to the above, we may show
the existence of global obstructions whenever some of the objects to
be parametrized admit nontrivial automorphisms.

3. The above argument also shows that we would be unable to obtain
a fine moduli space (i.e., a universal family) even if we exclude the
elliptic curves with extra automorphisms, though we showed earlier
that in this case there do exist tautological families.
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The only assertion we need to prove in order to substantiate the dis-
cussion above is that there exists a locally trivial family of elliptic curves
which is not globally trivial.

To this end, let T be a smooth connected object of H (respectively a
smooth irreducible object of A) which admits a fixed-point-free involutory

automorphism τ : T
∼=−→T . Thus Gτ := {1T , τ} is a finite subgroup of

automorphisms of T and acts in a “good” manner (for example, properly
discontinuously in the context of the category H) and without fixed points
on T , so that the quotient T/Gτ is also an object of H (respectively an
object of A).

The canonical quotient map T −→ T/Gτ is a morphism and may be
considered as a principal Gτ -bundle on T/Gτ (for example in the context
of the category H, this canonical quotient map is a covering space map
with the fundamental group of T/Gτ isomorphic to Gτ acting as the deck
transformation group of this covering — see (1.5.2.1.2)).

Next pick any elliptic curve E and let −1E be the nontrivial involutory
automorphism of E generating the subgroup H := {1E ,−1E} of Aut(E).
Define the following isomorphism of groups

ψ : Gτ −→ H, τ 7→ −1E .

Consider the action of Gτ on the product T ×H defined as follows:

Gτ × (T ×H) −→ T ×H, (g, (t, h)) 7→ g · (t, h) := (τ(t), ψ(g)−1 · h).

Then one can prove (say for example using the Theory of Descent of principal
bundles) that the quotient F := (T ×H)/Gτ gives rise to a locally trivial
bundle on T/Gτ whose fibers are all elliptic curves isomorphic to E and
that this bundle is not globally trivial. Thus p : F −→ T/Gτ (where the
morphism p is the one naturally induced from T × E p1−→T considered as
trivial bundle over T with fiber type E) is a locally trivial family of elliptic
curves which is not globally trivial. That F is locally trivial in the context
of H also follows from a theorem of Grauert and Fischer [12] once we verify
that F is a family parametrized by T/Gτ ∈ H.



Appendix: Analytic
Spaces, Schemes and
Cohomology

The aim of the following presentation is to quickly recall some fundamen-
tal definitions and results concerning complex analytic spaces, schemes,
cohomology and algebraizability that are relevant to this book. For more
details, refer to the textbook of R.Hartshorne on Algebraic Geometry and
the textbook of Grauert and Remmert on Coherent Analytic Sheaves listed
under the References at the end.

A.1 Sheaves

Let X be a topological space. Define the category TX whose objects are
open subsets of X and whose only morphisms are the inclusions of open
sets. Let C be any category whose objects are sets with some additional
mathematical structure.

By a presheaf F of objects of C on X we mean a contravariant functor
F : TX −→ C. For an open subset U of X, the elements of F(U) are
called sections of F over U . If V ↪→ U is an inclusion of open subsets of X,
then the map induced by the functor F from F(U) to F(V ) is called the
restriction map and the image of a section s under this map is often denoted
by s|V .

Next, given a presheaf F as above, we call it a sheaf if it satisfies the
following two conditions:

1. if U is any open subset of X and if {Vi; i ∈ I} is an open covering of
U , then two sections over U , which when restricted to each Vi become
equal, must already be equal in U ; in other words, two sections are
the same if they are locally the same;
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2. with U and Vi as above, if we are prescribed sections, one over each
Vi, which when restricted to the intersections of the Vi’s agree, then
there must be a section over U which when restricted to each Vi gives
the prescribed sections (note that by (1) above, this section over U
must be unique); in other words, a section needs to be defined only
locally in a compatible way—this automatically defines the section
globally.

We therefore see that sheaves are those presheaves which depend only
on local data.

Henceforth we shall assume that in the category C, every direct system
has a direct limit. Then for a presheaf F of objects of C on X and for a
point x ∈ X, we define the stalk of F at x to be the direct limit of the
direct system consisting of the objects F(U) (where U is an open subset of
X containing x) alongwith the corresponding restriction maps. The stalk
of F at x thus obtained is also an object of C and is denoted Fx.

By the universal property of direct limits in the category C, this stalk
is uniquely determined with canonical maps (which we call the limiting
restriction maps) from F(U) to Fx for each open subset U of X which is
a neighborhood of x. For such U , the image of a section s over U in the
stalk by the limiting restriction map is called the germ of s at x and is
denoted sx.

A morphism of presheaves or sheaves is simply defined to be a mor-
phism of functors. Clearly, such a morphism induces morphisms of the
corresponding stalks (of the presheaves at every point of X) because of
universal properties of direct limits. We note the following standard result.

A morphism of sheaves is an isomorphism if and only if each
of the induced morphisms of stalks is an isomorphism.

Since there exist presheaves that are not sheaves, we must note that this
result cannot hold for presheaves. In order to deal with presheaves that are
not sheaves, we have the following result.

