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Preface of the series editors

The Goéttingen series in x-ray physics is intended as a collection of research
monographs in x-ray science, carried out at the Institute for X-ray Physics at the
Georg-August-Universitit in Gottingen, and in the framework of its related research
networks and collaborations.

It covers topics ranging from x-ray microscopy, nano-focusing, wave propagation,
image reconstruction, tomography, short x-ray pulses to applications of nanoscale
x-ray imaging and biomolecular structure analysis.

In most but not all cases, the contributions are based on Ph.D. dissertations. The
individual monographs should be enhanced by putting them in the context of related
work, often based on a common long term research strategy, and funded by the same
research networks. We hope that the series will also help to enhance the visibility of
the research carried out here and help others in the field to advance similar projects.

Prof. Dr. Tim Salditt
Prof. Dr. Sarah Koster
Editors

Gottingen June 2014

Preface to the present volume

Imaging means signal processing. Signal processing means information. How much
information is contained in a diffractive x-ray photon signal? How about the photon
noise? How about finite coherence of the probing beam? How about vibrations? How
much information is spoiled? And how to account for all of these effects in
reconstruction? Answers are provided in this work on a quantitative level by a
combination of experiments and numerical simulations. As we learn, the devil is in the
details and the imaging regime does matter: information encoding and decoding is
different for imaging in the optical near- and far-field. And as the algorithmic
approaches mature by incorporating the real-world non-ideal imaging conditions, we
get armed to further advance x-ray imaging...

Prof. Dr. Tim Salditt
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Abstract

The work at hand considers the imperfect, often neglected, aspects of x-ray near-
field phase-contrast propagation imaging, or in short: z-ray near-field hologra-
phy (NFH). NFH is a x-ray microscopy technique able to yield high resolution,
yvet low dose imaging of a wide range of specimen. Derived from wave optical
theory, propagation-based imaging methods rely on assumptions for the illumi-
nating wave field. These are for example the assumptions of a perfect plane wave
or spherical wave emanating from a point source or monochromaticity. Violation
of the point source assumption implies for example at the same time the occur-
rence of a distorted wave front and a finite degree of coherence, both crucial for
NFH. With the advances in x-ray focusing [1], instrumentation [2] and x-ray wave
guiding [3, 4], NFH has become of high interest, since the barriers for practical im-
plementation have been overcome. The idea of holography originates from electron
microscopy [5] to overcome the lack of high-quality electron lenses. With hologra-
phy the need for optics between the specimen and detector is circumvented. The
drawback, however, is that the measurement obtained at the detector is not a
direct image of the specimen under survey but a ,propagated version®“ of it, the
so-called hologram. The problem with the optics is replaced by another problem,
also referred to as the phase problem. The phase problem is caused by the fact that
only the intensities of a wave field can be measured but not the phase information.
The phase information is crucial for obtaining the image of the specimen and thus
needs to be reconstructed. In recent years the methodology [6-9], sometimes also
mythology [10], has been developed to reconstruct the specimen from the measured

hologram.

For a long time, the standard approach to deal with deviations from the ideal
assumptions in real world holography experiments has been to simply ignore these.
The prime example for this is the method of the standard flat-field correction.

With the advent of advanced reconstruction schemes this has changed and the ef-
fect of the deviations can be taken into account. One of the most successful schemes
is currently ptychography [11, 12]. With ptychography a simultaneous retrieval of
the illumination’s and specimen’s wave field is possible. This has allowed to ac-

count for distorted wave fronts, i.e. wave fronts deviating from the ideal spherical
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or equivalently plane waves. Ptychography was originally developed for far-field
(Fraunhoffer-regime) imaging, but it has been recently adapted to near-field imag-
ing [13, 14].

The current work drives this development further by investigating the degrading
effects on image quality and by incorporating these in the reconstruction process
of NFH measurements.

Chapter 1 presents a further analysis of the non-ideal settings encountered in real

experiments.

The main results of this thesis are presented as a compilation of four publications
in the following chapters. In Chapter 2 the reconstruction of the full diverging
wave front of the nano-focus setup GINIX at the beamline P10 at PETRAIII,
DESY is presented. The reconstruction is carried out with two independent near-
field-imaging schemes. The results are in good agreement and allow for a full
characterization of the focal spot.

Chapter 3 surveys the important question: How many photons are needed to reach
a certain resolution? In a numerical experiment, near- and far-field x-ray propa-

gation imaging are compared in terms of their fluence-resolution relationship.

Chapter 4 extents the near-field reconstruction scheme developed in Chapter 2 to
include the effects of partially coherent illumination. The scheme is extensively
tested in numerical experiments. The results indicate a robust recovery of the
modal structure of the illumination, in terms of partially coherent modes. Based on

the reconstruction, practical quantities as the coherence length can be computed.

Chapter 5 describes a minimal ptychography algorithm, able to reconstruct illu-
mination and specimen from two measurements. The algorithm has been tested in

simulations and on experimental data obtained at the ESRF beamline ID16a.

The thesis closes in Chapter 6 with a summary and outlook.



1. Concepts of Near-Field X-ray

Phase-Contrast Imaging

1.1. On the use of x-rays

The goal of microscopy and, in particular for this thesis, hard x-ray microscopy
is to provide high resolution, high contrast quantitative images. X-ray microscopy
has the potential for high resolution due to small wave length. With the pene-
tration power of hard x-rays the internal structure of a specimen is accessible. In
combination with computed tomography the internal 3d structure of a specimen
can be visualized [15, 16]. But there are challenges coming ahead.

Whenever you perceive an image, this image is distorted to some degree. This starts
with the illumination the image is being acquired with and ends with imperfections
in your eye. The illumination is also called probing beam or just probe in this
thesis. Consider a generalized imaging system of a source, optical elements and

some detection device.

Ideally the probe is emitted by a point source, but this is never the case in the real
world. The consequence is that not a pure spherical wave is emitted and effects of
partial coherence arise. For imaging applications the probe is modified by optical
elements. The uncertainties in the fabrication process of these element lead to
deviations from the ideal profile. These give rise to phase distortions in the probe,

which evolve to measurable intensity variations.

The interaction of probe and object is subjected to simplifying assumptions. In the
context of this thesis object-probe-interaction is treated as a linear operation. This
means any multiple scattering interactions are neglected. After passing through
the specimen the probe carries information thereof. This wave field is then also

called the exit wave.

The final stage in the imaging process is the detection of the exit wave. The process

can be non-linear and of statistical nature.
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Mathematically the imaging system can be described by
I=A(z)+e, (1.1)

where [ is the measured intensity image, = the true complex valued object and ¢
some statistical distortion: noise. The distortion operator A can be seen as a func-
tion modeling the distortions in an effective way e.g. by blurring with a Gaussian
filter. In a different way, A can be used to model the propagation through the
optical system in a step-by-step approach. In this way it is possible to incorporate
the (measured) properties of the optical elements in the image formation process.
Section 1.3 illustrates the effects of A and € on I. In order to reach best resolution,

the effects of A and e have to be considered.

The aim of this thesis is to develop strategies to take the effects of a distorted
(Chapter 2), partially coherent probe (Chapter 4) into account. This is achieved
by characterization of the probe. Characterization means, in particular for this
thesis, carrying out the phase reconstruction for the probe, which yields access to
the complete complex valued wave field. The influence of ¢ is further surveyed in
Chapter 3.

The imaging scheme considered in this thesis is propagation-based near-field phase-

contrast imaging using nano-focused hard x-rays.

Propagation-based imaging eliminates the need for additional optics between the
specimen and the object. The wave field propagates according to free space propa-
gation. The intensities of the propagated wave field, are measured by a detector. In
order to enable this kind of image formation, the probe has to satisfy requirements

on monochromaticity and coherence.

Two important cases, i.e. optical regimes have to be distinguished here:

(i) Far-field coherent diffractive imaging (CDI) [17] which records the Fraunhoffer
diffraction pattern, i.e. the Fourier transformation.

(ii) Near-field imaging or near-field inline holography (NFH) records the diffraction
pattern in an intermediate optical regime [5, 18-20], the aforementioned hologram.
The spatial frequencies in the wave field mix, but are not fully decoupled as in the

far-field case.

In both cases, phase contrast, i.e. the contrast generated by the phase shift, not by
the absorption of matter, can be exploited. This is of great advantage when hard x-
rays are used. The nanometer resolution obtained with hard x-rays is based on the
dualism of high penetration power paired with the large phase shift on nanometer
length scales, see section 1.2. Still, it is only a weak interaction with matter. This
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makes it more challenging to produce aberration free optics. The image formation
process does not need optics, but in order to generate a magnification in NFH a
diverging probe is necessary. The diverging probe is achieved by focusing the x-
rays using for example Kirkpatrick-Baez (KB) mirrors [21] or compound refractive
lenses (CRL) [22].

The need to reconstruct the probe gains more importance with the advent of the
4th generation x-ray sources. Focusing will not be limited by the available coherent
flux [23], but rather by the optics in use. Understanding the optics by characterizing
their effect on the beam is necessary both for providing hardware [24] or software

solutions to improve imaging quality.

These new sources are x-ray free electron lasers (XFEL) [25-28] and the future
upgraded 3rd generation synchrotron sources (PETRA IV at DESY, APS-U at Ar-
gonne National laboratory, EBS at ESRF,...). The first 4th generation synchrotron
facility MAX IV (Lund, Sweden) has begun operation [29]. The 4th generation
sources operate at the diffraction limit, thus their brilliance is extremely increased.

The brilliance is a measure of quality for x-ray sources. Figure 1.1 shows the peak
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brilliance (photons emitted in a given solid angle per beam area per second per
0.1% bandwidth) of different sources.

Since the capacity at the large scale facilities is limited, there have been ef-
forts to transfer some of their capabilities back to the lab. The compact light
source (CLS) [30] is a miniature version of a synchrotron. It is commercially avail-
able and the first reasearch group operates this new kind of source [31]. In the
same manner compact XFEL (CXFEL) are under development [32].

The increased brilliance enables the experimental access to even shorter length
and time scales. This fosters the development of new experimental strategies as
diffract before destroy [33]. Accordingly, the need for adapted beam characteriza-

tion schemes grows, cf. Chapter 5.

1.2. Imaging modalities

X-ray microscopy can be realized in two ways with or without lenses. Before
the lensless implementation for NFH is discussed we briefly review a lens-based
x-ray microscope. Figure 1.2 shows the sketch for a transmission x-ray micro-
scope (TXM) (a) and a lensless propagation-based x-ray microscopy setup with

synchrotron radiation (b).

For the TXM, an objective lens is placed after the specimen S which forms the
image I on the detector. The image formation follows ray optical principles. The
objective lens is often implemented as a Fresnel zone plate (FZP) [34]. The resolu-
tion of FZPs is limited by the width of the outermost and smallest fabricated zone.
FZPs are fabricated with lithographic methods, this limits the maximal achievable
optical depths, due to limitations in the manufacturable aspect ratios. This gives
in turn an upper bound for the energy range in which FZPs can be used. In order
to accumulate a certain phase shift some optical thickness of the FZP is necessary.
The optical thickness necessary for hard x-rays can thus hardly be achieved. A
way to fabricate optical thick lenses is the use of layer deposition methods. The
lenses produced this way are called multi layer Laue lenses (MLL) [35, 36]. An-
other drawback is, that FZPs/MLLs are partly absorbing, this means the signal
at the detector gets attenuated.

Thus by removing the objective lenses from the beam’s path one removes all arti-
facts and limitations introduced by these. NFH provides an implementation of this
idea. In order to reach highest resolution with this technique, a diverging illumina-

tion has to be generated. For that a small as possible secondary source has to be
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(a) Lens-Based: Transmission X-Ray Microscope .
Detection

1
Condenser Objective prane

® 2w

(b) Propagation-Based: Near-Field Holography
F
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(c) Parallel Beam

v
4
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Figure 1.2.: Setup sketch for different microscope types. Lens-based x-ray transmission
microscope (a) employing Fresnel zone plates as condenser and objective lenses. Near
field holography setup (b) with highly focused x-rays by a Kirkpatrick-Baez (KB) mirror
system. The parallel beam geometry (c) illustrates the near and far-field regime. The
Fresnel scaling theorem indicates the equivalence between (b) and (g).

created for optimal approximation of a point source. This can be implemented by
different focusing techniques as mirrors, notably in KB geometry [21, 37], or com-
pound refractive lenses (CRL) [38]. Using these focusing devices introduces again
distortions in the probe. CRLs yield a good beam in terms of distortions, but the
intensity in the focused beam is currently not sufficient for high throughput imag-
ing. On the other hand the gain in focusing with KBs is high, but the probe itself
shows a contrast rich, structured background cf. Fig. 2.1 and Fig. 5.2. Another way
to create an even smaller secondary source is the use of a waveguide (WG) [39],
which acts as spatial and coherence filter. The probe’s distortions are smaller than
for CRLs, but this holds for the flux as well.

In the propagation-based near-field holography setup (b) S is placed in a distance

z1 behind the location of the secondary source, denoted as F. The detector is
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placed in a distance z9 behind S. The signal evolves now by free space propagation

from S to the detection plane.

The propagation to the detection plane is treated within scalar wave theory. It is

described by the Fresnel free space propagator
Dy (o) = FL[Fo] - H]. (1.2)
H is the propagation filter
H =exp ((—im)/(2Fr)(k2 + k7)), (1.3)

where k, = 2 n, /N, and k, = 2 n, /N, are spatial frequencies in Fourier space
with ng y € [Nz y/2 ... Ngy/2], Ny, are the dimensions of the discretized image,

F the Fourier transformation and
Fr = Az?/(\2) (1.4)

is the Fresnel number with respect to one pixel of size Az in the sample plane,
wave length A and the propagation distance z. The measurement at the detector
is the hologram of S. The complete analysis is presented in standard texts [40-43]
and especially for x-rays [44]. Dg, can be efficiently computed by a multiplication
in Fourier space of the wave field in the starting plane of propagation with H, cf.
(1.2).

The propagation filter H can be written in different forms e.g. implicitly or explic-
itly as a function of z. Also the definition of k; , depends on the definition of the
Fourier transformation in use — in the context of computer science the factor 7 is
omitted. In this work H is written as function of Fr. This allows to consider the
propagation in terms of optical regimes, independent from the actual parameter

values of an experiment.

The (de-)magnification in (b) is controlled by z; and the object to detector distance
2z in terms of the geometric magnification M = (224 21)/z1. This allows to control
the field of view. Ideally, the resolution is limited by the size of the secondary
source. But other influences, in particular vibrations in the setup, degrade the

resolution.

While the TXM can work with incoherent x-rays, NFH needs at least partially
coherent x-rays, so that the hologram can be formed. This is a stronger requirement
on the illumination, but it also comes with the advantage that phase-contrast

imaging is enabled by NFH in a natural way. Looking at the complex valued index
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of refraction n = 1 — § + i3, the real part § can be identified as the cause for
the phase shift when a wave passes through a medium and the imaginary part g
is responsible for the attenuation of the wave’s amplitude. At typical energies for
hard x-ray considered here, § is multiple times (up to magnitudes) larger than S.
For example at an energy of 8keV (A = 0.015nm) carbon has § = 7.15 - 107% and
B =1.19-10~8 [45]. In classical absorption imaging, the attenuation caused by 3 is
the contrast giving mechanism. For a thin specimen, likewise when the resolution
element gets small, the attenuation is negligibly small. The phase shift is due to
the larger 0 not negligibly, but it is not directly accessible by the measurement, due
to the high oscillation frequency of the x-rays. By propagation the phase shift gets
encoded in measurable intensities. This effect is realized by the self interference of
the wave field. For that to happen, a deterministic phase relation in the probe is

necessary, which is guaranteed by a certain degree of coherence.

TXM can be extended to phase-contrast by inserting phase shifting plates in the
back focal plane of the objective [46, 47] (Zernike phase-contrast). For this contrast
mode TXM also requires a certain degree of coherence. A more detailed study of

the coherence requirements for NFH can be found in Appendix A.

1.3. Propagation and imaging artifacts

The image formation process in NFH is described by the free space Fresnel propa-
gator Dy, as given in Eq. (1.2). The numerical implementation of D, bears some
pitfalls. For example the discrete Fourier transformation (DFT) is periodic. Wave
fields subjected to propagation should thus be padded and windowed [48, Chap-
ter 4.6] to reduce DFT artifacts. Another important aspect is the sampling of the
exponential filter function Eq. (1.3). An overview of different propagation tech-
niques and associated sampling is given in [49]. The sampling of Eq. (1.3) must be
chosen such that the phase jump between two adjacent sampling points, i.e. two
adjacent pixels, does not exceed w. Thus the sampling of H should be chosen as

Az > %, (1.5)

where L is the physical side length of the wave field in its starting plane of prop-
agation. Writing L = NAx and using the definition of Fr yields
1

N2 (1.6)
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Thus smaller Fr need more pixels IV to properly propagate. If N gets prohibitively
large for computation (N > 20000) one can make use of the properties of the
convolution. Equation (1.2) can be equivalently written as a convolution ® in real

space

DFr(.) = e ®h
=F L[ Fle] F[h]]. (1.7)

F [h] can be analytically computed and yields H. H is sampled in Fourier-space,
on the other hand h is sampled in real space, Fourier transformed and then used
for multiplication in Eq. (1.7). As a consequence, the sampling criterion changes
to

A:vg% = Ng%. (1.8)
The large geometric magnifications occurring in NFH are not simply treated in
the numerical implementation of the propagation. Some propagators can handle
magnifications of M < 2 [50]. Thus in general the Fresnel scaling theorem [44,
App. B] is applied which carries out the propagation with effective values for
the propagation distance zeg and pixel size Azeg, i.e. demagnified detector pixels
AZdet,

2129 AZget

d Azxeg = . 1.9
z1 + 22 o et M (1.9)

This rescaling amounts to a transformation from diverging beam to parallel beam
geometry as depicted in Fig. 1.2(c). In parallel beam geometry all divergence effects
are lacking, since the rescaling removes the spherical wave component. Important
wave field properties as the focus size can not be retrieved in the parallel beam

geometry.