Given a presheaf F of objects of C on X, there exists a sheaf
F̃ (of objects of C) on X and a morphism of presheaves θ : F −→
F̃ satisfying the following universal property. If G is a sheaf of
objects of C on X and φ : F −→ G is a morphism of presheaves, then
there exists a unique morphism ψ : F̃ −→ G such that φ = ψ◦θ. The
pair (F̃ , θ) is thus defined uniquely up to a unique isomorphism
and F̃ is called the sheaf associated to the presheaf F or the sheafification
of the presheaf F . Further, at each point of X, the stalks of F and
F̃ are the same. Also, F itself is a sheaf iff θ is an isomorphism
of presheaves.
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The advantage of the above result is explained in the following. Suppose
we have an operation defined on objects of C—say C is the category whose
objects are abelian groups with group homomorphisms for morphisms and
consider the operation of taking the quotient of an abelian group by a sub-
group. Then we would like to define a corresponding operation on sheaves
of objects of C on X. It usually happens that the natural definition gives
only a presheaf and not a sheaf: suppose F and G are sheaves of abelian
groups on X such that the former is a subsheaf of the latter i.e., F(U) is
a subgroup of G(U) for each open subset U of X; then we would naturally
be led to define the quotient G/F by the association U 7→ G(U)/F(U)
which unfortunately only gives a presheaf! The right way out of this prob-
lem is to take the sheaf associated to the presheaf that we obtained in the
first place. Then it also turns out that this technique suffices for the most
general applications of the Theory of Sheaves.

Now let f : X −→ Y be a continuous map of topological spaces. Let F
be a sheaf of objects of C on X. Define the association V 7→ F(f−1(V )) for
each open subset V of Y . This is a sheaf of objects of C on Y denoted f∗F
and is called the direct image sheaf or the pushforward of the sheaf F by f .

Next, let G be a sheaf of objects of C on Y . Pick an open subset U of
X. Let V be an open subset of Y such that f(U) ⊆ V . Then for such V ,
the objects G(V ) alongwith the restriction maps form a direct system in C
and hence have a direct limit which we denote as (f−1G)PRE(U). Then the
association U 7→ (f−1G)PRE(U) defines a presheaf. We denote by f−1G
the sheaf associated to this presheaf and call it the inverse image sheaf of G
under f or the pullback of G by f .

Let Sheaves(X, C) denote the category of sheaves of objects of C on X.
Then we see that the association

f∗ : Sheaves(X, C) −→ Sheaves(Y, C)

given by F 7→ f∗F and the association

f−1 : Sheaves(Y, C) −→ Sheaves(X, C)

given by G 7→ f−1G are functors.

A.1.1 Note. If X is a topological space and Y ⊆ X is a subset with
inclusion map i : Y ↪→ X and F is a sheaf on X, then we call the inverse
image sheaf i−1F as the restriction of F to the topological subspace Y .
This restricted sheaf is often denoted by F|Y . The stalk of the restricted
sheaf at a point of Y is the same as that of the original sheaf at that
point.



186 Appendix: Analytic Spaces, Schemes and Cohomology

A.2 Locally Ringed Spaces

A ringed space is a pair (X,OX) consisting of a topological space X and a
sheaf of rings OX on X. In the notation of the previous section, OX is an
element of Sheaves(X,R), where R is the category of commutative rings
and ring homomorphisms. A morphism of ringed spaces from (X,OX) to
(Y,OY ) is a pair (f, f#) consisting of a continuous map f : X −→ Y and
a map f# : OY −→ f∗OX of sheaves of rings on Y . Here f∗OX is the
pushforward of OX by f (see (A.1)). The ringed space (X,OX) is called a
locally ringed space if for each point x ∈ X, the stalk OX,x (see (A.1)) is a
local ring.

A morphism of locally ringed spaces is a morphism (f, f#) of ringed spaces
as above, such that for each point x ∈ X, the canonically induced map of
local rings f#

x : OY,f(x) −→ OX,x is a local homomorphism of local rings
in the sense that the inverse image of the maximal ideal of the target local
ring (under this homomorphism of rings) is precisely the maximal ideal of
the source local ring. An isomorphism of locally ringed spaces is a morphism
with a two-sided inverse. Thus a morphism of locally ringed spaces (f, f#)
is an isomorphism if and only if f is a homeomorphism of the underlying
topological spaces and f# is an isomorphism of sheaves.

Let (f, f#) : (X,OX) −→ (Y,OY ) be a morphism of locally ringed
spaces. For any x ∈ X, we have the local homomorphism of local rings
f# : OY,y −→ OX,x which makes OX,x a module over OY,y where y = f(x).
We say that f is flat if for each x ∈ X,OX,x is flat as an OY,y-module.

A.3 Pullbacks and Pushforwards of Sheaves
of Modules

Let (X,OX) be a ringed space as defined in (A.2). A sheaf F of abelian
groups on X is said to be a sheaf of OX -modules if for every open set U ⊂ X,
the abelian group F(U) is a module over the ring OX(U); further, for an
inclusion of open sets V ↪→ U , since the module F(V ) over the ring OX(V )
gets, via the restriction map of rings OX(U)→ OX(V ), the structure of a
module over OX(U), it is required that the restriction F(U)→ F(V ) be a
homomorphism of OX(U)-modules. A sheaf of OX -modules is often simply
referred to as an OX -module. A morphism of OX -modules f : F −→ G is a
morphism of sheaves with the additional condition that for any open subset
U of X, the homomorphism of abelian groups f(U) : F(U) −→ G(U) be a
morphism of OX(U)-modules. Let



A.4. Examples of Locally Ringed Spaces 187

(f, f#) : (X,OX) −→ (Y,OY )

be a morphism of ringed spaces (as defined in the previous section) and let
F be an OX -module. Then the pushforward sheaf f∗F (cf. (A.1)) is an
f∗OX -module, hence via the morphism of sheaves of rings on Y given by
f#, it becomes an OY -module. This OY -module is called the direct image
OY -module of F by f or the pushforward of F by f .

Next let G be a sheaf ofOY -modules. Then the inverse image sheaf f−1G
(cf. (A.1)) is a sheaf of f−1OY -modules. If we denote by HOMSh(X)(L,M)
the set of morphisms of sheaves (of objects of a fixed category) on X, then
we have for any sheaf F on X and any sheaf G on Y a canonical bijection

HOMSh(X)(f−1G,F) ∼= HOMSh(Y )(G, f∗F).

Thus we have in particular

HOMSh(X)(f−1OY ,OX) ∼= HOMSh(Y )(OY , f∗OX).