The sampling of the propagated wave field is important, as well. The data analysis
in Chapter 2 is carried out in a non-standard way since the propagation is done
in the lab frame. In this particular case the diverging probe of a nano focusing
setup, i.e. the propagating wave field, has been reconstructed. The requirements
on the sampling of H could be easily satisfied for the given Fr. The strong phase
change makes it necessary to sample with a smaller pixel size. Implementing the
propagation via the convolution, either using h or H, has the advantage of a
numerically fast implementation. This is of great advantage for example in an
iterative phase-retrieval process. On the other hand sufficient sampling must be
ensured. The wave equation can be solved by other means as well, for example
by finite differences [51] or advanced discretization of the transfer matrix [52].
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These schemes can handle different samplings in source and target plane, but are

numerically more costly.

Being sure, that the propagation is appropriately handled, we can turn to the differ-
ent effects which degrade image quality. The image formation process is subjected
to several sources of distortion. The following illustrates the effects of a distorted,

polychromatic and partially coherent illumination and noise on a hologram.

Figure 1.3 shows the influence of noise for given fluence p (the mean number of
photons per pixel in the sample plane), finite coherence length ¢, finite spectral
bandwidth A and distortions in the illumination, modeled by Zernike polynomi-
als Z [40] on the measured hologram My, where X' denotes one or a combination
of distortions. The parameter values have been chosen for illustration purposes. A
detailed study for the influence of p has been carried out in Chapter 3 and for £ in
Appendix A. Details on the simulation are given within the respective chapters.
We start with a phantom (a) of a pure phase object from which we calculate the
ideal hologram M;q (b) for Fr = 1073, The hologram M, spoiled by Poissonian
noise for u = 100 ph/px is shown in (¢). Close inspection shows the grainy struc-
ture introduced by the noise. The partly covered image illustrates the deviation
of M, to M;q by division of both. The deviations exhibit the grainy structure as
well. These are basically uncorrelated, pixel wise distortions. The finite coherence
length £=100 px (d) has a blurring effect on M¢. We note that substructure in the
fringes is missing and the finer, further out lying fringes loose their visibility, cf.
Fig A.3. The deviations manifest themselves as a structured speckle like pattern.
The influence of non monochromatic illumination is shown in (e) for AA/\ = 1072.
Using the propagation of errors op, has been calculated, i.e. Fr = 1073 £ 107°.
The interval [Fr — 20, Fr 4+ 205,] has been equidistantly sampled in 41 steps. For
each of these Fr a hologram has been calculated and weighted according to a nor-
malized Gaussian distribution with ¢ = op, before summing up. The distortions
look similar as in (d) but less intense. A phase-distorted beam using the Zernike
polynomials Z; with J = {1,4,7,8,9} modeling respectively piston, defocus, ver-
tical coma, horizontal coma, and spherical aberration has been used to simulate
My (f). Each of these distortions has been treated as an incoherent contribution
to the hologram, cf. Chapter 4. The deviations show more structure of deviat-
ing fringes than in (d) or (e). In panel (g) all distortions are applied to M;q to
yield M} . ¢ z. The A values next to the deviation plot denote the £2-norm of the
difference of My to the ideal hologram

A= > ||Mx— M| (1.10)

V pixels
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(a) ¢ (rad.) (b) I(a.u.)Mid

Figure 1.3.: Examples for imperfect holographic measurements. The phantom (a) is
propagated with the Fresnel propagator Dp, to yield the ideal measurement of the holo-
gram M;q (b). The deviation to M,q is illustrated by division of the corresponding Mx
in the partly covered image shown in panels (c)—(g). A denotes the £*-error to M;q. The
following panels depict the influence of noise M, (c) for w = 100 ph/px, partial coher-
ence Mg (d) with & = 100 px, non-monochromatic radiation My (e) with AN/X = 1072
and beam distortions Mz (f) modeled with Zernike polynomials with J = {1,4,7,8,9}.
The superposition of all distortions M, ¢,z is in shown in (g). The phase reconstruction
of (g) is shown in (h) using an iterative phase-retrieval algorithm. The measurements are
all shown on the same color bar corresponding to M;q (b). The scale bar indicates 50 px.
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We note here a rather mild influence of £ and A. The beam distortions Z show
a stronger impact. The largest source of image degradation stems in this setting
from the noise induced by the small fluence p. Increasing p leads to a reduction
of the error, cf. Chapter 3.

Finally, the effect on the phase reconstruction can be visualized. The phase recon-
struction obtained by an iterative method calculated from M} . ¢ 7z is shown in
(h). Note, the reconstruction has assumed ideal conditions, the non ideal state of
the input has not been taken into account. Surprisingly, NFH still shows a recog-
nizable reconstruction of the phantom (a). The reconstruction clearly suffers from
the noise and missing contrast in the fringes, visible by the loss in resolution. This
exemplifies already some of the results being presented later.

The Zernike polynomials, here used for beam distortions, are well suited to de-
scribe the overall properties of the illumination but not the fine scaled distortions
encountered in NFH, see for example Fig. 2.1 and Fig. 5.2. These distortions stem
from imperfections — height deviations of the ideal shape in the order of 1 nm and
less — of the mirrors used for focusing. The height deviations act as pure phase
objects. The phase shift develops in some measurable intensity by the same phase-
contrast mechanism as before but now as an artifact. The actual measurement
of the object’s hologram is spoiled by these artifacts. The standard approach to
remove these artifacts is to divide the measurement of the object by the measure-
ment of the illumination, i.e. the standard flat-field or empty-beam correction. The
division is carried out in intensities, which obviously can not be correct, since it
neglects the complex-valued nature of the wave field. The error of this division has
been previously illustrated [53] and mathematically analyzed [54]. In the case of a
point source the division is correct, but not for extended sources. The error gets
larger for extended sources, where higher spatial frequencies can be present in the
illumination. The result of the division is worst if large frequencies (fine details)

are present in object and illumination.
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In x-ray holographic near-field imaging the resolution and image quality depends
sensitively on the beam. Artifacts are often encountered due to the strong focusing
required to reach high resolution. Here we present and compare two schemes for
reconstructing the complex-valued and extended wavefront of x-ray nano-probes,
primarily in the planes relevant for imaging (i.e. focus-, sample- and detection
plane). Firstly, we use near-field ptychography based on scanning a test pattern
laterally as well as longitudinally along the optical axis. Secondly, we dispense
of any test pattern and reconstruct the wavefront only from data recorded for
different longitudinal translations of the detector. For this purpose, we present an
optimized multi-plane projection algorithm, which can cope with the numerically
very challenging setting of a divergent wavefront emanating from a hard x-ray
nanoprobe. The results of both schemes are in very good agreement. The probe
retrieval can be used as a tool for optics alignment, in particular at x-ray nanoprobe
beamlines. Combining probe retrieval and object reconstruction is also shown to

improve the image quality of holographic near-field imaging.

2.1. Introduction

Preparation of the x-ray probe for coherent imaging applications is indispens-
able in order to reach high resolution and quantitative contrast. This includes
control of focusing, coherence and wavefront. A particular case in point are the
quasi-spherical wavefronts required for holographic full-field tomography [55-57].
In these high resolution experiments, propagation images are recorded in a di-
vergent beam to achieve the required magnification. Hence nano-focusing [58] is

required, even though the sample is placed in the defocus plane located several
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milli- to centimeters behind the focal plane. In order to process the raw images
in propagation imaging, before phase retrieval is applied, idealizing assumptions
are made on the beam, such as point-source emission or distortion-free wavefront.
The validity of such assumptions has recently been investigated, showing that they
lead to reduced resolution and image quality [53, 54]. Aiming at more appropriate
schemes to treat the data, recent work has introduced the concept of simultaneous
reconstruction of probe and object to near-field (propagation) imaging [13, 14].
This was achieved by a suitable generalization and extension of the ptychographic
algorithms initially developed for confined beams (typical for far-field diffractive
imaging) [59-64]. In [13, 65|, the object was scanned transversally in the extended
wave field behind a wavefront diffuser, in order to increase the diversity of the
probe. Thus, the wavefront modified and not the 'natural’ probe of the setup is
recovered. Contrarily, [14] used the diversity generated by lateral and longitudinal
shifts of the object in the beam to recover the natural probe of the setup along with
the object. Since beam reconstruction in one plane gives access to the wavefront in
all other planes, based on numerical propagation, one may wonder why a near-field
reconstruction is needed at all. Since a few years already, x-ray nano-focus optics
have been characterized by far-field ptychographic means, scanning an object in
or near the focal plane, see for example [61, 62]. While this is correct in principle,
we show in this study that the small distortions in the probe which significantly
hamper the image quality of full-field imaging can only be properly 'probed’ in the
defocus plane. Since the mirror height deviations are almost atomically flat, the fo-
cal field distribution differs only in the extreme tails up to 10 pm in the focal plane
of the probe from the ideal intensity distribution. Therefore, probe reconstruction
from far-field data measured with a detector with large pixel size e.g. 172 pm for a
Pilatus (DECTRIS) detector, does not cover the field of view (FOV) in the focal
plane to include the tails. Thus the propagation of such a reconstructed probe in
the near-field does not accurately account for the characteristic fringes of the KB
pattern, as measured with a high resolution detector in the near-field. Contrarily,
near-field probe retrieval is perfectly able to accomplish this. To this end, we pro-
pose: If you measure in the defocal plane, reconstruct in the defocal plane. At the
same time, we are interested in a complete characterization which also includes the
field in the focal plane. This was previously not accessible, since in the data of [13,
14] the FOV is cut out from the central part of the probe. This is not sufficient to
obtain the complete information on the probe, i.e. it is for example not possible
to reconstruct the size of the focal spot, which is obviously an essential informa-

tion for the maximum achievable resolution. In this work we record the complete
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decay of the probe at the holography end station GINIX (Gottingen Instrument
for Nano-Imaging with X-rays)[2, 66] at the P10 beamline of Petra III (DESY,
Hamburg), and use it for reconstruction based on an improved multiple magni-
tude projections (MMP)-scheme [53, 67, 68] as well as the near-field ptychography
(NFP)-scheme [14]. We recorded two independent data sets: One for NFP with
the afore-mentioned lateral and longitudinal shifts of an object with a fixed focus
to detector distance. The other set for MMP consists of a detector scan along the
longitudinal direction, i.e. the focus to detector distance is varied. The fundamen-
tal difference in these data sets (in view of probe reconstruction) is the way the
data diversity is introduced. In NFP a mixing operation is performed of probe P
and object O, while for MMP the changes in the distance of the detection plane
introduce diversity. MMP can not only be exploited for probe reconstruction but
also for object reconstruction, as demonstrated before in other wavelength regimes
[67, 68].

The two independent approaches yield probe reconstructions which are in very
good agreement. Beyond reconstruction of the probe, the presented scheme bears
significant advantages also for imaging, i.e. reconstruction of objects. Note that
most alternative phase retrieval algorithms in the near-field setting, which also
exploit longitudinal scanning (diversity) such as the contrast transfer function
(CTF) reconstruction [20] or the transport of intensity equation (TIE) [69, 70],
rely in on assumptions (pure phase object, slowly varying phase, linearity of the
propagation) of the wave field under reconstruction, which limit the range of their

applicability. None of these restrictions apply to the MMP or NFP scheme.

Section 2.2 introduces the experimental setup and the measurement schemes. In
Sec.2.3 an optimized version of the MMP-algorithm is introduced, suitable for
diverging beams and noisy data. Section 2.4 compares the wave field reconstruc-
tions of NFP and MMP, both in and around the focal plane and the far-field. We
close the paper in Sec. 2.5 with some practical considerations, how the presented

methods can be used for nano-focus optimization and alignment.

2.2. Experimental setup

The experiment was carried out at the nano-focus end station (GINIX) of the
P10 undulator beamline [2] with photon energy set to 8 keV by a Si(111) channel-
cut monochromator. Figure 2.1 (a) shows a sketch of the setup. A set of slits
allowed to control the illuminated area of the Kirkpatrick-Baez (KB)-mirrors,

and hence also the divergence of the focused beam. The different measurement



16 Probe Reconstruction for Holographic X-ray Imaging

a) MMP-translations

R

NFP-translations
<«

beamline exit KB-mirror

slits
X-rays »
Y mirror entrance
slits
L%
€
£
[0
Q
]
®
3
-
¥ 3
. + *4 E
S 218
Bt "4 <
+ + hdata Wl &
0.6 b . h fit FWHM=266.09 nm Y =
3.51% | + vdata g
04 : v fit FWHM=413.75 nm Y §-1o
02 4 05 0 0.5 1 5 0 5
Distance (um) Distance along mirror (cm)

Figure 2.1.: Experimental setup. (a) Basic sketch of the nano-focus instrument (GINIX
setup at P10 beamline PETRAIII) and data acquisition scheme. The monochromatic
beam is focused by a KB-mirror system, placed 88 m upstream from the undulator source.
The beam size in front of the KB is controlled by two pairs of slits. For the MMP scheme,
the empty beam intensity distribution, represented by a P, is recorded at different defocus
positions z (blue translations) along the optical axis with no additional object in the
beam path. Contrarily, the NFP scheme (red translations) requires an additional test
object placed (Siemen star) at varied defocus positions zo1 and an overlapping scan
in transversal direction, while the detector distance is fixed. (b) Example of the beam
intensity distribution recorded for z = 0.3346 m for 400 x 400 pm? slit opening. Scale bar
indicates 100 pm. (c) Intensity distribution along the principle axis (horizontal, vertical)
in the focal plane, as simulated numerically by a Huygens principle approach [71] for a
100 x 100 pm? slit settings, and the measured height profile of the mirrors. (d) Deviations

from ideal height profile for the vertical focusing mirror, shown for original and upgraded
mirror.

schemes are color coded in red (NFP) and blue (MMP). The intensity patterns
were recorded by a scintillator(LUAG) coupled CCD (PCO pco.2000) with 20x
magnification microscope lens, resulting in an effective pixel size of 370 nm. The
detector was placed on a motorized stage following the beam’s optical axis. For
MMP, empty beam recordings were acquired at 4 detector defocus distances of
z = {0.3643, 0.3542, 0.3443, 0.3346} m with an exposure time of 0.1s. This se-
ries of measurements was obtained for the following settings of the beamline slits:
50 x 50, 100 x 100, 250 x 250, 250 x 400, 400 x 400 (horizontal(um) x vertical(pum)).
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Parameter MMP NFP Unit
Beamline exit 100x100 100x100 nm?
slits (hxv)

Mirror — slits 400x 500 220% 270 nm?
(hxv)

201 - {80, 85, 90, 94} mm
z {33.5, 34.4, 35.4, 36.4} 37.2 cm
Pixel size 37 {80, 85, 90, 93} nm

Table 2.1.: Experimental parameters for the MMP and NFP recordings.

A typical measurement is shown in (b). For NFP, an additional object is required.
Here we used a Siemens star test pattern with 100nm thickness of Tantalum
(NTT-AT). The object was placed at different defocus distances zg1, see Tab. 2.1.
At each distance, a lateral scan with step size of 5um of 4 x 4 points was per-
formed with 40 ms exposure time. The detector was kept at a fixed position at
z = 0.3723 m. The KB-mirrors have been recently upgraded by state of the art
elastic emission machining (EEM) polishing [72], resulting in a height deviation
(from the ideal ellipse, peak to valley) of oggure = 0.891nm, 0.88nm and a root-
mean-square-roughness oyough, = 0.09nm, 0.1nm, for the horizontal(h) and the
vertical(v) mirror, respectively, see height profile function in (d). This corresponds
to a 5.4(h), 15.8(v) fold improvement for the figure errors and a 4.4(h), 1.5(v) fold
improvement for the roughness over the initial values [2, 66]. Note that for these
near atomically flat reflecting surfaces, the focal intensity distribution becomes al-
most identical to the ideal case, over four orders of magnitude in the intensity, as
shown in Fig. 2.1 (c). Contrarily, the flat-field pattern still shows the characteristic

stripes originating from the height deviations.

2.3. MMP - algorithm

Reconstruction of a nano-focus probe P amounts to the reconstruction of a com-
plex valued wave field ¥ from intensity measurements, i.e. it is a perfect example
of solving the phase problem. In comparison to [53], we use here an optimized
algorithmic approach for MMP based on [73], which we will call sequential relaxed
averaged alternating reflections (sSRAAR), since the projection on the measure-

ments is carried out in a sequential manner. An iteration of SRAAR is given by
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J
Won = [T 2 (Rs(Rar, (W) 4 ) + (1= B P (W), (21)

i=1
where Rg/a, (V) = 2P/, (V) — ¥ denotes a (mirror) reflection by a given con-
straint set, and ¢ € {1...J} enumerates the intensity measurements M;. J influ-
ences the accuracy of the reconstruction, already for J = 2, given that the change
in Fr is sufficient, we can obtain reconstructions for W. Increasing J further in-
creases accuracy, but for the expanse of more costly numerical operations. The
parameter 3, controls the relaxation, and is varied as a function of the iteration

number n according to

8, = exp (— (n/ﬁs)?’) Bo + [1 —exp (_ (n/BS)S)] Bunax (2.2)

where 3y denotes the starting value, Siax the final value of 3,, and s the iteration
number when the relaxation is switched. This relaxation strategy follows [73] (Eq.
37). A value of fy close to 1 helps in the beginning to efficiently sample the possible
solutions, during the later iterations the smaller 3,, helps to draw the weight on

the measurements. The projection on the measurements Py, is given by
Py, (¥) = Doy, (Ap, [Dre, (9))) (2.3)

where Ay, is the actual adaptation of amplitudes, given by

2 2
A0y = [1o | — 20 g 2 Ny (e

(|\IJ|2+5)1/2 (\\I/\2+e)3/2

which follows [74], € is a constant to prevent a division by 0 in the order of magni-
tude of machine precision. Note that this implementation of the projection on the
measurement constraint introduces a smooth perturbation, which improves numer-
ical stability [73]. The propagation to the individual measurement planes is per-
formed by the Fresnel propagator Dp;, for a given Fresnel number Fr = Ax?/(\z)

with respect to the pixel size Az,

Dee(W) = F* [F[W exp ((—im)/(2Fr) (k2 + K2)] (2.5)
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where k. and k,, are frequencies in Fourier space. The operator Pg applies a support

constraint in the focal plane, it is given by
Ps(¥n) = |¥y,| - exp [i(arg (V) + arg (¥n))] , (2.6)
where W/ is given by
U =F (S -F(|¥,]) . (2.7)

This is basically a back propagation to the focal plane neglecting the curvature

followed by application of a support constraint.

The support constraint S is defined as

1 for /g2 + ¢2 < q.
S = Y (2.8)

0 else

where ¢, and ¢, denote coordinates in the focal plane and g. the cut off value.
The hard cut-off can be relaxed by using a Gaussian window. Applying S directly
on F (¥,) leads to a propagation by a unknown distance, since the curvature is
not exactly known in the beginning of the reconstruction process. This problem
is circumvented by taking the modulus. The algorithm and the projectors in use
have been tested in a numerical experiment, for details confer to the supplement

material.

2.4. Results

The MMP algorithm described in Sec. 2.3 was applied to the data, after performing
the following raw data processing steps: After subtraction of a dark image the
intensities were scaled to mean amplitude 1 and then aligned to the center of mass
of the contour of the beam. Other alignment schemes like Fourier space registration
[75] do not work for this kind of data, due to the divergence.

The pixel size of all distances has been reduced by interpolation to 37 nm. This high
sampling is necessary for artifact free Fresnel propagation, in particular to account
for the rapidly varying chirp functions of the spherical contribution of the phase,
otherwise the propagation in between the measurement planes is inconsistent. Note
that in contrast to many previous treatments and the NFP implementation be-

low, the MMP data is not transformed to an equivalent parallel beam geometry
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Figure 2.2.: Probe reconstructed from MMP for the 400x400 pm slit setting, showing (a)
amplitude and (b) phase, in the detection plane at 0.3643 m. Scale bar indicates 100 pm.
The corresponding propagation profile is also shown in (c) intensity (logarithmic) and
(d) phase along the optical axis £10 mm around the focal plane in the vertical direction.
Pixels with intensity values smaller than 107° of the maximum value were masked out
with white.

(by Fresnel scaling theorem), but treated in the direct coordinate system. After
preprocessing the data were used as input for SRAAR presented in Sec. 2.3. The pa-
rameters for SRAAR were 5y = 0.99, Bmax = 0.75, 5s = 150. sSRAAR was iterated
2000 times starting from the measured amplitudes in the plane at z = 0.3643 m
multiplied with the phases of a Gaussian beam, giving a first guess for the curved
wavefront. For the reconstructions we assumed wy = 250nm, where wy is the
waist of a Gaussian beam. We chose for the support constraint g, = 200 wy. Fig-
ure 2.2 shows the result for the typical imaging configuration of the exit slits with
400 x 400 pum?. In this configuration, the mirrors are fully illuminated, i.e. the
maximal length of the mirrors is illuminated. This correspondingly highest nu-
merical aperture results in the smallest focal width of 192(2) x 170(1) nm?(hxv),
as determined from the reconstructed focus via fitting a Gaussian function with
linear background. The reconstructed probe wave field is shown in Fig. 2.2 (a) am-
plitude and (b) phase at the detection plane at z = 0.3643 m. Assuming that the
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Figure 2.3.: Probe reconstructed from NFP for the 100 x 100 pm? slit setting, showing
(a) amplitude and (b) phase in the detection plane at 0.3732m. Scale bar is 50 pm. The
focus intensity (c) and phase (d) are obtained by Fourier transformation. Scale bar is
5um. The corresponding propagation profile is also shown in (e) intensity (logarithmic)
and (f) phase along the optical axis £10 mm around the focal plane in the vertical
direction. Pixels with intensity values smaller than 107° of the maximum value were
masked out with white.

far field approximation holds, which is well justified in view of the small Fresnel
number (Fr = 2.5-107%), we apply the Fourier transform to recover the probe in
the focal plane. By application of the Fresnel propagator, we can then simulate
the propagation around the focus, see (c) and (d).

Next we present the NFP results and a corresponding comparison. A detailed
description of NFP can be found in earlier publications [14, 76]. The preprocessing
steps for the NFP are as follows: The holograms were dark field corrected. In a next
step the holograms have been aligned in transversal direction via a Fourier space
registration [75] using the encoder positions of the scanning motors as starting
guess. For the longitudinal alignment i.e. the correction of propagation distances,
an auto-focus algorithm [77] has been used. The reconstructions were obtained
after 25 NFP iterations. The object O was initialized with uniform amplitude 1 and
phase shift of —0.2rad. In the first 10 iterations the constraint for negative phases
has been applied to the object’s guess. P was initialized by a back-propagated flat
field. The feedback parameter for P was chosen as f = 0.1 and a = 0.2 for the

object. Note that the necessary Fresnel scaling is applied on the current guess of
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Figure 2.4.: Comparison of reconstructed (normalized) intensity profiles of NFP and
MMP in the horizontal (a) and vertical (b) direction of the focal plane, for the
100 x 100 pm? slit setting. Using the series of slit settings we illustrate the depen-
dence of focus size on slit opening for horizontal (c) and vertical (d) direction. Us-
ing the model function Eq. (2.9) for the focus width, the size of the source’s image
iS @recon. =182(9) x 169(23) nm?. (d) Same as (c) with additional and completely inde-
pendent results for the focus size, as determined by scanning a waveguide (with entrance
size 50nm).

O before projecting on the measurements by resizing the reconstruction matrices.

Figure 2.3 presents the results of the NFP reconstruction, for a 100 x 100 pm?
slit opening, and Fig. 2.4 the results of NFP and MMP in direct comparison,
evaluating the reconstructions along the principal axis and the corresponding focal
spot sizes for horizontal (a) and vertical (b) direction. Good agreement between
both completely independent methods is observed, concerning in particular the
central peak and the first side oscillation. As measure for the focus size we use
the full width at half maximum (FWHM) of a Gaussian with linear background
fitted to the central peak. Again, we find good agreement between NFP and MMP
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with 284(1) nm to 277(3) nm horizontally and 363(4) nm to 375(3) nm vertically,
respectively. The data acquired for an entire series of slit settings is shown in
graphs (c) and (d), illustrating the dependence of the focus size on the slit opening
d (numerical aperture), following the expected behavior. The FWHM(d) curves are
then fitted to [78]

2 2
C
FWHMh/V< anp, + [] ) : (2.9)
dyy — A
~— h/v

modeling both geometric demagnification of the (incoherent) source size ay,/, and
diffraction broadening as a function of the slit size dy/, (in front of the KB).
Physically, the fitting constant ¢ can be related to focal length and photon energy.
Note also that an offset A with respect to the nominal slit values was introduced
to take into account errors in the calibration of the slit size. Fitting Eq. 2.9 to the
reconstructed focus sizes yields arecon. = 182(9) x 169(23) nm?(hxv). The values
for the vertical direction (d) are further confirmed by scanning the focal intensity
with a waveguide (WG) [79, 80]. From these data we obtain a,, we = 283(61) nm,
this value is larger due to vibrations of the WG during the scan, also the finite
channel width of the WG broadens the intensity distribution.
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Figure 2.5.: NFP reconstruction of the object, recorded at slit settings of 400 x 400 pm?
(hxv) (beamline exit) and 220 x 270 pm? (mirror). (a) Phases of the NFP reconstruction
for the Siemens star pattern. Scale bar is 10 pm. The insets show a detail of the 0.5 pm
marker (top) and a region of the rays (bottom). Scale bar is 2pm. (b) Reconstruction
using the contrast transfer function algorithm [20] with the same input as (a). Same
scale and color bars as in (a). The probe reconstructions corresponding to (a) is shown
in (c), along with (d) the corresponding line profiles through focus. The scale bar for (c)
indicates 1 pm. Note that the focal width is smaller than in Fig. 2.4, owing to the larger
slit opening.

Figure 2.5 presents the results for object reconstruction under optimized illumi-
nation (a), and also illustrates the benefit in image quality, when compared to a
standard object reconstruction (b) (without simultaneous probe reconstruction).
For this comparison, the contrast transfer function (CTF) algorithm [20] was used,
and applied in such a way, that the same amount of datasets were used. Both
schemes hence have the same set of measurements as input. We clearly observe
the benefit of using an iterative algorithm with probe retrieval. Notably, the insets
show an improvement in resolution (detail on .5 marker) and the removal of some
low-frequency image distortions (detail on rays). We attribute this improvement

to the separation of probe and object.
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2.5. Summary and outlook

We have presented a novel approach to reconstruct the extended quasi-spherical
wavefront of a hard x-ray nano-probe, in the typical setting of state-of-the-art na-
noscale holographic x-ray imaging and tomography using high gain KB focusing.
Importantly, the complex-valued illumination wavefront can be retrieved for the
unperturbed case of the actual KB beam, without recurse to additional wavefront
modification, as in the scheme by [13]. This goal was accomplished by two com-
pletely independent approaches, which differ in the data acquisition scheme and
the reconstruction algorithm, namely NFP [14] and MMP, which we have further
adapted and optimized here, with respect to earlier implementations [53, 67, 81].
Notably, the current implementation can handle the diverging beam in the labo-
ratory coordinate frame without transformation to equivalent geometries, e.g. by
application of the Fresnel scaling theorem. While this is clearly more demanding
on the computational level, it offers a more direct access to the relevant aspects
of focusing and propagation without the assumption of a perfect point beam fo-
cus. The resulting reconstructions of the NFP and MMP scheme are in very good
agreement, and the benefit of (simultaneous) probe retrieval for actual imaging ap-
plications was also demonstrated, comparing the superior object reconstructions
of NFP (see Fig. 2.5) with the standard CTF approach.

Finally, we point out that this scheme can be extremely useful for the alignment
and improvement of the focusing optics. Near-field reconstructions are less sensitive
to partial coherence, and even for large slit sizes can give proper information on the
probe. However, since the presented method is numerically involved, one may worry
about practical procedures which could give fast and robust feedback, for example
during beamline alignment. To this end, we show in the supplemental material that
a simple procedure based on the directly computable autocorrelation function, as
computed by FFT from the KB far-field, can already help in the optimization of
focusing, and when needed can be extended to the full scheme presented here.
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This work presents a numerical study of the fluence-resolution behavior for two
coherent lens-less x-ray imaging techniques. To this end we compare in numerical
experiments the fluence-resolution relationship of inline near-field holography and
far-field coherent diffractive imaging (CDI). To achieve this, we carry out the
phase reconstruction using iterative phase retrieval algorithms on simulated noisy
data. Using the incident photon fluence on the specimen as control parameter we
study the achievable resolution for two exemplary phantoms (cell and bitmap).
Our results indicate a superior performance of holography compared to CDI, for

the same fluence and phase reconstruction procedure.

3.1. Introduction

The simple question "Which resolution do I get for the invested photon fluence?”
is extremely important for x-ray imaging of radiation sensitive specimen, such as
biological cells and tissues. Structure analysis by diffraction is in general based
on elastic scattering of photons and hence the Thompson scattering cross section,
which is much smaller than the cross section for photo absorption, which results in
significant energy uptake within the sample and hence causes radiation damage.
However, for coherent imaging the dose issue is accentuated, since the information
is collected from a single copy of the structure imaged, rather than from a large
ensemble of identical constituents, over which the dose is distributed. Pioneering
studies have addressed this topic in the framework of kinematic scattering theory
for far-field coherent diffractive imaging (CDI) [82, 83], and have found a steep
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power-law D o d—* relating dose D and resolution d, for the case of imaging three-
dimensional (3d) structures at isotropic resolution. Note that this corresponds to
equivalent imaging of 2d slices of a width which is scaled down with d, and hence
looses contrast. Contrarily, for constant width, increasing only the 2d resolution
yields D o d=2, for diffraction as in absorption, see for example [84]. Further
work has studied the effects of having a certain feature of interest embedded in
other structures (matrix) [85], showing that the reconstruction quality in CDI is
nearly independent of the surrounding (for given dose). Before addressing the case
of (coherent) diffraction, which became important after the advent of CDI [17],
earlier work had already compared x-rays, neutron, and electrons as microscopy
probes, but had exclusively considered image formation by absorption [86]. This is
understandable for the simple reason that x-ray microscopy started in absorption
contrast, and was only later extended to (phase contrast) diffractive imaging. A
comparison between x-ray microscopy in absorption contrast (water window spec-
tral range) and by numerical simulation was provided in [87], showing that isolated

low-Z materials such as biological cells can be imaged with fewer photons by CDI.

The literature cited above already illustrates the large range of perspectives which
one can take to address the dose and resolution issues, at least in a broad sense.
One can compare different probes (x-rays versus other probes), different types
of contrast (absorption versus phase contrast), different experimental parameters
(notably wavelength) or different types of imaging (e.g. lens based x-ray microscopy
versus lens-less diffractive imaging). To this list, we here add the optical regime of

a coherent diffractive imaging experiment.

Notably, we want to compare direct reconstruction of lens-less coherent imaging
data in the near-field and far-field regime. While the previous studies addressing
CDI mentioned above were concerned with far field diffraction, the numerical simu-
lations used in this work are carried out in the optical near-field regime. Figure 3.1
shows a principal sketch for a NFH (a) and CDI (b) experiment. (c¢) shows both
cases tranfered to parallel beam setting, as it used in the numerical experiments
of this study. Our goal is to provide a quantitative comparison between near-field
inline holographic imaging (NFH) [5, 18, 88, 89] and CDI [17, 90]. The main dif-
ference between this work and the previous mentioned studies is thus the imaging

regime in use.

Further, a recent numerical study [91] also assessed NFH and CDI and have for-
mulated a signal-to-noise criterion. Rather than resolution as in the present study,
VILLANUEVA-PEREZ ET AL. focused on the sensitivity w.r.t. to the phase shift of

a given feature and its size at a constant fluence.
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Figure 3.1.: Experimental implementation for NFH (a) and CDI (b) shown in a diverging
beam geometry (in particular for a synchrotron setup cf. [2]). The beam is focused by
Kirkpatrick-Baez mirrors (KB), then a pinhole (P) is commonly used as a low-pass filter
for removing high spatial frequencies in the probing beam. For CDI the speciemen (S)
is placed in the focal plane (F'), while for NFH it is placed at a defocus position z1. The
detector is then placed in a distance zp behind S. This yields for NFH a (de-)magnification
of M = (z1+22)/z1. Note that in order to satisfy the coherence requirements for CDI the
effective source size has to be reduced by slits (SL). (c) shows the imaging configurations
transfered to the setting of a collimated (parallel) beam. This is achieved via a simple
coordinate transform (i.e. Fresnel scaling [44]), where the effective propagation distance
is given by zeg = z2/M.

The motivation of this study are the experimental indications for the high dose
effectiveness of near-field holographic (NFH) imaging [79, 92, 93]. In [79] for ex-
ample, NFH of bacteria were recorded in the multi-keV regime, where a single
bacteria is essentially a pure phase contrast object. Reconstructions were obtained
at a dose which was orders of magnitude smaller than reconstructions of similar
resolution obtained for the same bacteria by (far-field) ptychography before [15].
Since experimental work can always be influenced by a number of additional pa-
rameters which can for example easily render the data inconsistent, a higher or
lower dose required for a particular experiment is not conclusive per se. In the
light of the limited evidence, we therefore turn to numerical analysis, comparing
the CDI to NFH for simulated noisy data on the same phantoms. To this end, we
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have first used the Maximum-Likelihood (ML) approach introduced by ELSER and
EISEBITT [94]. Accordingly, a critical fluence p. can be defined above which the
correct phantom (random bitmap) out of a selection of random bitmaps could be
identified with a chosen tolerance (error) level € and for given photon shot noise
[95]. In this way, one can test the information content in the noisy 2d diffraction
patterns and investigate the dependence of p. on object contrast levels, the ac-
cepted error level, and the bitmap size. For the experimentally relevant case of
weak phase contrast, applicable to most biological samples, NFH required lower
dose than CDI for the optimum propagation distance (Fresnel number) [95]. How-
ever, apart from small oscillations of u,. as function of the distance, as expected
based on the contrast transfer function (CTF), the results in the near field were
almost identical to the far-field results [95]. Hence, as far as the encoding of infor-
mation is concerned, which can be tested by the ML approach, far-field CDI and
near-field NFH seem, in principle to be roughly equal in dose efficiency. What the
ML approach cannot address, however, is whether an unknown object can actu-
ally be reconstructed from the noisy data, rather than just comparing likelihoods
between the true object and some alternatives (bitmaps with randomly switched
bits).

In this work, we fill this gap and actually test the actual process of reconstruction
from noisy diffraction patterns and not just a ML reconstructability criterion. The
main control parameter in this numerical work is again the fluence p, i.e. the
average number of photons per pixel in the plane of the object. Using p we are
able to tune our numerical experiment from the case ”barely reconstructing” to
"best object reconstruction”. According to this parameter we generate test data of
two phantoms (i) a cell, and (ii) a bitmap object (as in [95]), see Fig. 3.2. Following
the generation of the noisy diffraction patterns, we run phase retrieval algorithms
on the data and determine the resolution by Fourier ring correlation (FRC) [96,
97]. Section 2 details on the data generation and reconstruction scheme. Section 3
presents the results for the NFH to CDI comparison. The paper closes in Sec. 4
with summary and conclusion. Of course, implementing both NFH and CDI on
the same sample can be experimentally challenging due to limitations of the setup
(coherence, beam size, sampling constraints). These considerations are beyond the
scope of this work. Further, we consider only coherent scattering (elastic Thomson
scattering) and no further interactions of the radiation with matter. Our main focus
is the optical regime and the decoding of (phase-)information. Thus all simulations
are carried out in a dimensionless setting (pixel units and Fresnel number), as
detailed below.
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Figure 3.2.: Setup of the numerical experiment. (a) Shows the phase-only phantom of
two cells with individual compartments and maximum (exagarated) phase shift of —1rad.
The size of the phantom is 512 x 512 pixel®> embedded in 1024 x 1024 pixel®. (b) Simulated
near-field intensity measurement at Fresnel number of 10™% (linear scaling). The left
half shows the noiseless measurement, while the right side shows the measurement with
noise for 200 photons per pixel in the detection plane. (c) Simulated far field intensity
measurement, analog to (b), a count of 0 photons corresponds to white (logarithmic
scale). (d) Bitmap pattern analog to [95]. The maximum phase shift is —1rad and the
size of one bitmap pixel is represented by 10 x 10 pixels in the sample plane. (e) and (f)
analog to (b) and (c), respectively. The solid line surrounding the objects in (a) and (d)
marks the border of the support used in the reconstruction. Scalebar indicates 50 px.