Therefore f# defines (by the above bijection) a unique morphism of sheaves
of rings from f−1OY −→ OX which makes OX an f−1OY -module. Since
the inverse image sheaf f−1G is an f−1OY -module, we can define the tensor
product

(f−1G)⊗(f−1OY ) OX

bearing in mind the remarks in (A.1) on dealing with naturally defined
presheaves that are not sheaves. This tensor product is naturally an OX -
module, denoted f∗G and is called the inverse image OX -module of G by f
or the pullback of G by f .

It then turns out that for any OX -module F and any OY -module G,
there is a natural isomorphism of abelian groups

HOMSh(OX)(f∗G,F) ∼= HOMSh(OY )(G, f∗F)

where HOMSh(OX)(L,M), for any OX -modules L and M, denotes the
additive abelian group (in fact module over the ring OX(X)) of morphisms
of OX -modules.

A.4 Examples of Locally Ringed Spaces

The following examples of locally ringed spaces are fundamental in the sense
that they form the local models based on which structures like manifolds,
analytic spaces and schemes are defined.
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A.4.1 The Local Model for Differentiable Manifolds

Let X be a domain in Rn. Let DX denote the sheaf of germs of C∞ functions
on X. This means that DX associates to each open subset V of X, the ring
of C∞ functions defined on V . Then (X,DX) is a locally ringed space.

A.4.2 The Local Model for Complex Manifolds

Let X be a domain in Cn. Let OX denote the sheaf of germs of holomorphic
functions on X. Then (X,OX) is a locally ringed space.

A.4.3 The Local Model for Schemes

Let A be a commutative ring with (multiplicative) identity element 1. Let
Spec (A) denote the set of all prime ideals of A. For any ideal I of A, define
the subset V (I) of Spec (A) to consist of those prime ideals that contain
I. Define a topology on Spec (A) by taking subsets of the form V (I) to be
the closed sets—this gives the Zariski topology on X := Spec (A).

For any f ∈ A, let D(f) = Spec (A)\V (〈f〉) where 〈f〉 is the ideal
generated by f ∈ A. Then D(f) is an open set and sets of this type form
a base for the Zariski topology on X.

Next define the association D(f) 7→ Af where Af denotes the localiza-
tion of the ring A with respect to the multiplicative system {1, f, f2, . . .}.
Since the subsets of the form D(f) form a base for the Zariski topology on
X, this association is enough to define a unique sheaf of local rings on X
which we denote by OX and such that the ring of sections of this sheaf over
the open set D(f) is isomorphic to Af , for each f ∈ A. This sheaf of local
rings is called the structure sheaf of regular functions on X.

Then (X,OX) is a locally ringed space and is called the affine scheme
defined by the ring A.

Consider the polynomial ring C[x1, . . . , xn] in n indeterminates over
C. Then the underlying set of closed points of the affine scheme AnC :=
Spec C[x1, . . . , xn] can be canonically identified with the points of the n-
dimensional complex space Cn. Thus AnC is called the scheme (structure)
associated to Cn.

A.4.4 The Local Model for Complex Analytic Spaces

Let U ⊂ Cn be a domain and let f1, . . . , fq be holomorphic functions on
U . Let X ⊂ U be the analytic subset consisting of common zeros of these
holomorphic functions. Let OU denote the sheaf of germs of holomorphic
functions on U . Set I = OUf1 + · · · + OUfq which is the ideal sheaf in
OU generated by f1, . . . , fq. This is referred to as a coherent analytic ideal
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sheaf. Consider the quotient sheaf of rings OU/I and let OX denote the
restriction of this to X. Then (X,OX) is a locally ringed space.

A.5 Manifolds, Analytic Spaces and Schemes
as Locally Ringed Spaces

We use the local models defined in (A.4) above to define the following.

A.5.1 Definition of Differentiable Manifold of Class C∞C∞C∞

A locally ringed space (Y,OY ) which is locally isomorphic as locally ringed
space to a locally ringed space of the form (X,DX) as in (A.4.1) above is
called a differentiable manifold of class C∞.

A.5.2 Definition of Complex Manifold

A locally ringed space (Y,OY ) which is locally isomorphic as locally ringed
space to a locally ringed space of the form (X,OX) as in (A.4.2) above is
called a complex manifold.

A.5.3 Definition of Scheme

A locally ringed space (Y,OY ) which is locally isomorphic as locally ringed
space to a locally ringed space of the form (X,OX) as in (A.4.3) above is
called a scheme.

A.5.4 Definition of Complex Analytic Space

A locally ringed space (Y,OY ) which is locally isomorphic as locally ringed
space to a locally ringed space of the form (X,OX) as in (A.4.4) above is
called a complex analytic space.

A.5.5 Remark. For each of the mathematical structures defined above,
we have not indicated the definition of a morphism between two spaces
(Y,OY ) and (Y ′,OY ′) having that structure. However, since these spaces
are both locally ringed spaces, we do have the notion of a morphism of
locally ringed spaces as explained in (A.2). It turns out that this notion
is all we need to define a morphism, irrespective of what type of ringed
space we are dealing with. In other words, for e.g., if both these spaces are
complex manifolds, then the underlying topological map, of a morphism of
locally ringed spaces between these two spaces, itself has the property that
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it is a holomorphic map. This is one of the great advantages of regarding
manifolds, schemes and analytic spaces as locally ringed spaces.

A.6 Some Definitions from Scheme Theory

A.6.1 Affine Schemes and Commutative Rings

Since the inverse image of a prime ideal under a ring homomorphism is
again a prime ideal, given a map of commutative rings φ : A −→ B which
respects the identity elements for multiplication, there is an obvious map
of topological spaces

fφ : Spec (B) −→ Spec (A)

and a morphism of sheaves of rings

f#
φ : OSpec (A) −→ f∗OSpec (B)

such that (fφ, f
#
φ ) is a morphism of locally ringed spaces from

(Spec (B),OSpec (B)) to (Spec (A),OSpec (A)). By (A.5.5) above, this is
a morphism of affine schemes (cf. (A.4.3)).

Let R denote the category whose objects are commutative rings with
identity element for multiplication and whose morphisms are ring homo-
morphisms that preserve multiplicative identity elements. Let A be the
category of affine schemes. Then the contravariant functor from R to A
given by A 7→ (Spec (A),OSpec (A)) and (φ : A −→ B) 7→ (fφ, f

#
φ ) as

defined above is an equivalence of categories. Thus, morphisms of schemes
are locally dictated by homomorphisms of commutative rings.

A.6.2 Integral Schemes

A scheme (X,OX) is said to be reduced if for each open set U ⊆ X, the
ring OX(U) is reduced i.e., has no nilpotent elements or equivalently if for
each point x ∈ X, the local ring OX,x is reduced.

A scheme (X,OX) is said to be connected (respectively irreducible) if
its underlying topological space is connected (respectively irreducible). A
topological space is said to be irreducible if it is not the union of two distinct
nontrivial proper closed subsets.

A scheme that is both reduced and irreducible is said to be integral—in
this case the ring of regular functions OX(U) on any open subset U ⊂ X
is an integral domain.
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A.6.3 Schemes of Finite Type over CCC, Open and Closed
Subschemes

A scheme (X,OX) is said to be a scheme of finite type over C if it can be
covered by finitely many affine open subschemes each of which is defined by
a finitely generated algebra over C. The morphism of schemes from X to
Spec (C) is called the structure morphism of X. Here by an open subscheme
we mean the canonical structure of scheme (U,OU := OX |U ) induced on
an open subset U of the topological space underlying the scheme.

A morphism of schemes (f, f#) : (X,OX) −→ (Y,OY ) is said to be
an open immersion (respectively closed immersion) if f(X) is an open sub-
set (respectively closed subset) of the topological space Y and (f, f#) :
(X,OX) −→ (f(X),Of(X)) is an isomorphism (respectively if f is a home-
omorphism onto f(X) and f# is surjective).

A closed subscheme is an equivalence class of closed immersions, where
two closed immersions are said to be equivalent if their source schemes are
isomorphic by a morphism that is compatible with the morphisms that
define the closed immersions.

A.6.4 Local Structure of Closed Subschemes

If A is a commutative ring with identity element for multiplication, I ⊂ A
an ideal, V (I) the closed subset of Spec (A) in the Zariski topology that
we defined earlier (see (A.4.3)), then the locally ringed space

(Spec (A/I),OSpec (A/I))

gives the structure of a closed subscheme of (Spec (A),OSpec (A)) on V (I).
Every representative of a closed subscheme of a given scheme is isomor-
phic to such a scheme V (I), when restricted to any affine open subscheme
Spec (A) of the given scheme.

Hereafter we shorten the notation
(f, f#) : (X,OX) −→ (Y,OY ) to f : X −→ Y.

A.6.5 Fiber Products

Let f : X −→ Y and g : Z −→ Y be morphisms of schemes. Then
there exists a scheme (unique up to a unique isomorphism) denoted by
X×Y Z which is a universally attracting object P in the category of schemes
F together with morphisms f ′F and g′F that make the following diagram
commute:
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F
f ′F−−−−→ Z

g′F

y yg
X

f−−−−→ Y

This scheme X×Y Z is called the fiber product of X with Z over Y via f and
g; further, g′P (respectively f ′P ) is said to be obtained from g (respectively
from f) by extending the base Y to X via f (respectively by extending the
base Y to Z via g).

A.6.6 Separated Schemes

Let X be a scheme of finite type over C and X×X denote the fiber product
of X with itself over Spec (C) via the canonical structure morphism from X
into the one-point-scheme Spec (C). Let ∆ : X −→ X ×X be the diagonal
morphism. The scheme X is said to be separated over C if ∆ is a closed
immersion (see (A.6.3)) or equivalently if the image of ∆ is closed.

A.6.7 Proper Morphisms and Projective Schemes

A morphism of schemes f : X −→ Y is said to be proper if the following
hold:

1. the diagonal morphism from X into the fiber product of X with itself
over Y via the map f is a closed immersion;

2. the inverse image of any open affine subscheme of Y is covered by
finitely many open affine subschemes of X for each of which the defin-
ing commutative ring is a finitely generated algebra (by the ring homo-
morphism given by f locally) over the commutative ring defining the
open affine subscheme of Y in consideration (cf. (A.4.3), (A.6.1) and
(A.6.3));

3. f as a map of underlying topological spaces is a closed map;
4. for any morphism of schemes g : Z −→ Y , the morphism f ′ : Z ×Y
X −→ Z obtained by base extension (cf. (A.6.5) above) is also a closed
map when considered just as a map of the underlying topological
spaces.

Consider the polynomial ring S := C[x0, . . . , xn] in (n + 1) indetermi-
nates over C. This is an Z-graded ring with the graded piece of elements
of degree m ∈ Z being the C-vector space of homogeneous polynomials of
degree m if m is a positive integer, C if m = 0 and the trivial vector space
(0) if m < 0.

Let Proj (S) be the set of all homogeneous prime ideals I ⊂ S which
do not contain the ideal S+ := ⊕d≥1Sd. Further we define a topology on
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Proj (S) by taking closed sets to be of the form V (I) := {J ∈ Proj (S); I ⊆
J} for some homogeneous ideal I ⊂ S. Then for any homogeneous f ∈ S+

the set D+(f) := {J ∈ Proj (S); f not in J} = Proj (S)\V (〈f〉), where
〈f〉 is the homogeneous ideal generated by f in S, is open and such sets
form a base for the topology on Proj (S).