3.2. Numerical setup

Figure 3.2 introduces the concept of the numerical study. In essence the two optical
setups — far-field CDI and near-field holography (NFH) — are simulated for two
different phantoms, namely a phantom of two adhering biological cells (as used in
[98]), and a random binary bitmap, see (a) and (d), respectively. Both phantoms
are pure phase contrast objects, with phases ¢, in the range [-1, 0] rad (cell),
and ¢, € {0, —1}rad (bitmap). Note, that binary bitmaps with no correlations
between pixels are to some extent amenable to analytical treatments and have been
used before for in [94] (1d bitmap) and [95] (2d bitmap). Both images have the
size of 512 x 512 pixel? embedded in 1024 x 1024(N, x N,,) pixel®. This embedding

ensures that the simulated numerical aperture (NA) is sufficiently large to recover
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details down to the pixel level. The NA in vacuum is given by
NA=sina~tana~ Ny Az/(2 zen), (3.1)

where paraxiality is assumed and Ax is the pixel size. The resolution limit dmin
due to the NA is
dmin = A/ (2sin ), (3.2)

with wavelength A. Inserting Eq. (3.1) and using the definition of the Fresnel
number Fr = (Az)? /(X zeg) yields
AZoff 1

dunin = N, Az Fr(N,/Ax)’ (3:3)

Setting dmin = Az yields then F' > 1/N as a requirement for the NA.

In both cases, CDI and NFH we assume perfect illumination as by point source or
in equivalent geometry by a plane wave (cf. Fig. 3.1(c)) such that the exit wave ¥
is given by the phantom ¥ = exp (i¢; ,). The measurements for NFH have been
generated by applying the Fresnel propagator Dy, given by

Dy (W) = F 1 [F[W]exp ((—im)/2Fr) (k2 + k)], (3.4)

where k, = 2 n, /N, and k, = 2 n, /N, are spatial frequencies in Fourier space
with 1y, € [=Nyy/2 ... Nuy/2] and a Fresnel number of Fr = 1073. The mea-
surements for CDI have been generated by discrete Fourier transformation F of
the corresponding exit wave. Next, the generated intensity patterns (far-field and
near-field, respectively) in the detection plane are subjected to Poissonian noise
using the routine imnoise (Matlab. Inc.), with the average photon fluence p (in
photons per pixel) in the object plane as only parameter. Fig. 3.2 (b,c) and (e,f)
show in each case the ideal noiseless simulated data or ‘measurements’ (left side),
as well as a random realization of the noisy measurement for a fluence of 200 pho-
tons per pixel (in the exit plane). The exemplary NFH and CDI measurements
simulated for the phantom nicely illustrate the completely different nature of the
signal: In the case of NFH the signal varies around one (normalized primary beam)
by self-interference of primary beam with the diffracted beam behind the object,
and is best represented in linear scale with a narrow range of intensities. Con-
trarily, the CDI data covers many orders of magnitude from the central pixel to
the edge of the detector, where most pixels have zero photon counts. Note that

in this idealized simulation, we take the full diffraction pattern into account i.e.
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the numerical aperture is sufficiently large and assume that the detector does not

need any kind of beamstop, which would result in a loss of information.

Thus, in summary, the noisy measurements have been generated using the follow-
ing recipe:
1. Propagate the field ¥ from the sample plane to the measurement plane

(detection plane) using the respective propagator X' (F or Dy, ).

2. Calculate the intensities of the field, yielding the measurement M = || X' (T)||2;

normalize M so that M’ =3, .\ M(z,y) = 1.

3. Multiply M’ with - Ny - Ny, use the result as input for a Poisson random
number generator. This yields the noisy measurement used in for the phase

reconstruction.

The reconstructions from the noisy data have been obtained by using the Relaxed
Averaged Alternating Reflections(RAAR)-algorithm [73]. The iterates are given
by
B
Uytq = > (Rs(Ryi(¥p)) +0,) + (1 — Bn) Pr(¥,) , (3.5)
where Rg)p (V) = 2Pg/3,(V)—V denotes a (mirror) reflection by a given constraint
set and n the iteration index. The parameter (3,, controls the relaxation. It follows

the function

B =exp (= (n/8.)°) o + [L = exp (= (0/8°)] Buax . (36)

where [y denotes the starting value, Sax the final value of 8,, and s the iteration
number when the relaxation is switched. This relaxation strategy follows [73] (Eq.
37). The parameters have been set for to Sy = 0.99, 5,, = 0.75, 5, = 150 itera-
tions all reconstructions. The projection on the measurements Py, is the standard

magnitude projector
Py (9) = X1 {MW -exp (i - arg [X (\Ilm)])} : (3.7)

where X is either F or Dg, for far-field or near-field propagation, respectively.
In Eq. (74) [74] an alternate version for Py is given which should handle numerical
inconsistencies such as noise. In our case, the experiments using this version did

not show any improvement for the resolution.

The operator Pg is used to enforce the support S which is assumed to be perfectly
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known and the pure phase constraint in the object plane i.e.

exp (i -arg (¥,,)) for pixel € S
PS(\IITL) = . (38)
exp(i - 0) for pixel ¢ S

The code to reproduce the results can be found on GitHub: https://github.com/

JHoahg/Resolution-and-Fluence .

3.3. Results

Before addressing the fluence-resolution relationship, we present an exemplary re-
construction to illustrate the steps which are necessary to obtain the reconstruction
data, which are then analyzed by massively parallel batch processing. Figure 3.3
shows an exemplary reconstruction for x4 = 200 photons per pixel for both phan-
toms (a) and (c), using the noisy measurements shown in Fig. 3.2 (c,d,e) and
(f).

The left and right side of Figure 3.3 (a, ¢) show the phases of the NFH and CDI re-
construction, respectively, again for both the (a) cell and (c) the bitmap phantom.
The reconstructions are based on the same set of parameters and constraints as
far as possible. There are two differences: (i) the propagation operator(F or Dg;)
and (ii) the starting guess. For the holographic reconstruction, an array uniformly
initialized with amplitude 1 and phase 0 was used, whereas the CDI reconstruc-
tion used an initialization consisting of uniform amplitude 1 but randomly chosen
phases from the range [—m, 7], both in the object plane. Changing the initial guess
typically had only little effect on the results. Inspection of the holographic recon-
structions in (a) and (c) shows some high frequency noise in the background of
the reconstructions, but still the fine structures of the cells (small black dots) are
clearly visible and the edges of the bitmap are sharp. The CDI reconstruction of
the cell shows clearly a loss of detail, but the background is less noisy. For the
bitmap we see washed out edges and some structured background which matches
the length scale of the bits. Note that the reconstruction show the object after the

measurement projection (before the support is enforced).

For quantitative comparison of the resolution, we have used FRC. To this end,
the phases of the reconstructions are correlated with the corresponding phantom
phases (Fig. 3.2), and the decrease of the correlation is plotted as a function
of spatial frequency. The resolution is determined by the first intersection, f;.

the resolved spatial frequency, with the so-called 1/2-bit threshold, indicating the
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Figure 3.3.: Example reconstructions for 200 photons per pixel. (a) Shows the phases
(rad.) of the reconstruction of the cells after 200 iterations of RAAR (Bo = 0.99, B =
0.75, 8s = 150 it.) using a support and pure phase object constraint. The left half shows
the reconstruction obtained by the near-field data, the right side the results for the far
field data. (b) Fourier ring correlation of the reconstructions with the phantom in Fig. 3.2
(a). (c) and (d) analog to (a) and (b) for the bitmap object shown in Fig. 3.2 (c). Scalebar
indicates 50 px.

degree of correlation at which sufficient signal has been acquired [97]. The results
are shown in Fig. 3.3 for (b) the cell and (c¢) the bitmap. The FRC curve in (b)
for the CDI reconstruction decays much faster (f, = 0.17) than for the NFH
reconstruction (f, = 0.48), in agreement with visual inspection. Interestingly, the
FRC curves for the bitmap phantom show an oscillatory behavior, but again the
CDI curve decays faster (f, = 0.2) compared to the NFH curve (f. = 0.4), i.e.
shows less resolution.

Next, we turn to the fluence-resolution relationships which are computed by per-

forming the automatized reconstruction and FRC analysis for measurements of
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Figure 3.4.: Resolution as function of the dose for holographic and coherent diffractive
imaging. (a) Result for the cell phantom. (b) Result for the bitmap phantom. The photon
number ranges from 1 to 20000 photons per pixel. Each photon number had 30 realizations
for the near and far field measurement. The reconstruction was carried out with RAAR
and the same settings as before. (¢) A (normalized by the number of pixels in the support
N ) for the cell phantom as function of the fluence. The inserts (200x 200 central pixels of
the cell phantom) show different phase reconstruction snapshots (NFH left, CDI right)
for fluencies of 1 (black) and 50 (green) photons per per pixel, with respectively colored
arrows. The insets scalebar is 20 px. (d) A/N for the bitmap. The colored dots mark the
critical fluence obtained by ML simulations.

systematically varied fluence pu. For each p covering the range from 1 to 20000
photons per pixel (phantom plane), 30 realizations have been generated and recon-
structed, each with the same parameters. Figure 3.4 shows the results. Comparing
the results for (a) the cell and (b) the bitmap, we notice that in both cases the NFH
reconstruction reaches the maximum achievable resolution at significantly smaller
fluence. Note that the spatial frequency of 0.5 periods per pixel corresponds to the
maximum (half period) resolution of a pixel. However, reaching the full resolution

is not necessarily equal to having a perfect reconstruction. For example, the ¢2-
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norm of the difference image (reconstruction-phantom) can be non zero, while the
FRC has already saturated. Comparing (a) and (b) we notice that NFH reaches
the maximum resolution for both objects at the same fluence of around 300 pho-
tons per pixel. At the same time, the error bars of the bitmap results are larger
then for the cell. Contrarily, CDI needs 11000 photons to reach full resolution for
the cell, and 3000 photons for the bitmap. Furthermore, we have analyzed the
error of the reconstruction by the £2-norm, see Fig. 3.4 for (c) the cell, and (d) the
bitmap. To this end, the £?-norm A of the phase difference

A= Z || arg (phantom) — arg (reconstruction) ||? , (3.9)
Vpixels€S

has been computed for all pixels within the support. The A curves in (c) and (d)
are normalized by the number of pixels in S and show an unexpected behavior. At
low fluencies the error of CDI is smaller than that of NFH followed by a cross-over
at p = 140 (cell) and p = 4 (bitmap), where NFH becomes superior in terms of A.
On closer inspection of the reconstruction result, however, it becomes clear that the
smaller A at low fluence is misleading. CDI yields an unstructured reconstruction
with no representation of structural details, see inserts in (c¢). The reconstructions
are much worse than the NFH results for the same fluence, but exhibit a smaller
A, by ways of averaging the signal deviations. We must conclude that A is not a

well suited error metric at low fluence.

Thus, it becomes clear that in all cases tested, NFH yields superior results than
CDI. Note that the absolute A values also depend on the number of iterations
(200 in both cases). Running the algorithm for more iterations, e.g. 800 iterations,
led to a further reduction of A of about 30% in the case of NFH, and 10% for CDI
(cell phantom). Furthermore, the introduction of additional constraints of course
can also change the error value. For example, using the prior knowledge that the
binary bitmap must have discrete phase values 0, -1, suggest to use a thresholding

constraint (binary value projector)

exp(—i) if ¢p, < 0.5

Pg(V,) = O .
exp(07) if ¢gy > 0.5

(3.10)

Figure 3.5 shows the results using this projection in addition to support and pure
phase constraint for the bitmap phantom. For these results we have used a bitmap
with 1:1 pixel correspondence of bitmap to object plane pixel. Thus the entire
object has a size of only 10 x 10 pixel. Fig. 3.5 (a) shows the A/N error (as in
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Figure 3.5.: Reconstructability results for the bitmap. (a) A/N evolution for the thresh-
olded reconstruction on a bitmap object with 1:1 pixel correspondence of bitmap and ob-
ject plane pixel. (b) Fraction of successful, i.e. A = 0, reconstructions for 100 repetitions
of a given fluence, cf. [95].

Fig. 3.4(d), but now after the threshold constraint), corresponding to the fraction
of wrong pixels. Here we see the expected behavior, that NFH reconstructs better
at low fluence than CDI. For comparison, we also plot the theoretical function
1e(A/N) (solid line) based on the ML analysis, describing the critical fluence to
identify the correct bitmap from the noisy diffraction pattern (CDI), out of a set
of neighboring bitmaps [95]. Figure 3.5 (b) shows the fraction of successful recon-
structions, i.e. the fraction of successful reconstructions (A = 0) from an ensemble
of 100 runs, as a function of fluence. Comparing these results we see that CDI re-
constructions require substantially more flux at any error level. Furthermore, the
functional form of the curve is smoother for NFH, while the transition from non-
reconstructible to reconstructible is extremely sharp for CDI similar to a phase

transition.

3.4. Summary and outlook

In this work, we have investigated the fluence efficiency of variants of lens-less
x-ray imaging techniques, notably coherent diffractive imaging(CDI) operating in
the optical far-field, and inline holography(NFH) operating in the optical near
field. Despite the entirely different nature of the signals and the image forma-
tion, which can be classified as heterodyne and homodyne, i.e. with and without
adding a reference wave, it is commonly assumed that the information content in

the diffraction pattern for given photon fluence should be equal. The analytical
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work and the simulations of [95] have already pointed out that this can never
be exactly true, since the oscillatory nature of the contrast transfer functions in
NFH result in a dependence on the Fresnel number. Therefore, absorption and
phase contrast has to be distinguiished, and furthermore also the regime of weak
or strong contrast. However, the Maximum-Likelihood approach of [95] addresses
the information content of the noisy pattern and not the reconstruction quality
which can actually be obtained by standard methods of iterative algorithms. As
we have shown here, the latter case is characterized by substantial differences be-
tween NFH and CDI. In other words, while the information content may be similar,
the ability of the algorithms to decode the diffraction pattern deviate significantly.
These conclusions have been substantiated both by the error metric of the £2-norm
A and Fourier ring correlation. For example, Fig. 3.5 (b) showed that both NFH
and CDI reach full reconstructability within one decade of photon fluence, but for
CDI fluence curve was shifted up by two decades. Furthermore, both NFH and
CDI reconstructions required substantially higher fluence as predicted by the ML
approach. In conclusion, our findings point to an important advantage of NFH,
in addition to the large tolerance for partial coherence, the compatibility with
extended specimen and the flexibility in reconstruction constraints e.g. the pure
phase constraint is often sufficient to reconstruct at least a coarse image of the
object). Some of these advantages may also apply to ptychography, for example,
when mixed states are taken into account [99]. It goes without saying, that these
conclusions await further validation by other reconstruction codes as well as by
careful experimental test. If the evidence is substantiated, more imaging experi-
ments of radiation sensitive specimen such as biological objects should be carried
out in the holographic regime for which dedicated synchrotron beamline are now
available.

3.5. Appendix A: Direct back propagation

Following the suggestion of a reviewer, we have investigated to which extent the
results obtained in this work depend on the reconstruction (which always requires
a specific choice of constraints and reconstruction algorithm), we have also per-
formed simulations in the simplest possible setting, based on direct back prop-
agation. To this end, the exit wave in the sample plane was first propagated to
the detector plane to generate diffraction data as before. The, Poisson noise was
added to the intensity (amplitude), again as before. Finally, the wave with the
noisy amplitude and ideal phase was propagated back to the sample plane. The
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Figure 3.6.: Results for direct back propagation. Three objects are compared: the cell,
a bitmap with each bitmap pixel represented by 10 x 10 image pixels and a bitmap
with direct 1:1 pixel correspondence. Solid lines correspond to NFH results for a Fresnel
number of 1073, dashed lines correspond to CDI results. The results for each fluence p
have been averaged over 30 noise realizations.

idea of this procedure was to eliminate the role of the reconstruction algorithm

used. The ideal complex valued data M is given as
M = X(D), (3.11)

where X is either D, or F for NFH or CDI, respectively and ¥ the exit wave in
the sample plane. Using the noising procedure from the main text gives the noisy
intensities || M||. which are then combined with the phases to yield M

M = \/||M]|e - exp(i - arg(M)), (3.12)

i.e. the noisy complex amplitudes. The M are generated for different fluences p
ranging from 1 to 1000 photons per pixel and are then used as input for the
inverse propagator X! for NFH and CDI. Figure 3.6 shows the results of this
numerical experiment. We compare three different phantoms: (i) the cell phantom,
(ii) the bitmap phantom with one bitmap pixel represented by 10 x 10 image pixels
(oversampled information), and (iii) one bitmap pixel represented by 1 image pixel.
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NFH shows again superior performance for the cell phantom and the 1 x 1 bitmap,
but not to the same degree as before. Furthermore, CDI reaches higher resolution
at lower dose for the 10 x 10 bitmap. This can be understood based on the fact
that in this numerical experiment the phases are given, and the main advantage
of NFH in encoding phase information by interference does not play a role.

In addition, we have varied the contrast of the object. The results illustrate the
same trend for both CDI and NFH: As the phase shift of the phantom increases,
less photons are needed to reach maximum resolution, as expected. This is in
agreement with the findings of [91].
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We propose a reconstruction scheme for hard x-ray inline holography, a variant
of propagation imaging, which is compatible with imaging conditions of partial
(spatial) coherence. This is a relevant extension of current full-field phase contrast
imaging, which requires full coherence. By the ability to reconstruct the coher-
ent modes of the illumination (probe), as demonstrated here, the requirements
of coherence filtering could be relaxed in many experimentally relevant settings.
The proposed scheme is built on the mixed-state approach introduced in [Na-
ture, 494 (2013)], combined with multi-plane detection of extended wavefields
[Opt. Commun., 199 (2011); Opt. Express, 22 (2014)]. Notably, the diversity nec-
essary for the reconstruction is generated by acquiring measurements at different
defocus positions of the detector. We show that we can recover the coherent mode
structure and occupancy numbers of the partial coherent probe. Practically rel-
evant quantities as the transversal coherence length can be computed from the

reconstruction in a straightforward way.

4.1. Introduction

The coherence properties of the illumination (probe) are a fundamental prerequi-
site for lensless coherent imaging techniques [44, 100], both in the optical near field
and far field. When reconstructing from measured data, the assumption in partic-
ular of a spatially fully coherent illumination is ubiquitous, even though it is clear
that this condition is never (and can never be exactly) fulfilled [101]. The effects
of image degradation by partial coherence have been described in many different
settings [102, 103]. Measured or estimated spatial [104] or temporal [105] coherence
properties have also been incorporated in the phase reconstruction process.
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Wavefront sensing and coherence measurements have therefore attracted signifi-
cant attention in the past, especially in the x-ray regime where coherent imaging
has stirred much interest as a way to circumvent the lack of suitable lenses [61,
62, 106-113]. The rationale for measuring coherence properties in these studies
is that by experimental control of the probe, spatial coherence can be increased
sufficiently high to warrant that the coherence length £ exceeds the field of view.
In this way the requirements of conventional phase retrieval algorithms can be
met. Recently, however, the methodology for phase retrieval has been extended
by Thibault and Menzel to include the reconstruction of multiple coherent modes
in the phase retrieval process [99]. Their approach follows the concept of coher-
ent mode representation [101, 114] which has been widely used in many optical
disciplines. The coherent modes are a particular example of the concept of state
mixtures. Mixed states can also account for aberrations in the object (vibrations)
and detection (point spread function) plane. They have demonstrated, that the
inclusion of the mode reconstruction in the phase retrieval process can yield not
only an enhanced reconstruction quality for objects under partial coherent imag-
ing conditions but also a description of the partial coherent probe in terms of
modes. The additional information required for the reconstruction can be gen-
erated from ptychography [12, 59], where diversity in the data is increased by
scanning the object through the probe. The state mixture concept was extended
and applied to different experimentally relevant configurations, for example for
non-monochromatic radiation [115] or a (deliberate) smearing of the probe during
on-fly-scans [116]. Further it has been shown, that the reconstruction of states can
reveal more information about a specimen [117]. The symmetry of the operations
in the ptychographic reconstruction algorithm can also lead to ambiguities in the
reconstructed states and additional constraints are required in some cases to break
these ambiguities [118].

However, the extension to the coherent imaging in the optical near field has so
far been lacking. At the same time, multi-mode reconstructions of extended wave-
fields are of considerable interest. Firstly, extended multi-mode reconstructions
can help to understand on a fundamental level why the near-field imaging is found
to be more tolerant to partial coherence than its far-field counterparts. Secondly,
full-field x-ray imaging is of tremendous practical importance, in particular for
larger specimen and for tomography, where scanning techniques are prohibitive.
Importantly, near-field or propagation imaging is almost always known to be im-
plemented in a partial-coherence setting, including robust exploitation of phase

contrast at laboratory sources [56, 119-121].
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In this work we show by numerical simulations, that the extraction of coherent
modes can be also applied to reconstruct the extended probe as it is used in x-ray
propagation imaging or inline x-ray holography. To this extent we present an algo-
rithm based on multiple magnitude projections (MMP) [67] generalized to mixed
states, i.e. partial coherence. We have previously used MMP for probe characteri-
zation [53, 122] under the assumption of full coherence. We denote its multi-modal
generalisation by mmMMP. In both the MMP and mmMMP schemes, the detector
is moved to different longitudinal distances (propagation distances). This move-
ment changes the Fresnel number of the probe with respect to some reference
plane (e.g. the first measurement or the focal plane) and introduces diversity in
the measurements, which is required for a reliable reconstruction. Note that in
general, mmMMP will require more detection planes than MMP to compensate
for the information loss inflicted by partial coherence. We show that mmMMP
algorithm is capable of recovering the coherent modes with their accompanying

occupation and the degree of coherence of the ensemble of modes.

Sec. 4.2 describes the setup for data generation after a short recapitulation of co-
herence properties primarily for the sake of notational clarity. Section 4.3 details
the algorithm and numerical implementation. The results of the numerical exper-
iment are shown in Sec. 4.4 before the paper closes in Sec. 4.5 with a summary

and outlook.

4.2. Simulation model

The basis for the physical model of partially coherent image formation is the repre-
sentation of the probe’s wavefield as a superposition of uncorrelated but coherent
modes ¥,,, € C[101, 114, 123] i.e the coherent mode expansion with m € {1 ... M’}

denoting the mode index and ¥,, satisfying orthogonality
<\I/*m7 \I/n> = 5nm ) (41)

where (-, -) denotes the scalar product. The ¥, are propagated individually through
free space by use of the Fresnel propagator Dg.nd interact separately with optics
or objects. Non-linear extensions of the model are beyond the scope of this paper
and typically not relevant to x-ray imaging. In the detection plane, the intensities

are computed for each mode

I = |De: (U0, (4.2)
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and their incoherent superposition is taken to be the measurement 7
=Y Anln (4.3)
m

where )\, denotes the occupation number of W,,, i.e the intensity for the mode.
Equation (4.1) to Eq. (4.3) are sufficient to setup a straightforward numerical
implementation for the propagation of a partially coherent probe. In order to
determine the spatial coherence properties from the coherent mode expansion, we
have to introduce auxiliary variables. We assume stationary and monochromatized
undulator radiation, so that the equal-time coherence function or mutual intensity
can be used

I (71, 72) = W, (71) Ui (72). (4.4)

Jm has to be calculated for each mode W,,, with 7 /5 points in the plane of ¥,,. The

collective J(7,72) of the ensemble of modes is obtained by summing J(7,7) =

> m Jm(71,72). Normalization yields the complex degree of coherence
P J (7, T

J(1,72) = = El 2)

\/ T1, 1)\/J 7’2, T2

Note, that this quantity is 4-dimensional. By assuming translational invariance

(4.5)

and isotropy of the coherence properties we reduce the (71,7) dependence to a
distance d = \/||71 — 72||? dependence. Using this simplification j(d) is depictable
in a ||j(d)|| vs d plot, cf. Fig. 4.4. The spatial coherence length ¢ is defined as the

crossing point of ||7(d)|| with a given threshold value, in this work 0.5.

Figure 4.1 shows a sketch of the setting for the case of 3 modes, represented by
the iconic images of a 1,2 and 3. Following the MMP scheme, we need to gener-
ate Z for different propagation distances, or corresponding Fresnel numbers Fry,
where the index k € {1 ... K} is used to enumerate the K measurements 7. Fig-
ure 4.2(a) shows the input images which are processed to yield the orthogonal
modes (b) for the numerical experiment. For each complex-valued input two im-
ages represented by N, x N, matrices are chosen. One is interpreted as phase
¢ € [-0.4,0.4]rad the other as amplitude A € [0.8,1.2] arb.u. and then combined
according to A - exp(i¢). Next, the inputs are reinterpreted as column vectors of
a matrix A € (C(Nw‘Ny)X(MH), which is then fed into a @ R-factorization. The
@ R-factorization is a method from linear algebra to compute the factorization
A=Q-R, where Q € C(N="Ny)x(M+1) ig 5 ynitary matrix and R € CM+Dx(M+1)

is a upper triangular matrix. The column vectors of the resulting @) are reshaped
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Modes in Detection planes
reference plane
F1"1 Fr K

m:11_>

Figure 4.1.: Sketch of the data generation for the numerical experiment. (left) 3 ex-
emplary modes, which are individually propagated to the detection planes at Fresnel
numbers Fry, (right). (bottom) The corresponding Z;, is formed by incoherently adding
the individual intensities Iy .

to obtain M + 1 matrices of size N, x N, representing the orthogonal modes used
for subsequent simulation of the measurements. The @ R-factorization can be com-
puted by different algorithms e.g. Gram-Schmidt process, Householder reflections
or Givens rotations [124]. Since the QR-factorization makes the ¥, orthogonal
with respect to the preceding mode, an additional mode has to be generated for ini-
tialization of the process, which does not contribute of the ensemble of modes used
in the numerical experiment in Sec. 4.4. Thus, all subsequent @ R-factorizations
during the reconstruction operate only on the M propagation modes, which still
form a orthogonal basis. The next step is to choose occupation numbers A, for the
respective ¥,,. For the example shown here, we choose \Y, = 4 -10°[0.5,0.3,0.2].
Next, the modes are propagated Eq. (4.2) and summed up Eq. (4.3) to yield Z.
As a final step of data generation noise can be applied. The set of Z; is then be

used as input for the reconstruction algorithm presented in the next section.
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a) Input Images for Orthogonalization

Phase (rad)

Amplitude (a.u.)

b) Un

~

Phase (rad)

Amplitude (a.u.)

Figure 4.2.: Generation of coherent modes. Test images (a) were taken and interpreted
as amplitudes and phases of the coherent modes. Using these modes as input for a QR-
factorization, suitable, i.e. orthogonal, modes (b) are obtained for propagation and data
generation, following the scheme introduced in Fig. 4.1. The modes are scaled according
to their occupation number.
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4.3. Algorithm

Given the measurements Zj (intensity only), we aim to reconstruct the ensemble
of modes ¥ with M modes ¥, with the respective occupation A,,. This is an
example of the classical phase problem, however, now in the setting of partial
coherence. We solve this problem via the use of iterative projection algorithms
[74, 125]. These algorithms are quite versatile, since the problem specific part is
coded only in the projectors and the applicability is not limited to any specific
assumptions as for single-step solutions cf. [20]. We here use the Relaxed Averaged
Alternating Reflections (RAAR)-algorithm [73] with adapted projections. A new
iterate is given by the RAAR-algorithm:

Vg1 = % (RS(RI(\I_)H)) + \I_}n) + (1 - ﬂn)PI(‘I_}n) ’ (4-6)
where RS/I(\fl) = 2PS/I(\17) — U denotes a (mirror) reflection by a given constraint
set and n the iteration index. Operations acting on ¥ have to be read in a per-
mode manner. The parameter [3,, controls the relaxation. For the present problem
we found that a fixed 8, = 0.99 is best suited to assure stability of the recon-
struction process. The projection on the measurements Pz is a nested operation.
The operation is carried out independently for each mode and measurement. The
information from the overall K measurements for one mode is merged by taking
the average over the projected wave fields. This has the advantage, that all Z
constraints are ’equally well’ satisfied whereas in a sequential projection the last
constraint projected on is always preferred, in terms of a error metric. As a draw-
back we note that this parallel projection can diminish the speed of convergence.

The single projection of ¥, on measurement K is given by

Pr, (V) = D_5yr,, (Azy [Drey (Yn)]) (4.7)

where Az, is the adaptation of amplitudes, given by

Az, () = Zf_’"] VT - exp (iarg (), (48)

where Iy, = |Dp, (\Ilm)|2 denotes the intensity for a given ¥, in the measure-
ment plane k, cf. Eq. (4.2). The whole adaptation has to be read as a per pixel
operation. The propagation to the measurement plane is performed by the Fresnel
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propagator D, for a given Fresnel number Fr with respect to one pixel,

Dry, (¢) = F 1 []—' [e] exp ((—i7r)/(2 Fry,) (k2 + k;))] , (4.9)

=

where k, and k, are spatial frequencies in Fourier space. Thus Pz(¥,) is finally
given as:
K
% Zk:l sz (\Ill)
Pr(¥,)=1... (4.10)

% Zszl PIk (\IIM) .

The operator Pgs is used to enforce the orthogonality constraint on T in the refer-
ence plane. For this purpose, a QR factorization is applied (MATLAB’S implemen-
tation) with the modes given as column vectors in ) and the occupation numbers

Am given as the diagonal elements of R

Finally, the updated U are extracted from Q by reshaping the respective column
m of Q back to the IV, x N, array and subsequent multiplication with the corre-

sponding m-th entry of R.

The algorithm was implemented in MATLAB, making use of the parallel comput-
ing toolbox and complemented with specialized CUDA (Compute Unified Device
Architecture) kernels [126] running on the graphics processing unit for the calcu-
lation of the Fresnel propagator and j(ri,7s). The implementation of mmMMP
and the simulation described in the next section are available online [127].

4.4. Numerical experiment

The setup for the numerical experiment has been guided by the experimental re-
sults [109] obtained for the instrument [2] operated by our group at P10/PETRA
III (DESY). In these previous results, a number of 3 coherent modes was found for
the nano-focused undulator radiation of this instrument. This in line with earlier
work on a dedicated high-coherence beamline[107]. For the numerical experiment,
M = 3 modes are prepared and reconstruction is performed based on a set of
K = 10 measurements with Fresnel numbers tabulated in Tab. 4.1. The orthog-
onal modes are shown in Fig. 4.2(b). The occupation numbers A%, and all other

experimental parameters are also tabulated in Tab. 4.1. As initialization for T we
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Figure 4.3.: Results of the mmMMP reconstruction. (a) The set of reconstructed modes
in phase and amplitude. (b) The convergence graph for the occupation numbers \,,. The
convergence is shown relatively to the current occupation in an iteration with respect
to the prescribed occupation \2,. (c) Comparison of the error evolution Ay, of the mean
over all measurement planes Eq. (4.12) for a single mode reconstruction (red) and multi
mode reconstruction (blue). Dashed lines indicate the bounds of the standard deviation
over all measurement planes.

have generated 3 random modes orthogonalized by @ R-factorization and scaled
by an initial guess for the mode occupation A,,. Figure 4.3 presents the results of
the reconstruction after 30000 iterations with (a) showing the 3 recovered modes.
Visual inspection by comparing the reconstructions to Fig. 4.2 demonstrates the
successful reconstruction. Out of the three modes, ¥ is recovered best, due to the

fact that is has the largest occupation number. ¥, and W3 also show a convinc-



52 Reconstructing Mode Mixtures in the Optical Near Field

ing recovery. However, some larger regions still exhibit a phase offset with respect
to original. In Fig. 4.3(b) the evolution of the reconstructed occupation number
Am/A2, normalized to the true value, is plotted as a function of iteration number.
The plot shows only a slow convergence for \,,. Interestingly, the modes U are
faster recovered than their occupation numbers. The plot shows some character-
istics which we found to be typical when testing different parameters (different
M, K or \) ): At the beginning W; absorbs much of overall intensity and only
following further iterations the intensity is distributed among the ¥,, in a non-
monotonous reconstruction trajectory, see also App. D. Figure 4.3(c) shows the
per pixel error of the reconstruction with respect to the (simulated) measurements,

calculated from )

/N. (4.12)

Ap= >

all pixels

ka,m — 1y

m

The solid lines show the mean of Ay for the 10 measurement planes of the multi
modal reconstruction (blue) presented here and a single mode reconstruction (red)
assuming full coherence using the unmodified MMP scheme. The dashed lines
show the bounds of Ay over all measurement planes. After 30000 iterations, the
multi-mode reconstruction correctly taking into account partial coherence shows a
residuum which is more than two orders of magnitude smaller than the reconstruc-
tion based on the (wrongful) assumption of full coherence, which is ubiquitous in
x-ray propagation imaging.

With the reconstructed U at hand, we can then calculate the equal-time complex
degree of coherence j as shown in Fig. 4.4 using Eq. (4.5). Figure 4.4 compares
l7(d)|| for input modes (blue) and the reconstructed modes (red). An important
quantity for coherent imaging experiments is the (transversal) coherence length
&. Tt can be defined via the intersection of ||j(d)|| with a given value, here 0.5

(yellow).

The appendix provides additional parameter variations, i.e. addressing the influ-
ence of noise as well as a reduced input data set, to test the stability of the
mmMMP algorithm. For the noisy simulations in App. A we chose a mean photon
fluence per pixel p with u = {1000,100,10} but otherwise unchanged parame-
ters (Tab. 4.1). The Zj have been scaled accordingly, then the pixel values have
been used as input for a Poissonian noise generator. Even for low fluences down
to u = 10, we observe a satisfactory recovery of ¥; and W5 , see Fig. 4.6. This
surprising noise tolerance can be explained based on the fact that 10 measure-
ments are used and that the images are highly sampled. Appendix B presents

reconstruction results for a reduced input data set. Not surprisingly, more diverse
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Figure 4.4.: Comparison of the degree of coherence ||j(d)|for the reconstructed modes
(red) and input modes (blue).

input data leads to a better reconstruction quality and faster convergence of the
algorithm, see Fig. 4.7 for an exemplary reconstruction. The simulations show that
for a reliable reconstruction of 3 modes K > 6 is necessary. In both scenarios we
note that a considerable higher number of iterations is needed to recover the en-
semble of modes. The reconstruction scheme seems to be more stable against noisy
data than for reducing the input data set. Appendix C surveys the influence of
M on the reconstruction quality. We note an improvement of the reconstruction
until the correct M is reached. Increasing M further does not improve or worsen
the reconstruction. Appendix D shows the influence of the starting guess A, on
the reconstruction. The different reconstruction trajectories show differences in
convergence speed. A desired error level can be reached in this (ideal) setup by

investing more iterations.

Table 4.1.: Summary of the parameters for the numerical experiment.

Parameter Value
Number of modes M 3
Number of measurements K 10
0.0032 0.0020 0.0015
Fresnel numbers Fr 0.0011 0.0009 0.0008
0.0006 0.0005 0.0004 0.0003
Occupation A, 4-10° 0.5 0.3 0.2]
Initial guess for occupation 4106 [0.6 0.25 0.15]
Image/Matrix size 12002 embedded 20482 px

Iterations 30000
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4.5. Summary and outlook

We have presented an extended multi plane reconstruction scheme for near-field
x-ray holography under conditions of partial coherence. We carried out numerical

experiments primarily on noiseless and noisy data.