Next for such a homogeneous element f , let Sf be the localisation of
S at (the multiplicative system consisting of nonnegative integral powers
of) f and let S(f) be the subring of Sf consisting of degree zero elements
(Sf canonically acquires the structure of a graded ring from S). There is
a canonical bijection between elements of Spec (S(f)) and the elements of
D+(f) intersected with S(f). Hence, using this bijection, we can transport
the structure of locally ringed space on the affine scheme Spec (S(f)) to
D+(f).

Then as f varies, these structures of locally ringed spaces are compatible
on the intersections of the various D+(f)’s and hence define the structure of
a locally ringed space on Proj (S) which becomes a scheme and is denoted
by PnC. The underlying set of closed points of this scheme can be canonically
identified with complex projective n-dimensional space PnC and hence we
say that PnC is the scheme (structure) associated to PnC .

Just like PnC is covered by (n + 1) open subsets (each open set corre-
sponding to nonvanishing of a homogeneous coordinate xi) isomorphic to
Cn, the scheme PnC is also covered by the corresponding (n+ 1) affine open
subschemes each isomorphic to the scheme AnC (cf. (A.4.3)). The canoni-
cal structure morphism PnC −→ Spec (C) is the fundamental example of a
proper morphism.

A scheme X is said to be projective over C if there exists a closed immer-
sion of X into the scheme-theoretic projective space PkC over C for some non-
negative integer k. If X is projective over C, then its structure morphism
is proper.

A.6.8 Smooth Schemes of Finite Type over CCC
A scheme X of finite type over C is said to be smooth at a point x ∈ X
if the local ring OX,x is a regular local ring. If X is smooth at each of its
points, then it is said to be smooth. The words regular and nonsingular are
also often used instead of “smooth”.

A.6.9 Quasi-coherent and Coherent Algebraic Sheaves

Let X = Spec (A) be an affine scheme and M an A-module. For f ∈ A,
we have the open subset D(f) to which we associate the localization Mf

of M by f which is canonically a module over Af . Since the open subsets
of the form D(f) form a base for the Zariski topology on X (see (A.4.3)),
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this association is sufficient to define a unique sheaf of OX -modules on X
(cf. (A.3)) which is denoted M̃ and is called the sheaf of OX -modules on
X associated to M and further satisfies the condition that its module of
sections over D(f) is isomorphic to Mf , for each f ∈ A.

The association M 7→ M̃ is an exact, fully faithful covariant functor
from the category of A-modules to the category of OX -modules. For the
notion of exactness, see (A.8).

For an arbitrary scheme X, an OX -module is said to be quasi-coherent
if its restriction to any open affine subscheme is the sheaf associated to a
module over the ring defining that affine subscheme in the sense of the first
paragraph above. Further, if this happens and the modules concerned are
finitely generated, then we call the quasi-coherent sheaf as coherent. All
structure sheaves of schemes are coherent.

A.7 Some Definitions from the Theory of
Complex Analytic Spaces

A.7.1 Definitions. Let (X,OX) be a complex analytic space as defined
in (A.5.4). We say that (X,OX) is

1. Hausdorff if the underlying topological space X is Hausdorff;
2. reduced if for each open set U ⊆ X, the ring OX(U) is reduced i.e.,

has no nilpotent elements or equivalently if for each point x ∈ X, the
local ring OX,x is reduced;

3. connected if X is connected;
4. irreducible if X is not the union of two distinct nontrivial analytic

proper subsets;
5. smooth (or a manifold) if for each point x ∈ X there exists an open

neighborhood restricted to which the locally ringed space structure
is isomorphic to the complex manifold structure (see (A.5.2)) of an
open subset of Cn for a suitable nonnegative integer n;

6. compact if X is compact.

A.7.2 Proper Morphisms

A morphism of complex analytic spaces is said to be proper if the underlying
topological spaces of both are locally compact and the preimage of any
compact subset of the target topological space is a compact subset of the
source topological space.
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A.7.3 Fiber Products

Fiber products exist in the category of complex analytic spaces and the
definition of a fiber product is analogous to the one for the category of
schemes made in (A.6.5) above.

A.7.4 Remark. Many of the notions defined in (A.6) for the category
of schemes (like the notions of fiber product as mentioned above, closed
and open immersions etc.,) can also be defined for the category of complex
analytic spaces. However, we will conclude this section with the definition
of a coherent analytic sheaf.

A.7.5 Coherent Analytic Sheaves

The notion of a coherent analytic sheaf on a complex analytic space corre-
sponds to the notion of a coherent algebraic sheaf on a scheme as defined
in (A.6.9) above. The following definition can also be used in the context
of scheme theory to obtain an equivalent definition of a coherent algebraic
sheaf over a scheme.

Let AX be a sheaf of rings on a topological space X. Let F be an AX -
module (see (A.3)). Then F is said to be of finite type if for each x ∈ X
there exists an open neighborhood U restricted to which F is a quotient of
a finite direct sum of sheaves of the form AX |U (recall (A.1.1)).

A sheaf F of AX -modules is said to be of relation finite type if for each
x ∈ X there exists an open neighborhood U such that every homomorphism
of any finite direct sum of sheaves of the form AX |U into F|U has kernel of
finite type.

Now let (X,OX) be a complex analytic space. By a coherent analytic
sheaf we mean a sheaf of OX -modules which is of finite type and also of
relation finite type. OX is itself a coherent analytic sheaf.

A coherent analytic subsheaf I of OX is called a coherent analytic ideal
sheaf. The set Y of common zeros of sections of I locally is an analytic
subset of X and the locally ringed space (Y,OY ) where OY := (OX/I)|Y
is also a complex analytic space (cf. (A.4.4) and (A.6.4)).

A.8 Sheaf Cohomology

Let X be a topological space. Let AB denote the category of abelian groups
and Sheaves (X,AB) denote the category of sheaves of abelian groups on
X. In the category AB, the following properties are obvious:

1. for any two objects A,B ∈ AB, HOMAB(A,B) which denotes the set
of morphisms from A to B, is an abelian group;
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2. the composition of morphisms is Z-bilinear i.e., the map

HOMAB(A,B)×HOMAB(B,C)

−→ HOMAB(A,C) given by (f, g) 7→ g ◦ f

satisfies g ◦ (f1 +f2) = g ◦f1 +g ◦f2 and (g1 +g2)◦f = g1 ◦f +g2 ◦f ;
3. finite direct sums exist in AB;
4. every morphism in AB has a kernel and a cokernel;
5. every monomorphism in AB is the kernel of its cokernel;
6. every epimorphism in AB is the cokernel of its kernel;
7. every morphism in AB can be factored into an epimorphism followed

by a monomorphism.

These properties make AB into what is called an abelian category. It
turns out that the above properties on AB can be transported by using
arrow-theoretic definitions in an obvious manner to Sheaves(X,AB) which
also becomes an abelian category.

Next we define the global sections functor

Γ(X, ·) : Sheaves(X,AB) −→ AB by F 7→ Γ(X,F) := F(X).

This functor is covariant, left-exact and additive.
Additivity means that for F ,G ∈ Sheaves(X,AB) the induced map

HOMSheaves(X,AB)(F ,G) −→ HOMAB(Γ(X,F),Γ(X,G))

is a homomorphism of abelian groups. A sequence of objects and morphisms
in an abelian category is said to be exact at an object of the sequence if the
image of the incoming map to that object equals the kernel of the outgoing
map from that object. A sequence of objects and morphisms in an abelian
category is said to be exact if it is exact at each entry (i.e., object) of the
sequence. Now left-exactness of the global sections functor means that for a
short exact sequence in Sheaves(X,AB) i.e., an exact sequence of the form

0 −→ F −→ G −→ H −→ 0

the following corresponding sequence obtained by applying the global sec-
tions functor

0 −→ Γ(X,F) −→ Γ(X,G) −→ Γ(X,H)

in the category AB is also exact. Exactness of the global sections functor
would mean that we may append −→ 0 to the right of the above sequence to
obtain yet another exact sequence; in other words, exact functors transform
exact sequences into exact sequences.
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Let us fix an element F ∈ Sheaves(X,AB). We can inductively con-
struct an exact sequence

(†) 0 −→ F e−−→ I0 d0−−→ I1 d1−−→ I2 −→ · · ·

of sheaves of abelian groups on X, where the Ik(k ≥ 0) are all injec-
tive objects i.e., the functor G 7→ HOMSheaves(X,AB)(G, Ik) carries exact
sequences into exact sequences, for each k ≥ 0.

The truncated exact sequence I0 d0−−→ I1 d1−−→ I2 d2−−→ I3 −→ · · · is
called an injective resolution of F . If we apply the global sections functor
to the sequence (†) above, then we get a left-exact sequence

0 −→ Γ(X,F) E−−→ Γ(X, I0) D0

−−−→ Γ(X, I1) D1

−−−→ Γ(X, I2) −→ · · ·

of abelian groups which may not be exact, but is still a complex in the sense
that Di+1 ◦ Di = 0 for every i ≥ 0. We define the i-th sheaf cohomology
group of X with respect to the sheaf F denoted Hi(X,F), to be the quotient
(Kernel (Di)/Image (Di−1)) for each nonnegative integer i, where we let
D−1 denote the zero map from the trival abelian group (denoted by 0 in
sequences) to the abelian group of global sections of I0. It is clear that the
zeroth sheaf cohomology group of X with values in F is isomorphic to the
global sections of F .

The i-th sheaf cohomology group measures the extent to which
exactness is lost at the i-th entry of the injective resolution of the
sheaf after applying the global sections functor.

Further, given a short exact sequence of sheaves of abelian groups on X

0 −→ F −→ G −→ H −→ 0

we get a long exact sequence of cohomology groups in AB written as

· · · −→ Hi(X,F) −→ Hi(X,G) −→ Hi(X,H) δi−−→ Hi+1(X,F) −→ · · ·

where the δi are called connecting homomorphisms.
By a morphism of sequences (of objects and morphisms) in an abelian

category, we mean a collection of morphisms, one for each entry, from the
object corresponding to the entry of the first sequence, to the corresponding
object of the second sequence, such that all these morphisms together with
morphisms of the individual sequences form a commutative diagram i.e., one
in which given any two objects, a morphism from one to the other gotten
by composing any sequence of morphisms in the diagram is independent of
the choice of the composing morphisms.
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Now given a morphism of short exact sequences of sheaves of abelian
groups on X, there is automatically a morphism of the corresponding long
exact sequences of cohomology groups. Because of these properties, the col-
lection of functors {Hi(X,−); i ≥ 0} is called a covariant delta-functor from
the abelian category of sheaves of abelian groups on X to the abelian cate-
gory of abelian groups. By a theorem of A.Grothendieck (see his exposition
in the Tôhoku Math. Journal cited in the References at the end) this delta-
functor is uniquely defined up to a unique isomorphism of delta-functors
and hence is called a universal delta-functor.

A.9 Čech Cohomology

Let X be a topological space, U := {Ui; i ∈ I} an open covering of X and
F a sheaf of abelian groups on X. Fix a well-ordering of the indexing set
I. Let Ui0i1···ip denote the intersection Ui0 ∩ Ui1 ∩ · · · ∩ Uip for any finite
subset {i0, . . . , ip} ⊂ I.

For each integer p ≥ 0, define the following abelian group:

Cp(U ,F) = Πi0<···<ipF(Ui0···ip),

where Π denotes the operation of taking a direct product of abelian groups.
Thus an element α ∈ Cp(U ,F) is a collection

α = {αi0···ip ; i0 < · · · < ip},

where αi0···ip ∈ F(Ui0···ip) for each (p + 1)-tuple (i0, . . . , ip) of elements of
I with i0 < · · · < ip.