Our results show that reconstruction of the coherent near-field modes is pos-
sible and that quantities as the coherence length and occupation numbers can
be faithfully reconstructed, given sufficient longitudinal diversity of the measure-
ments, i.e. a sufficient number of detection planes. Furthermore, our results clearly
demonstrate the increased reconstruction quality which can be obtained when data
recorded under condition of partial coherence is also reconstructed in a multi-modal
approach, instead of the assumption of a single mode. While near-field imaging
is known to be more tolerant towards partial coherence than its far-field counter-
part, the present work shows that it is still important to go beyond the idealized
assumption of full coherence. In the present work, we have also tested how the re-
construction quality decreases when the number of measurements K is decreased.
Of course, the number of measurements planes scales with the number of modes.
In fact, it can be expected that K > 2 x M. In our numerical experiments for
M = 3, we found indeed that K = 8 still resulted in good reconstructions, how-

ever, requiring a larger number of iterations (cf. App. B).

Following this work, two next steps suggest themselves: First, the new algorithms
and approach should be tested experimentally. Second, probe reconstruction as
presented here should be extended to full reconstruction of object and probe, as

it has already been shown for the far field.

4.6. Appendix A: Mode reconstructions from

noisy measurements

Reconstruction was tested under the influence of noise for photon fluences of
u = {10,100, 1000} photons per pixel, again using modes shown in Fig. 4.2. The
measurements 7, were generated for the set of Fresnel numbers Fry (cf. Tab. 1) as
detailed in the manuscript (cf. Sec. 2). The Zj were then rescaled according to p
and used as input for MATLAB’s imnoise-function. Figure 4.5 shows an example
for these measurements. The set of resulting noisy Z; was then used as input for
mmMMP. Figure 4.6 shows the obtained mode reconstructions from these input

data. The reconstructed modes presented in (a) show good recovery for ¥y but
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Normalized Intensity (a.u.)

Figure 4.5.: Example for a noisy measurement at Fr = 3.2 -107%. (top) The realization
for i = 10 photons per pixel and (bottom) u = 1000 photons per pixel. The insert (left)
shows the loss of feature visibility in the hologram by noise. Note, that for representation
purposes, the intensities have been rescaled by their mean value. Scale bar indicates 50

pX.

significant deviations for ¥y and W3 . For high fluence u = 1000, the reconstruc-
tion error A shown in (b) exhibits a similar functional form as for the noiseless
case in the main text, but it does not quite reach the same error level (after 30000
iterations). The reconstruction for p = 10 seems to stagnate, even if we let it run
over a considerable amount of more iterations (95000 iterations). Nevertheless,
the reconstruction result shown in (c) after 95000 iterations for W3 (left) compares

surprisingly well with the original ¥3 (right).

4.7. Appendix B: Mode reconstructions from a

reduced data set

Next, the influence of a reduced data set was studied, to this end the number
of measurements K was reduced. The mode reconstruction was carried out on
noiseless measurements simulated from the modes shown in Fig. 2. Starting from
the initial set of Fry (Tab. 1), tailing Fr have been removed until the new K is
reached. The simulated cases K = 6 and K = 8 are presented in Fig. 4.7. The
reconstructed modes after 50000 iterations are shown in (a), the left half for K = 6
and the right half for K = 8, respectively. While the reconstructed amplitude and
phase for W, is acceptable for K = 6, the other modes are not reconstructed. In
the corners of ¥, and U3 some details of a window appear, but the majority of
the mode is noise. Increasing the iteration number, in this case to n = 550000, did

not improve the mode reconstruction significantly. Contrarily, for K = 8 we still
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Figure 4.6.: Results obtained from noisy data. (a) Reconstructed modes in phase and
amplitude. The left half shows the reconstruction for = 10 and the right for p = 1000.
The amplitudes have been normalized by the mean value for the side-by-side plot. (b)
Error A as a function of iteration n, for both photon numbers. Dashed lines indicate
the bounds of the standard deviation over all measurement planes. (c¢) Reconstruction of
W3 for p = 10 after 95000 iterations (left) compared to the input mode (right), cf. Fig. 2
of the main manuscript.
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Figure 4.7.: Results obtained from the reduced input data set. (a) Reconstructed modes
in phase and amplitude after 50000 iterations. The left half shows the reconstruction for
K = 6 and the right for K = 8. (b) Error evolution for both K as function of iteration
number. Dashed lines indicate the bounds of the standard deviation over all measurement
planes. (c) Reconstruction of U3 for K = 8 after 270000 iterations (left) compared to the
input mode (right), cf. Fig. 4.2.

observe good recovery for Uy , but W3 also shows noise artifacts in the middle of
the image. Letting the algorithm run for more iterations in this setting (270000

iterations) yielded a reconstruction of similar quality as the one in main text.
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Figure 4.8.: Influence of the choice of M on Ay. The results for M = 1 and M = 3
are already shown in Fig. 4.3(c). The results for M = 2 and M = 4 have been added.
Solid lines indicate the mean error Ay over all T.. Dashed lines indicate the bounds of
the standard deviation over all measurement planes.

4.8. Appendix C: Influence of the choice of M for

reconstruction

The number of reconstructed modes M is an important parameter for physical
interpretation of data. Here we have complemented the results of Fig. 4.3(c) with
a variation of the number of modes M for multiple runs on the same (simulated)
data set. Again the parameters listed in Tab. 4.1 have been used, no noise has
been added to Z. The results are shown in Fig. 4.8, again we use Ay according
to Eq. (4.12) to monitor the error. The presentation of results follows Fig. 4.3(c),
see the main text. The results show the better description of the Zj, by increasing
M. For M = {1,2} we note stagnation of the error, the M = 2 curves shows
already that the stagnation is reached later and that the data is better described.
For M = {3,4} we see no stagnation of the error. The M = 4 curves shows no
better description of the data. From these results it is possible to deduce M = 3,
also for experimental data where M is not known beforehand.
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4.9. Appendix D: Influence of the initial guess of

A, for reconstruction

Besides M and the initialization of W,,, i.e. orthogonal and random, a starting
guess for A, has to be chosen. Here we have tested the stability of the algorithm
with regard to different choices of the starting initialization of A,,. In the first case
all ¥,,, have the same occupation A, i.e. A, = ﬁ -number of photons. The results
for this equal occupation reconstruction are shown in Fig. 4.9, the structure follows
Fig. 4.3. The reconstruction with equal occupation as starting guess reproduces
the reconstruction shown in Fig. 4.3. Further we have tested randomly chosen
initializations. Here we have chosen random initializations for \,, for the setting

of M = 3 as described in the main text. The )\,, have been chosen as follows:
¢ Generate M random numbers A,,.

e Sort A,, in descending order.
A

T
D Am
m=1

o generate the normalized occupation )T,\n =

e Calculate A\, = )T,\n -number of photons.

Figure 4.10(a) shows the trajectories of the relative occupation A, /A}, for ran-
domly chosen starting guess of A,,. The numbers in the legend for each panel
denote the X:n The normalized occupation of the searched ensemble of modes is
20 = {0.5,0.3,0.2}. The ensemble of realizations shows that the algorithm is sta-
ble against variations in the starting guess of \,,. (b) shows a longer run for the
realization )T; = {0.487,0.291,0.222}. After 30000 iterations this reconstruction
has not yet shown satisfactory recovery of the occupation numbers. Running more
iterations, overall 100000, has finally yielded a good recovery of the occupation.
The true occupation can be recovered, in unfavorable cases at the expanse of more
iterations.
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Figure 4.9.: Results of the equal occupation reconstruction. (a) The set of reconstructed
modes in phase and amplitude. (b) The convergence graph for the occupation numbers
Am. The convergence is shown relatively to the current occupation in an iteration with
respect to the prescribed occupation A,. (c) Comparison of the error evolution Ay of
the mean over all measurement planes Eq. (4.12) for a single mode reconstruction (red)
and multi mode reconstruction (blue). Dashed lines indicate the bounds of the standard
deviation over all measurement planes.



4.9. Influence of the initial guess

of )\, for reconstruction

61

2 2 2
a)
15} 1.5 1.5
of of ok
= \<_\ = <
< < £ P
— U, (init:0.351) — 0, (init0.481) — v, (nit0.730)
0.5 0.5 . 0.5 .
i‘llz (init:0.325) i‘yz (init:0.295) \p2 (init:0.166)
¥, (init:0.325) , (init:0.224) , (init:0.103)
0 0 0
0 1 2 3 0 2 3 0 1 2 3
Iterations x10* Iterations x10* Iterations x10*
2 2
= =&
< I ~
< ~<
— T, (init:0.845) —, (init:0.655) —, (init:0.833)
0.5 0.5 - 0.5
— Y, (init:0.097) —, (init:0.215) \Il (init:0.090)
‘Il3 (init:0.058) \IJ3 (init:0.130) \p (init:0.077)
0 0
0 1 2 3 0 2 3 3
Tterations x101 Tterations x10* Ifemtlolm x10*
2
1.5
of of ok
= = =
< = < e
~< ~< ~<
0 (init0.873) 0, (init0.741) ¥, (init:0.555)
0.5 ! 0.5 T 0.5 T
i\llz (init:0.125) i\vz (init:0.242) i\llz (init:0.295)
, (init:0.002) w, (init0.017) W, (init:0.151)
0 0 ‘ 0
0 1 2 3 0 1 2 3 0 1 2 3
Tterations x10* Iterations x10* Iterations x10*
2 |2 - - - - - - - -- - -~ 2
|
|
| |
15 RS I
e L \ I \
< 1 < 1 1=
< < > <
— ¥, (init:0.581) | —, (init:0.487) I —, (init:0.491)
0.5 0.5 - |05 -
i\yz (init:0.349) | i\llz (init:0.291) i\llz (init:0.383)
\l/3 (init:0.070) | \113 (init:0.222) I \I/3 (init:0.127)
0 oo oo
0 1 2 3 | 0 1 2 3 0 1 2 3
Iterations x10* Iterations x10%) Iterations x10*
- -
P -
b) e — - — — [ -
| —‘111 (init:0.487)
|
| | —— ¥, (init:0.291)
5L P
I -2 | W, (init:0.222)
‘ !
lo & |
=<
I~ 1 T
< |
/
‘ [
I 05 |
‘ [
‘ [
I 0 L l L L L ),
I 0 2 | 4 6 8 10
Iterations x10*

Figure 4.10.: Trajectories for the realizations of Ay,

. The individual trajectories (a) of

the relative occupation A\, /S, for overall 12 realizations are shown, using the parameters

listed in Tab. 1. The realization with Ay, = {0.487,0.291, 0.222} showing not satisfactory
convergence after 30000 iterations, has been iterated 70000 iterations more (b).
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5. Divide and Update: Towards
Single-Shot Object and Probe
Retrieval for Near-Field Holography

Johannes Hagemann and Tim Salditt
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We present a phase reconstruction scheme for X-ray near-field holographic imag-
ing based on a separability constraint for probe and object. In order to achieve
this, we have devised an algorithm which requires only two measurements — with
and without an object in the beam. This scheme is advantageous if the standard
flat-field correction fails and a full ptychographic dataset can not be acquired,
since either object or probe are dynamic. The scheme is validated by numerical
simulations and by a proof-of-concept experiment using highly focused undulator
radiation of the beamline ID16a of the European Synchrotron Radiation Facility
(ESRF).

5.1. Introduction

X-ray near-field holographic imaging (NFH) enables single shot, full-field imaging
of specimen with nanoscale spatial resolution [5, 89]. Sharing the characteristic
advantages of high penetration and quantitative contrast with other x-ray imaging
modalities, it can in addition exploit the advantage of high temporal resolution
down to single pulse imaging with synchrotron (SR) and free electron laser (FEL)
radiation [128, 129]. This is for the simple reason, that a full wavefield can be
probed in a single shot without scanning. Figure 5.1 depicts the setup of NFH using
highly focused SR or FEL radiation. By choice of the source to object distance
z1 and the object to detector distance zy, the geometric magnification M = (2o +

z1)/7z1 and the field of view (FOV) can be tailored to the experimental need.
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Figure 5.1.: Schematic of an experimental setup for near-field holography. Near-field
holographic images are recorded with detector 1 at distance zz behind the object O,
mounted on a motorized stage in defocus position z1 behind the focal plane F of a
Kirkpatrick-Baez mirror (KB) system with focal distance f. The dashed box shows the
extension to a parallel acquisition setup. The two measurements | D (U)|*> and |Dg(P)|?
can be acquired in single-shot by the use of a semi-transparent second detector. This
Detector 2 is positioned front of O to record the illuminating probe. This experimental
geometry is proposed for single-pulse FEL full field imaging scheme. For further discus-
sions refer to the main text.

A major challenge in NFH is the fact that the validity of phase retrieval and hence
image quality depends crucially on the quality of the illumination. Due to the finite
source-size, a number of unwanted effects can arise, such as distortions in the wave-
front or a partial coherent illumination, but also geometrical optical effects such
as astigmatism. For example, focusing by elliptically shaped multilayer mirrors in
Kirkpatrick-Baez geometry [21] is accompanied by unwanted phase distortions in
the incoming X-ray probe induced by deviations from the ideal height profile of
the mirrors [122]. After free space propagation to the imaging or detection plane,
the phase errors result in a measurable intensity pattern, which often appears as
pronounced horizontal and vertical stripes due to the two orthogonal mirrors, see
Fig. 5.2 for an example of an empty beam pattern. In other types of focusing simi-
lar distortions arise. Focusing is required to generate the diverging illumination for
high magnification and resolution. Note that also for parallel beam propagation
imaging it is extremely common to implicitly assume perfect plane wave illumina-
tion by performing the conventional flat-field correction [128, 130-134]. In previous
studies, we have shown that under these conditions the commonly used standard
flat-field correction, i.e. the division of measured intensities with the specimen in

the beam by measured intensities without specimen in the beam, induces artifacts
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Figure 5.2.: Experimental data used for phase retrieval by d&u. (a) Recorded near-field
intensity pattern with the object in the beam, i.e. |Dp(¥)[*. (b) Same without object,
i.e. |Dr(P)|*. For comparison we also show (c) the flat-field correction of the object’s
hologram as obtained by dividing |Dg.(%)|* by |Dr(P)|*. The scale bar indicates 5 pm.

[63, 54], as illustrated in Fig. 5.2(c). To overcome these problems, the experi-
mentalist can choose between two principal strategies: (i) corrections by a refined
optical system (hardware), or (ii) corrections by enhanced algorithms (software).
The hardware solution can consists in the simplest case by additional apertures
to cut off typical intensity tails in the focal plane. A more sophisticated solution
is the use of x-ray waveguides (WG) [135], which act as coherence and wavefront
filters [136], providing improved illumination schemes for NFH [56, 79, 137]. This
advantage comes at the cost of a reduced photon flux, and increased acquisition
time. The algorithmic approach by ptychography, on the other hand, solves the
flat-field problem by a precise reconstruction of the complex-valued illumination.
In the language of ptychography the illumination is called the probe P. To this
end multiple exposures of the specimen, or in ptychographic terms of the object O,
are acquired at different transveral positions in the beam. This position scanning
is extensive, since an overlap between 60% to 85% is necessary for proper conver-
gence of the ptychographic algorithm [138], depending on experimental modalities.
This applies for the far-field [12, 139] case of ptychography and its extensions to
NFH [65, 76]. Ptychography can also account for other non ideal states (e.g. lack of
coherence) of the probe or object [99, 140]. Associated with longer scanning time
is also a larger data set, which has to be acquired by transversal and/or longitu-
dinal (for the near-field) scans of O in order to generate sufficiently diverse input
data for the simultaneous reconstruction of P and O. The scanning also imposes
a higher dose on O, compared to NFH [141], which can induce radiation damage
and lead to an inconsistent ptychographic dataset. Most importantly, the scanning

scheme is incompatible with time-resolved studies and with ultra-fast (single shot)



66 Divide and Update

imaging. Note that some objects are deliberately destroyed by the first pulse, us-
ing the 'diffract-before-destroy’ strategy used in some schemes of FEL imaging [33,
142, 143]. A further problem for ptychography at FEL is the intrinsic shot-to-shot
variation of P, resulting from pulse generation by the SASE process [144].

In this work we seek to make single shot NFH compatible with non-stationary
probes and in particular FEL imaging. To this end, we propose a new algorith-
mic approach. The reconstruction of object and probe is based on two intensity
recordings: (i, exit wave) of the object in the beam and (ii, probe) of the empty
beam without object. The exit wave ¥ = P - O is written as separable product
of P and O. This implies that the product approximation holds, this is in general
true for thin and especially biological specimen[145]. The proposed algorithm uses
the separability constraint known from ptychography, and an intertwinded update

scheme operating on both images, which we denote by divide&update (d&u).

We show by simulation and experimentally that d&u yields an improved recon-
struction quality of O compared to a reconstruction obtained from the same data
using the standard flat-field correction as data preprocessor. The two images can
be recorded either sequentially or simultaneously (parallel recording). As the probe
stability was sufficiently high in the SR experiment serving as proof-of-concept in
this work, we have used the sequential recording which is easier since no special
detection scheme is necessary. In the case of parallel recording as required for sin-
gle pulse FEL imaging, a semi-transparent detector screen in front of the object
(denoted by detector 2 in Fig. 5.1) could be used, or a beam splitter in front of O
to split the XFEL pulse before it interacts with O [146, 147].

For this purpose, a semi-transparent detection screen or beam splitter has to be
placed in front of the object. There are two challenges to consider: Firstly, the
sensor resolution has to sample the probe sufficiently well. Secondly, the heat
load for the semi-transparent screen must be kept at a reasonable level. Both are
difficult, if the detection screen is to close to the focal plane of a nano-focus optic.
However, the 'probe detector’ can equally well be placed in the convergent beam,
e.g. directly behind the focusing device where the beam is extended, and where a
field of view of several hundred micrometer could be probed with sufficient spatial
sampling. In this case, the reconstruction requires additional propagation of the
wavefields by Fresnel propagators, as also demonstrated in this work for simulated
data in App. A.

The paper is structured as follows: Section 5.2 details the d&u scheme. Section 5.3
tests the algorithm on simulated data, before application to experimental data.