For each integer p ≥ 0, define the following homomorphism of abelian
groups:

dp : Cp(U ,F) −→ Cp+1(U ,F), α 7→ dpα,

where for α = {αi0···ip ; i0 < · · · < ip} as above, we define dpα as follows:

dpα = β = {βi0···ip+1 ; i0 < · · · < ip+1}, βi0···ip+1 ∈ F(Ui0···ip+1),

where βi0···ip+1 is the sum of the restrictions to F(Ui0···ip+1) of the following
(p+ 2) local sections of F :

αi1···ip+1 ; (−1)kαi0···ik−1ik+1···ip+1 , (1 ≤ k ≤ p); (−1)p+1αi0···ip .

It is easy to see that dp+1 ◦ dp = 0 for each p ≥ 0, so that Image (dp−1) ⊂
Kernel (dp) for each p ≥ 1. Therefore the following sequence is a complex
of abelian groups and group homomorphisms (cf. (A.8)):

C∗(U ,F) : 0 d−1

−→C0(U ,F) d0−→C1(U ,F) d1−→C2(U ,F) d2−→· · · .
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We define the abelian group Ȟ
p
(U ,F), for each integer p ≥ 0, called the

p-th Čech cohomology group of X with values in the sheaf F relative to the
covering U as the following quotient:

Ȟ
p
(U ,F) := Kernel (dp)/Image (dp−1).

Each map dp is called a coboundary map or a differential map for the complex
C∗(U ,F). We often denote the kernel of dp by Zp(U ,F) and call its ele-
ments as p-cocyles. Further, the elements of Cp(U ,F) are called p-cochains
and those of the image of dp−1 are called p-coboundaries.

Now we further assume that X is a compact complex manifold and that
each open set Ui is biholomorphic to a polydisc in Cn, where n is the
dimension of X as a complex manifold, and further that all the higher
sheaf cohomology groups of any finite intersection of these open sets with
values in the sheaf F restricted to this intersection, vanish (this condition
is satisfied, for example, if one is able to find a cover such that any finite
intersection of open sets of this cover is biholomorphic to a polydisc). Such
a cover does exist for any compact complex manifold, and is called a Leray
Cover.

In all computations involving Čech cohomology of a compact complex
manifold in this book, we will work only with a Leray cover, though we
may not state this explicitly.

We next define the p-th Čech cohomology group of X with values in the
sheaf F to be the abelian group Ȟ

p
(U ,F) defined above; further, this group

is found to be uniquely determined irrespective of the choice of the cover
U , provided it is a Leray cover as required above, and hence we denote this
group as Ȟ

p
(X,F).

It can be proved that the collection of functors {Ȟi
(X,F); i ≥ 0} is a

covariant delta functor (see (A.8)). Further, it is nontrivial to prove that
this collection of functors is a universal delta functor isomorphic to the
collection of sheaf cohomology functors {Hi(X,F); i ≥ 0} (which is also a
universal delta functor as stated in (A.8)).

A.10 Algebraizability of Complex Analytic
Spaces

A.10.1 The Complex Analytic Space Associated to a
Scheme of Finite Type Over CCC

Let A be a finitely generated algebra over C. Thus A is isomorphic to the
quotient of the polynomial ring C[z1, . . . , zn] in n variables over C (for some
integer n ≥ 0) by a finitely generated ideal I = (f1, . . . , fq). Then we get
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the affine scheme X = Spec (A) which is a closed embedded subscheme of
AnC (see (A.4.3) and (A.6.3)). X is trivially a scheme of finite type over
C. Now f1, . . . , fq are polynomial functions on Cn, hence holomorphic, so
their set of common zeros is a complex analytic subset of Cn (see (A.4.4)
and (A.7.5)) which is a complex analytic closed subspace denoted by XHOL

and is called the complex analytic space associated to X = Spec (A).
Next, if X is a scheme of finite type over C (see (A.6.3)), then X can be

covered by a finite number of open affine subschemes of the form Spec (A)
mentioned in the previous paragraph, which glue together to give X. There-
fore the associated complex analytic spaces (Spec (A))HOL (as defined in
the previous paragraph) also glue together to give a complex analytic space
which is called the complex analytic space associated to X and is denoted
by XHOL.

The association X 7→ XHOL from the category of schemes of finite type
over C to the category of complex analytic spaces is a covariant functor.

A.10.2 The Coherent Analytic Sheaf Associated to a
Coherent Algebraic Sheaf

Let F be a coherent algebraic sheaf on a scheme X of finite type over
C (see (A.6.9)). For any open affine subscheme U = Spec (A) of X, by
definition the sheaf F|U (recall (A.1.1)) is the sheaf M̃ associated to a
finitely generated module M over A. Therefore we have an exact sequence
of sheaves of OU -modules

OmU
φ−→OnU −→ F|U −→ 0,

equivalent to an exact sequence of A-modules Am
φ̃−→An −→ M −→ 0

where Am denotes the free module of rank m over A (see (A.6.9) and
(A.7.5)).

The usual topology (i.e., in the complex analytic sense) is finer than
the Zariski topology, so UHOL is open in XHOL. Now φ is defined by the
matrix of the map φ̃ with entries in A. These entries can be thought of as
sections of OU over U , i.e., as polynomial functions over U . Hence they can
be also thought of as holomorphic functions over UHOL, and thus give rise
to sections of the free coherent analytic sheaf OUHOL of germs of holomorphic
functions on UHOL. Thus we get a map φHOL of coherent analytic sheaves

OmUHOL
φHOL−→ OnUHOL

and we define FHOL|U to be the cokernel sheaf (i.e., sheaf associated to the
presheaf cokernel) of φHOL. Then as U varies in X, the coherent analytic
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sheaves FHOL|U patch up together (in a compatible way—since the sheaves
F|U patch up to give F) to give a coherent analytic sheaf (recall that the
notion of coherence is local) which we denote by FHOL and define to be
the coherent analytic sheaf associated to the coherent algebraic sheaf F .

The association F 7→ FHOL from the category of coherent algebraic
sheaves over X to the category of coherent analytic sheaves over XHOL is
a covariant functor.

A.10.3 Cohomologies of a Coherent Algebraic Sheaf
and its Associated Coherent Analytic Sheaf

There is an obvious continuous map of topological spaces φ : XHOL −→ X
sending points of XHOL bijectively onto the set of closed points of X. Next,
there is a natural morphism of sheaves of rings onXHOL, induced by φ, from
the inverse image sheaf φ−1OX to OXHOL . Under the canonical bijection
(cf. (A.3))

HOMSh(XHOL)(φ−1OX ,OXHOL) ∼= HOMSh(X)(OX , φ∗OXHOL),

this morphism corresponds to a morphism of sheaves of rings on X which
we denote by φ# : OX −→ φ∗OXHOL where φ∗OXHOL is the pushforward
sheaf. Then it can be checked that

(φ, φ#) : XHOL −→ X

is a morphism of locally ringed spaces. Further, for any coherent sheaf F
on X,φ∗F is isomorphic to FHOL. Then we get natural maps of the sheaf
cohomology groups

αi : Hi(X,F) −→ Hi(XHOL,FHOL), (i ≥ 0).

A.10.4 Properties of the Associated Complex Analytic
Space

We have defined in (A.10.1) the functor X 7→ XHOL from the category of
schemes of finite type over C to the category of complex analytic spaces.
We state the following theorem that compares properties of X with those
of XHOL.

A.10.4.1 THEOREM. Let X be a scheme of finite type over C and
XHOL its associated complex analytic space. Then:

1. X is separated over C if and only if XHOL is Hausdorff;
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2. X is connected in the Zariski topology if and only if XHOL is con-
nected in the usual topology of complex analytic spaces;

3. X is reduced if and only if XHOL is reduced;
4. X is smooth over C if and only if XHOL is a complex manifold;
5. A morphism f : X −→ Y (where Y is also a scheme of finite type

over C) is proper if and only if fHOL : XHOL −→ YHOL is proper.
In particular, X is proper over Spec (C) if and only if XHOL is a
compact analytic space.

A.10.5 The GAGA Correspondence

The following fundamental results on algebraizability of complex analytic
subspaces of complex projective spaces are due to J-P.Serre (see his GAGA
paper listed under the References at the end). An earlier result of Chow
[3] also follows as a corollary.

A.10.5.1 THEOREM (GAGA Correspondence).

1. Let X be a complex analytic closed subspace of some complex projec-
tive space PnC . Then there exists a projective scheme X over C such
that XHOL

∼= X as complex analytic spaces. In other words, we say
X is algebraic or algebraizable.

2. If X and X ′ are two projective schemes over C such that their associ-
ated complex analytic spaces are isomorphic, then they are themselves
isomorphic as schemes. In this sense, the scheme X of (1) above is
unique.

3. Let X be a projective scheme over C. Then then functor F 7→ FHOL
from the category of coherent algebraic sheaves over X to the cat-
egory of coherent analytic sheaves over XHOL is an equivalence of
categories. In particular we have:

(a) given a projective scheme X over C and a coherent analytic sheaf
F̃ on XHOL, there exists a coherent algebraic sheaf F on X such
that FHOL is isomorphic to F̃ on XHOL;

(b) given a projective scheme X over C and two coherent algebraic
sheaves E ,F on X such that their associated coherent analytic
sheaves are isomorphic on XHOL, then they are themselves iso-
morphic as coherent algebraic sheaves on X. In this sense, the
coherent sheaf F of (a) above is unique.

4. For each integer i ≥ 0, and for each coherent algebraic sheaf F on X,
the natural map of cohomology groups

αi : Hi(X,F) −→ Hi(XHOL,FHOL) (i ≥ 0),

is an isomorphism.
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A.10.5.2 COROLLARY (CHOW’S THEOREM). A compact com-
plex analytic subspace X of the complex manifold PnC is canonically alge-
braizable in the sense that it is the complex analytic space associated to a
closed subscheme X of the scheme associated to this projective space (in
particular, X is proper over C).

A.10.5.3 Note. It can be shown as an application of Zariski’s Main The-
orem that if a compact complex analytic space is algebraizable, then any
algebraic structure on it is uniquely determined up to a unique isomor-
phism. This assertion is false if we do not assume compactness.
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die Modulräume Komplexer Strukturen Publ. Math. IHES 5
1960 pp. 233–291

[12] W.Fischer, H.Grauert Lokal-trivial Familen Kompakter
Komplexen Mannigfaltigkeiten Nachr. Akad. Wiss. Gottingen II.
Math. -Phys. K1 1965 pp. 88–94

[13] K.Kodaira, D.C.Spencer A Theorem of Completeness for
Complex Analytic Fiber Spaces Acta Math. 100 1958
pp. 281–294

[14] M.Kuranishi On the Locally Complete Families of Complex
Analytic Structures Annals of Math. 75 1962 pp. 536–577

[15] H.Grauert Der Satz von Kuranishi für Kompakter Komplexe
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Moduli Theory is one of those areas of Mathematics that has fascinated minds from classical 
to modern times. This has been so because it reveals beautiful Geometry naturally hidden 
in questions involving classification of geometric objects and because of the profound use 
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Analysis to achieve this revelation. A study of Moduli Theory would therefore give senior 
undergraduate and graduate students an integrated view of Mathematics. The present book 
is a humble introduction to some aspects of Moduli Theory.
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