The paper closes with summary and outlook in Sec. 5.4.
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next
iteration

M ~ S
g

Figure 5.3.: Sketch of the algorithmic scheme of divide&update (d&u. The algorithm
uses the two measurements |Dr.(¥)|* and |Dr(P)|? as inputs. An iteration starts with
the projection of the guesses for P and ¥ on the measured intensities using the projectors
1%, and Iy, (left). After projection, the output fields P and ¥ are used in a cross-over
manner to update P and O in 11§ and 115 (middle), which are then multiplied to form
the ¥ for the next iteration (right).

5.2. Algorithm

As in other ptychographic approaches, the d&u algorithm uses the separability
constraint in the plane of O. Figure 5.3 shows a principle sketch of d&u and Alg. 1
details the algorithmic approach.

In conventional NFH, when dealing with distorted probes the approximative holo-
gram of O [54] is recovered by flat-field correction and then used as input for a
phase reconstruction algorithm. In contrast to this standard approach we make
use of the two available measurements in an iterative reconstruction scheme, cf.
Fig. 5.3. Following the separability idea of ptychography we use amplitude adapted
version ]/3,\L =14 (Pa-1), T analogously, to yield updates for P, and O,, in a cross-
over manner (middle) by use of constraints for O in the plane of the object. With

the new P, and O,, we generate the updated exit wave ¥ and start a new iteration.

The projection on the measurements 117, (o), with X being either |Dp,(¥)[* or
|Dg: (P) |2, i.e. the respectively measured near field pattern, is given by the standard

magnitude projector
Iy, (o) = D! (X2 - exp (i - arg [P, (o) ) (5.1)

applied to the respective iterate of P or W. The propagation to the detection plane
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is performed by the Fresnel free space propagator
Dri(e) = F ! [F[o] exp ((—im)/(2Fr) (k2 + k)], (5.2)

where k, = 2 n, /N, and k, = 2 n, /N, are spatial frequencies in Fourier space
with ng, € [=Ngy/2 ... Ny y/2], Ny, are the dimensions of the image, F the

Fourier transformation and Fr is the Fresnel number with respect to one pixel (px).

Algorithm 1 Divide and Update algorithm

1: Op < Iy, xnN, > Initialization
2: Py + ]lNz XNy

3: for/\ n=1..n"mn do

4 P, « 1L, (Poo1) > Carry out amplitude adaption

5: (\Ij)n — H]\{I/I ((\Ij)n—l)

6:

7:  Compute H(S):

8 O + (\I/)n/lgn > Divide for O, i.e. enforce separability
9: O, <« Ilp(0)) > and apply constraints
10:

11:  Compute I1%:

122 P (i p))2 > Divide for P
13: P, « Ip(P) > and apply constraints
14:

15: (0), « P, -0, > New exit wave
16: end for

The details of the cross-over update are given in pseudo code in Alg. 1 in line 7-13,
the corresponding projectors Hg and Hf; are detailed below. The operator Hg is
used to update the iterate for O. First the fields are separated by division (line 8),
enforcing separability. Next, the projector Iy is used to enforce the constraints

on O, i.e. pure, negative phase and support constraint.

o (o) exp (i - arg (o)) for pixel € S (5.3)
o\®) = .
exp(i - 0) for pixel ¢ SV arg(e) >0

Here the support S is assumed to be known, but additional refinements as shrink-
wrap can be easily implemented to refine S. In practice, the support is easily
generated from the conventional approach of empty beam correction, followed by
holographic reconstruction. Note, that any other known constraint on O can be

incorporated as well.
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Next, P is updated using Hg . The new O,, is used to separate P, taking also 1/3; into
account (line 12). In a general setting, we can only use the information from P and
the division of @ /O,,. However, in contrast to the general setting, one often has
quite powerful constraints at hand on P, depending on the experimental situation,
for example smoothness or small distance with respect to a temporal averaged
probe, which would of course further improve convergence. The smoothness of P
is generated by the blurring of free-space propagation. It can be estimated from the
power spectral density to choose a suitable full width at half maximum (FWHM)
value of a Gaussian filter. The filter is respectively applied on the phases and
amplitudes of P. Afterwards the filtered amplitudes and phases are recombined.
In the presence of strong fluctuations in P multiple recordings |Dg;(P)|* can be
combined to an averaged P. By comparing the current iterate of P with the average
P it is possible to discriminate variations larger than a given threshold and set
these to the average value. These constraints can be additionally enforced as part
of IIp on P/ (line 13). The updated exit wave (¥),, is calculated by multiplying
P, and O,, (line 15). The Matlab implementation of the algorithm is provided in
Code 1 (Ref. [148]).

5.3. Results

5.3.1. Simulated data

Figure 5.4 shows the phantoms used for testing the algorithm. A sketch of two
cells (a) [98] serves as pure phase phantom of the object. For the probe phantom,
a mandrill test image (b), and Diirer’s Melancholia I (c), serve to define phases and
amplitudes, respectively. Both images are Gaussian low-pass filtered with a filter
of FWHM of 5 px diameter to simulate the smoothing of a probe by propagation.
To simulate the finite size of the illumination the amplitudes have been multiplied
by a Gaussian window of a FWHM with 354 px. The images have size of 512 x 512
px? embedded in N, x N, = 2048 x 2048 px? for propagation. Only the central
parts (512 x 512 px?) of the images are shown in this and the following figures.

The simulated measurements are depicted in Fig. 5.5 i.e. (a) |Dp(®)|* and (b)
|DFI(P)|2 for a Fresnel number of Fr = 1073. Afterwards, Poissonian noise for
a fluence © = 200 photons/pixel (ph/px) has been added to the measurements.
|DFr(\I!)|2 does not show a visible imprint of the propagated object, due to the

comparative small, but for biological specimen reasonable [98] phase shift.

The approximated hologram is obtained by the standard flat-field correction i.e.
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(a)

Figure 5.4.: Phantoms used for the simulation. (a) Phases of the object (pure phase
contrast) with ¢ € [—0.2 0]rad. (b) Phases of the probe. (¢) Amplitudes of the probe.
The gray values of the input images are scaled to match phases ¢ € [—0.4 0.4]rad and
amplitudes A € [0.8 1.2]. Amplitude and phase phantom images have been frequency
filtered by a Gaussian with FWHM of 5 px. In addition, the amplitudes are multiplied
with a Gaussian of 354 px FWHM to simulate an intensity decay. The scale bar indicates
50 px.

I (ph/px) x103 I (ph/px) x10°  nomm. T

45 1.06 ()

1.04

Figure 5.5.: Simulated input data for the simulations at Fr = 10~% with u = 200 ph/px,
using the phantoms from Fig. 5.4. The measurements of (a) |Dg(¥)|* and (b) |Dr(P)|°.
The scale bar indicates 50 px. (c¢) The approximated hologram |Dg(¥)|? /|Dr(P)|*. (d)
Relative error of (c) to the real hologram |Dg.(O)|*. The scale bar indicates 100 px.

|Dr: (V)] /|Dg: (P)|? and is shown in (c). This reveals the small contrast range of
the imprint. The relative per pixel error of the approximated to the ideal hologram

(1De:(9)*/ [P (P)|* — [P (O)[)

o= 2
[ Dr:(O)]

(5.4)

is shown in (d). The absolute error is

1/2

> ‘lpm(‘l/)l2 / |Dee(P)? = | D (O) ’ = 13.9.

Vpixels
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The measurements have been then used for two simulations: First we have used
the approximated hologram as input for an alternating projection algorithm [98],
here we have implemented Relaxed Averaged Alternating Reflections (RAAR) [73].

The iterates of RAAR for the wavefield ¥ under reconstruction are given by

B

Va1 = =5 (Bo(Bar(Yn)) + W) + (1 = Bu) Pas(Pn) , (5:5)

where R /p(e) = 2I1p/p (@) — e denotes a (mirror) reflection by a given constraint
set and n the iteration index. IIp; and IIp are defined as above in Eq. (??7) and
Eq. (?7), respectively. The parameter (3, controls the relaxation. It follows the

function

Bu=exp (= (n/8.)°) o+ [1 —exp (= (0/8)°) ] B . (5:6)

where [y denotes the starting value, Spnax the final value of 3, and s the itera-
tion number when the relaxation is switched. This relaxation strategy follows [73]
Eq. (37). The parameters have been set to Sy = 0.99, 5,,, = 0.75, B, = 500 for the

reconstructions using RAAR.

Second have we used the two simulated holograms as input for d&u. We used the
same constraints on O as described in Sec. 5.2. P is constrained by the magnitude
projection and the separability. Additionally a smoothness constraint has been
applied in IIp. Amplitude and phase of P/ are filtered with a Gaussian with
FWHM of 1 px. Both algorithms were executed for 4000 iterations, starting from
a amplitude 1, phase 0 initialization over the whole reconstruction area. Figure 5.6

summarizes the results.

By comparison of (a) and (b), the improved reconstruction quality of d&u is clearly
evidenced. The background of (b) shows less distortions and small phase differences
are reconstructed with better contrast, see for example the center region of the
lower cell. The ringing artifacts at the edges of the object, which are observed in

the standard flat-field correction scheme, disappear.

In addition to the object and in contrast to the standard scheme, d&u can recover
P, at least to some extent, as shown in Fig. 5.6(c) and (d). The phases (c) show a
good recovery of the edges compared to Fig. 5.4(b), but the low frequencies seem
not recovered as well which is evidenced by the reduced contrast as compared to
the original. Further, the amplitudes (d) are not as well recovered as the phases,
some larger structures are recognizable as the cube left and the sitting angel on the

right. Further below, we will discuss remedies which improve probe reconstruction,
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¢ (rad.) ¢ (rad.)

Figure 5.6.: Results obtained with divide&update for simulated noisy data with p =
200 ph/px after 4000 iterations. (a) The reconstructed object phases, obtained from
conventional flat-field corrected data using RAAR. (b) The reconstructed object obtained
from d&u. (c) Phases and (d) amplitudes of the reconstructed probe. The scale bar
indicates 50 px.

by slightly changing the setting. Since only one measurement for P is used and no
additional constraints on phase or amplitude, the reconstruction suffers from twin
image artifacts and missing spatial frequency information. Figure 5.7 shows the
results for the Fourier ring correlation (FRC)[97, 149] on the object reconstructions
of Fig. 5.6(a) and (b) and the phantom Fig. 5.4(a). The flat field (blue) and
d&u (red) reconstruction do not drop below the 1/2-bit threshold (yellow), this
means both reconstructions have resolution down to the pixel level. The FRC
yields more insight, it shows that the d&u reconstruction, while slightly lacking

for frequencies in the range [0.02,0.15] 1/px, has a superior recovery of frequencies
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Figure 5.7.: Fourier ring correlation of the reconstructions of O shown in Fig. 5.6 with
respect to the phantom Fig. 5.4(a).

beyond 0.25 1/px. The normalized Frobenius norm

1/2
1

A =
N, N,

Z |arg(phantom) — arg(reconstruction)|? (5.7)
V pixels

is for the flat-field reconstruction A = 4.58 - 10~° and for d&u A = 2.45-1075.

5.3.2. Experimental data

In addition to the simulations, we present reconstructions obtained from experi-
mental data, recorded at ESRF beamline ID16a using a photon energy of 17.05 keV,
at instrumental settings described in [150]. The object consisted of spheres of dif-
ferent diameters 595nm (SiO3), 3 and 7pm (polysterene). It was placed at a
defocus distance of z; = 13.79mm. A FReLoN 2k (N, x N, = 2048 x 2048 px?)
detector was used for recording the data with a pixel size of 845 nm, placed at a
defocus distance of zo = 435.56 mm. The exposure time was 1s, 2 exposures have
been acquired, one with and one without object in the beam. The exposures have
been corrected for dark current, lens distortions and scintillator impurities. The
images have been then normalized by their corresponding mean intensity value.
The resulting normalized intensity distributions have been used as input for the
reconstruction algorithms. Figure 5.2 shows the preprocessed input for (a) the mea-
surement | Dg: (¥)[%, (b) the measurement |Dg, (P)|* and (c) the flat-field correction
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without Shearlets with Shearlets ¢ (rad.)

RAAR (Flat Field)

Divide&Update

Figure 5.8.: Object phase reconstructions obtained by different reconstruction schemes
applied to the same input data, shown in Fig. 5.2. (a) Reconstruction obtained by RAAR
using the flat-field corrected input data after 20000 iterations. (b) same as (a) with
shearlet supression. (¢) The d&u reconstruction shows significantly reduced artifacts. (d)
same as (c) with shearlet supression. All reconstructions shown are after 20000 iterations
and the color bar applies to all panels. The scale bar indicates 5um for (a) to (d). (e)
Detail on the left large sphere for (a) to (d) from top to bottom, respectively. The scale
bar indicates 1 pm.

obtained from (a) divided by (b). The effective object pixel size is 26.7 nm, given by
the detector pixel size and the geometric magnification M = z5/2 ~ 31.5. After
transformation to a parallel beam (effective) geometry using the Fresnel scaling
theorem, the (effective) Fresnel number is Fr = 7.3 - 1074,

Figure 5.8 shows the reconstruction results after 20000 iterations for different re-
construction schemes applied on the same input data, as shown in Fig. 5.2. The
reconstruction obtained by a standard iterative phase reconstruction algorithm
scheme is shown in (a) and (b). As input the flat-field corrected single distance
measurement was used, cf. Fig. 5.2(c). The reconstructions (¢) and (d) obtained
by d&u used the measurements shown in Fig. 5.2(a) and (b) as input. The phase
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Table 5.1.: Summary of the parameters for the experiment.

Parameter Value
Detector pixel size 845 nm
21 13.79 mm
2o 435.56 mm
Magnification 31.5
Effective pixel size 26.7nm
Fr 7.3-107%
Iterations(simulation) 4000

Iterations(experiment) 20000

retrieval for Fig. 5.8(a) and (b) was carried out with RAAR, using the same set of
constraints (pure phase shifting sample as well as the support constraints) as in the
numerical experiment. This is to be compared with the reconstructions of O using
dé&u, shown in (c¢) and (d), which both exhibit improved reconstruction quality
compared to (a) and (b), in particular an improved suppression of the P induced
artifacts stemming from the KB aberrations. Also the resolution is improved, as
judged from inspection of the smallest spheres, see also (e) for a zoom on the left
of the large spheres. All reconstructions shown impose the same constraints on
O, i.e. combined support and pure-phase constraint (cf. Eq. 5.3). In addition for
(c) and (d) the physically correct formulation of the separation of complex valued
wavefields instead of the flawed flat-field division [53, 54] is used. In the reconstruc-
tion of (b) and (d), an additional constraint in form of a shearlet suppression was
applied in I1¢ which for (d) further enhanced the reconstruction quality. For (b)
the same set of shearlets has been suppressed as in (d) but with a negative effect
on reconstruction quality. For this constraint, a shearlet decomposition [151-153]
was used to identify components which appear both in P and the reconstructed
O. These shared components are then removed from the object, as detailed in
App. B. In (d) even the small spheres beneath the large sphere on the left become
distinguishable. Still we note remaining structures which can be accounted to drift
in P, i.e. inconsistency due to the fact that the object and empty beam recordings
were not simultaneous, as proposed in the FEL illumination scheme sketched in

Fig. 5.1. All reconstruction parameters are tabulated in Tab. 5.1.

The reconstructed phases and amplitudes of the probe are shown in Fig. 5.9 (a) and
(b), respectively. The probe’s phase does not show a visible imprint of the object,
contrary to the object where we observe remains of the probe. The amplitudes
show no imprint, but we observe a decay of intensity towards the edge of the field

of view, as we expect from a finitely extended illumination. Overall the separation
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Figure 5.9.: Reconstructed probe P, obtained simultaneously with the object shown in
Fig. 5.8(c). Phases and amplitudes are shown in (a) and (b), respectively. The scale bar
indicates in all panels 5 pm.

of P and O works very well. The reconstruction was carried out as in the case for
simulated data. However, a larger number of iterations is required, compared to
simulated data. Inspection of the object reconstruction after 4000 iterations shows
that the object has ’holes’ which fill up with more iterations. Therefore a much
higher number of iterations n,,,, = 20000 was used. The convergence rate can
further be quantified by the error metric Ay as a function of iteration n, as shown
in Fig. 5.10. Ay calculates the per pixel error of the reconstructed intensity Ix

with respect to the measurements My,

Ax= > |Ix—Mx|*/N. (5.8)

all pixels

5.4. Discussion and outlook

Both simulation and experiment validate the proposed approach for simultane-
ous probe and object reconstruction in the optical near field, using a miniumum
of data, i.e. one recording with and one without the object (empty beam). In
practice the two recordings can be acquired sequentially, as in the present experi-
mental realisation, or simultaneously, if a second semi-transparent detector screen
is used in front of the object, see Fig. 5.1. This is to be compared to established
near-field ptychographic schemes, which are based on lateral [13, 154] and /or longi-
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Figure 5.10.: Error measure A as function of the iteration number for the exit wave’s
U (blue) and probes P (red) reconstructed intensity.

tudinal translations of the object [14, 76]. Hence, the standard approaches require
sequential recordings and significantly more input data. In particular, they are
neither compatible with time-dependent imaging nor with non-stationary illumi-
nation (probe). Unwanted probe fluctuations are particularly problematic in FEL
imaging using stochastic SASE pulses, with considerable pulse-to-pulse fluctua-

tions.

The price for relaxing the need of a stationary probe is a stronger set of constraints.
Here we have used the constraints of a pure phase object and a support for the
object and smoothness for the probe. Additionally we have employed a shearlet
decomposition to identify and remove artifacts stemming from the probe. This is
not a severe restriction for holography of biological (from cells to tissues) and soft
matter samples at the nano scale, since total absorption is significantly reduced
compared to macroscopic phase contrast imaging. For example the model protein
H50C30NgO10S [98, 155] has at an energy of 17.5keV an attenuation coefficient of
1.38-1077 nm~1.

Further, extended samples could possibly also be used in this scheme if the probe
is fully captured by the detector, including the beam tails. Therefore, we anticipate
that the presented scheme is ideally suited for single pulse full field FEL imaging
even in the presence of strong pulse-to-pulse fluctuations. Using nano-focused il-

lumination and high geometric magnification M as recently realized with SR [79],
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sub-50 nm resolution and typical FOV in the range of several 10 micrometers are

realistic.

Finally, we want to briefly address probe reconstruction. The results of the probe
reconstruction shown in Fig. 5.6 (simulated data) is still quite flawed, in particular
concerning the amplitudes. This can be avoided if the empty beam and the object
recordings are carried out in two different planes, which is not the actual geometry
realized in the present experiment at ID16a, but the geometry proposed in Fig. 5.1
for future FEL work. As shown by further simulation in App. A, recording P and
¥ in two different planes already stabilizes the reconstruction. We also stress that
the Mandrill-Diirer probe is certainly an extreme case and could be replaced by an
‘easier’ setting with a smooth probe, for example a probe where more constraints
can be applied from prior knowledge, e.g. from recording a data stream of typi-
cal probe fluctuations. A machine learning algorithm could then identify a lower

dimensional space of ’allowable’ probes. This issue is left for future investigation.

In summary, combination of common constraints with separability of P and O
yields a minimalistic implementation of ptychography and a significant improve-
ment in resolution, phase sensitivity and reduced probe artifacts as compared to re-
constructions using flat-field corrected data. The divide and update scheme (d&u)
presented here could also be extended to far-field imaging (coherent diffractive
imaging) in a straightforward way. Finally, we want to point out the advantages
of d&u also for the case of imaging with stationary probes. Conventional probe
and object retrieval by multi-plane detection or multi-object translations requires
substantial recording time. Contrarily, single distance recordings are preferred in
particular for tomographic scans. The present scheme reconciles such single dis-

tance recordings with proper treatment of an aberrated (non-ideal) probe.

5.5. Appendix A: Simulation for parallel data

acquisition scheme

The proposed setup for parallel data acquisition Fig. 5.1 has been validated by
simulation. The reference plane for P has been set at Fr = —1 - 1072 in front of
the plane of O. This way we can simulate effects of a propagated probe at the
object plane. Starting from the plane of O we have simulated measurements of ¥
for Fry = 1-1073 and P for Frp = —5-1072 (in front of O). Poissonian noise
corresponding to 2000 ph/px has been added to the measurements. Figure 5.11
shows the reconstructions of O (a) and P (b,c) after 4000 iterations of d&u without
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A (a. u.)

Figure 5.11.: Reconstructions for parallel acquisition setup. Structure as in Fig. 5.4. (a)
Phases of the reconstructed object. (b, c¢) reconstructed probe in phase and amplitude,
respectively, in the probe’s reference plane located at Fr = 1-1072 in front of the object.
The scale bar indicates 50 px.

shearlet constraint. Inspecting the reconstructions shows, that the amplitudes of P
(c) are recovered much better than in Fig. 5.6. The second measurement distance
for P breaks the twin image symmetries(complex conjugates) and eliminates these
artifacts. The remaining artifacts in P stem from the incomplete separation of O.
Note, a smaller Frp yields a better reconstruction of P. The reconstruction of O
is spoiled by some low frequency artifacts as compared to Fig. 5.6. Using shearlets
to identify unseparated contributions in O can improve the reconstruction.

5.6. Appendix B: Details of the shearlet

suppression

For enhancing the reconstruction a shearlet suppression has been applied in each
iteration step. The shearlet transformation has been calculated using ShearLab
3D v1.1 [151, 156]. A shearlet system with 4 scales and {1, 1, 2, 2} shears per
respective scale. This results in a system redundancy of 49 shearlets. Starting with
the reconstruction of O shown in Fig. 5.8(b) and P in Fig. 5.9, the phases of
these wavefields have been decomposed in the shearlet basis. In order to find the
shearlets with the largest contribution, the shearlets intensity, i.e. the sum of the
shearlet’s coeflicients as function of the shearlet index is shown in Fig. 5.12(left).
The blue and red curve show the shearlet’s intensities for O and P(left), respec-
tively. These curves have basically the same, but shifted functional form. The shift
results from the fact, that we have assumed for |O(z,y)| = 1, while P is allowed
to have spatially varying intensity values > 1. The sensitivity of the shearlets to

structures in the reconstruction is exemplarily shown on the right. To exemplify
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Figure 5.12.: Shearlet analysis of O and P. (left) The red and blue curve show the
intensity of the shearlets as function of the shearlet’s index. The yellow curve shows
the correlation of the respective shearlet coefficients for P and O. (right) The coefficient
matrices of O and P for the shearlets with index #8 and #33.

this, shearlets with large contribution for vertical and horizontal structures are
shown, respectively #8 and #33. To gain further inside we have calculated the
correlation of O and P for each shearlet coefficient. This has been achieved by
using the MATLAB function norm2xcorr. The yellow curve shows the correlation
of the P and O shearlets, for zero-shift. Certain shearlets show only a weak corre-
lation and visual inspection shows indeed that these are the shearlets describing
the horizontal and vertical stripes on different scales in the reconstruction. The
first approach, to threshold all shearlets below a certain correlation value yields
only poor image quality, since some of the removed shearlets carry important res-
olution information, e.g #{29,34,39}. After visual inspection, the shearlets Svyp
with indices #{3, 8,15, 30, 31, 33, 38} have been suppressed, which has yielded the
best reconstruction shown in Fig. 5.8(c). The supression has been carried out by
multiplying the whole coefficient matrix corresponding to a shearlet by a factor
0, in this case # = 0.8. The shearlet suppression was applied in each iteration of
the reconstruction run for the result shown in Fig. 5.8(c), providing additional
constraint as part of Hg. Contrarily, Figure 5.13 illustrates the effect of (a) ap-
plying the shearlet suppression as mere post-processing image filter compared to
(b) incorporating the suppression in the algorithm. This shows that the additional

computational effort yields an improved reconstruction.

This scheme is a first approach to incorporate the shearlet decomposition in phase

retrieval to enhance separability of P and O it can be further extended: The
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Figure 5.13.: Effect of shearlet suppression. (a) shows the effect of the shearlet sup-
pression applied on the object’s reconstruction shown in Fig. 5.8(b). (b) the same as
Fig. 5.8(c), where the shearlet suppression has been applied as part of Hg in each itera-
tion. The scale bar indicates in all panels 5 pm.

shearlet components extracted from O can be ’transplanted’ in the corresponding
coefficients of P. The suppression parameter # can be relaxed, in order to boost
artifact removal at the beginning of the reconstruction and later to find a stable
solution. Multiplying the complete coefficient matrix with 6 is rather harsh, since
the shearlets give highly localized information, one could look for areas in the
image, where the variation is strong and apply there locally the suppression. Finally
we want to note, that the separation of P and O shows similarities to image
separation problems[151, 157].
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6. Summary and Outlook

This thesis has presented new schemes to account for imperfections encountered in
x-ray near-field holography experiments. Chapter 2 presented the reconstruction
of the probe of a state of the art x-ray nano focus setup under the assumption
of full coherence. The probe reconstruction has been carried out in the diverging
geometry i.e. no Fresnel scaling was applied. This is a numerical demanding ap-
proach but it yields a more direct access to the relevant aspects of propagation
and focusing of the probe. The next step towards a full model of the probe is the
inclusion of the effects of partially coherent illumination as described in Chapter 4.
The partial coherence has been modeled in terms of an ensemble of mutually in-
coherent modes. To this end, the scheme by Thibault [99] has been extended to
near-field imaging. In numerical experiments the reconstruction of the coherent
modes with their accompanying occupation numbers has been demonstrated. Fur-
ther, the algorithm’s robustness was tested against different parameter choices.
Also, the extraction of the coherence length has been shown. Related to this topic,
the requirements on coherence for near- and far-field imaging have been surveyed in
Appendix A. The results support the claim that near-field imaging is less sensitive

to partially coherent illumination than far-field imaging.

Chapter 3 has presented a contribution to the vast, but extremely important,
fluence-resolution discussion for different imaging modalities with x-rays or other
kind of probes. Despite the considerable number of available publications concern-
ing the dose and resolution in x-ray imaging and electron microscopy, this issue
has not been fully answered, yet. In the chapter near- and far-field propagation-
based imaging are compared in a numerical study. The results show a superior
performance of near-field imaging. These numerical results are substantiated by
experimental results, but only in a snap shot manner. A systematic study has
still to be carried out. While the near field reconstruction is quite tolerant against
noise, the reconstructions can still benefit from denoising techniques applied to the
measurements or during the reconstruction process. Previous work using classical
denoising strategies [158] and work based on rather new developments in statistical

multiresolution estimation [159] showed the possible improvements for holography.

Chapter 5 has described a novel ptychographic algorithm termed divide&update
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using a minimalistic set of measurement. The feasibility has been demonstrated in
simulations and on experimental data obtained at ESRF beamline ID16a. The ob-
tained high quality reconstructions have shown the capabilities of the smoothness
and shearlet constraint for phase retrieval. The possibilities offered by shearlets
for artifact removal and efficient description of a wave field (be it object or probe)
in terms of a sparse base should be further investigated and exploited in future
work. Divide&update offers opportunities to implement imaging with non sta-
tionary probe or objects as they occur at x-ray free electron lasers. In order to
acquire in parallel the measurements a second semi-transparent detector is neces-
sary. First experiments, implementing a dual detector system have been performed
at the GINIX-setup at DESY beamline P10. Nevertheless, divide&update offers
also advantages for imaging with stationary probes, since data recording times are

reduced and the aberrated probe is correctly taken into account.

With the advent of 4th-generation synchrotron sources, the available flux for imag-
ing will be drastically increased. The dream to scan cubic millimeter sized specimen
at 10 nm resolution may become reality. Not speaking about the enormous amounts
of data, the dose on the specimen is tremendous. Also the question of specimen
stability arises at long scanning times. With the possibility to acquire full field
images with near-field holography, the radiation exposure can be minimized and
scanning time can be reduced. Thus, with the enhanced reconstruction techniques

presented here, near-field holography is ideally suited for these new x-ray sources.



Appendix

A. How much Coherence is Needed for

Near-Field Imaging?

The ability of a x-ray wave field to interfere with itself and an object is a pre-
requisite for many x-ray measurement techniques. This is for example the case,
not only for propagation-based imaging techniques as discussed in Chapter 4 but
as well as for coherent spectroscopic techniques such as x-ray photon correlation

spectroscopy (XPCS).

While Chapter 4 was concerned with the recovery of an ensemble of coherent modes
to describe the coherence properties of the probe P, the question under survey here

is: "Which degree of coherence is required for different imaging techniques?”

Despite the possibility at hand to reconstruct the modal structure of a partially
coherent probe with mmMMP in the near-field or Thibault’s approach for the
far-field, it might still not be possible to acquire the necessary data set for the re-
construction due to temporal instabilities in P or O. Thus, similar as in Chapter 3,
it is insightful to survey the robustness of different imaging techniques against par-
tial coherent illumination. The techniques studied are near-field holography (NFH)
and coherent diffractive imaging (CDI) in the optical far-field. The robustness is
quantified in terms of resolution and reconstruction error with respect to a phan-

tom, as a function of transversal coherence length €.

A.1. Coherence model

To study of the effects of a reduced spatial degree of coherence, i.e. 0 < ||j(d)| <
1, in NFH and CDI we make use of the model of a completely incoherent but
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Figure A.1l.: Sketch of the used coherence model. Plane waves are emitted by an in-
coherent source with extension d. An object is placed at distance R behind the source.
The plane waves impinge on the object from a cone with opening angle 0.. The object
is given as a phantom image, cf. Fig. A.2. We assume that the projection approximation
holds. The partial coherent measurements are simulated at a detector for the two cases
of NFH and CDI.

monochromatic source. In a completely incoherent source all points in the source

emit uncorrelated radiation.

Figure A.1 shows the principal sketch for the coherence model in use. The model
considered is based on ergodic realizations and incoherent superpositions [123] of
plane waves emitted by the source S with extent d. The object O is placed in a
distance R behind the source. 6. is the angle subtended by the source at O, we
assume 6, to be small so that the paraxial assumption holds. The plane waves
emitted by S impinge on O at a maximum angle of .. The coherence length £ is

then given by
AR X1

5—55—59:7 (A.1)

i.e. the length when two waves intersecting with 6. have a phase shift of 7. Thus

0. can be expressed as

A
0. = —. A2
> (A2)
The momentum transfer of a wave impinging on O under angle a € {—6./2,60./2}
is 9
a(a) = " sin(a), (A.3)

with the wavelength A\. Writing o = (6./2, ¢ € {—1,1}, inserting 6. and assuming
small angles a = 0 yields

_ ¢
q= % (A.4)
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Figure A.2.: Setup for the simulation: limit of full coherence. The pure phase phan-
tom (a) of a cell with maximum phase shift of —1rad. The black line indicates the sup-
port used in the reconstruction. The ideal near-field hologram (b) at Fr = 1072 of (a).
The ideal far-field measurement (c) of (a). The scalebar indicates 50 px. Examples of
partially coherent measurements are presented in Fig. A.3.

The momentum transfer is independent of A, this allows us to simulate the model
in a dimensionless setting with &, given in units of pixels, as the only control
parameter. Note, that the numerical implementation recourses to the use of a to
choose the realizations of incident plane waves.

A.2. Numerical simulation

Figure A.2 introduces the concept of the numerical study. The setup presented here
follows closely the setup of Chapter 3. As in Chapter 3 we use the phantom of two
adhering cells (a). It is a pure phase-contrast object with phases ¢, € {0, —1} rad.
The phantom has a size of L = 512 x 512 pixel® embedded in 1024 x 1024 (N, x N,))
pixel?. From that we generate the ideal measurements for NFH (b) at a Fresnel
number Fr = 1073 and CDI (c) at Fr = 0. To ensure artifact-free propagation a
padded size of 2048 x 2048 pixel? has been used. Note, all lengths are measured
in the size of pixels, thus the pixel size Ax is 1.

For the incoherent source model, especially for small £, a large number of re-
alizations for the plane waves Npg is necessary. The measurements shown in the
following have been obtained by the superposition of Ng = 5000 realizations of the
source. Experimentation has shown, that small coherence lengths need this large
number for Nr so that the partially coherent measurement properly converges.

For simplicity this value has been used as well for the large coherence lengths.
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Each realization of the exit wave ¥, is calculated by
v,=PFP, 0, (A.5)

where P, is a canted plane wave emitted by S at angle a. a can also be read as
the wave vector of the plane wave, interacting with the object O. Then by using
the respective propagator X, being either the Fresnel propagator Dy, Eq. (3.4) or
the Fourier transformation JF, the partial coherent measurement M is simulated
by

Nr
2
M=) | X(La)| (A.6)
nr=1
Since a two dimensional extended source is considered, the plane waves are emit-
ted in a cone (as seen from O), thus the incidence angles have to be uniformly
distributed on a circle with “radius” 6./2. The uniform distribution is generated

in polar coordinates and then transformed in Cartesian coordinates:
1. Generate 2 uniform distributed random numbers nq,ng € [0,1] .

2. Calculate the polar angle ¥ = 27n; and radius p = %C‘/ng. The root is for
normalization on the circle surface.

3. Transform in Cartesian coordinates o, = pcos(¥) and a,, = psin(d).

With that the canted plane wave P, is
P, =exp(i(ag -1z + 0y - 1y)), (A7)

where 7, ,, denote coordinates in the plane of O.

While this is the intuitive way to simulate M, it has two drawbacks: (i) it is
numerical extremely costly and (ii) for CDI the multiplication with P, leads to
numerous numerical artifacts in F(P, - O). In order to remove these artifacts it is

necessary to precisely choose padding and windowing functions.

A more practical approach can be obtained by analyzing the properties of the
propagators. It shows that multiplication with P, leads to a shift of the individual
realization of the measurement. For the far field « translates to a shift of the ideal
measurement by

Aspp = 0y - Ny (pixels). (A.8)

This is basically the interpretation of the incident wave vector in the discrete
Fourier space sampling of the detector. The near field is affected in the same way

but the finite propagation distance z has to be taken into account. Starting for
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Algorithm 2 Generation of of partial coherent measurements using sub-pixel
shifts

: Calculate Aspax with a = 6./2

[y

2: Mg < X(0) > generate ideal M
30 M 4= O(N, + Asmax) X (Ny+ASmax) > start with 0 for M
4: > Loop over realizations
5. for n=1.. Ngp do

6:  Generate a, ,, as described above

7. Calculate As(ag,y)

8: Mg + Shift(Mid, As)

90 M+ M+ 1/Ngr-Mps > Add up and normalize
10: end for

11: Cut out M to fit N x N,

the near field shift Asyp with Asyr = ¢- 2z and using the definitions for ¢ and Fr
leads to 1
ASNp = Qg y - T (pixels). (A.9)
T

Using these shifts, the simulation of M can be efficiently implemented using sub-
pixel shifting operations, as detailed in Alg. 2. Some examples for the measure-
ments with varied £ can be found in Fig. A.3 (a,c).

Note, the simulation of M can also be carried out in form of a convolution with the
Fourier transformation of the source profile (cf. Van Zittert-Zernike-theorem [123]),
which can be interpreted as a coherence envelope. This is an approach often used in
high resolution electron microscopy [160]. Still the variant presented here is more

instructive and more of a bottom-up approach to describe the observed effects.

After simulation of M, the phase reconstruction process has to be carried out. As in
Chapter 3 RAAR is used as reconstruction algorithm, cf. Eq. (3.5), with relaxation
parameters By = 0.99, Bmax = 0.75, 85 = 75 and 200 iterations. Also the same set
of constraints is used, cf. Eq. (3.8). Note, the phase reconstruction is carried out
under the assumption of full coherence, this introduces an inconsistency in the
constraints. Recently, a method for CDI has been proposed [161] to recover the
object and coherence properties of the illumination from a single measurement. The
resolution of the obtained reconstruction is assessed via Fourier ring correlation [97,
149] (FRC) to the phantom.
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Figure A.3.: Example reconstructions for varied coherence length £. The measurements
for NFH (a) and CDI (c) show for each panel in the left half the fully coherent mea-
surement and in the right half the measurement obtained for the £ given in the title.
The partially coherent CDI measurements have a virtual beam stop covering the zeroth
order. The NFH measurement is shown on linear scale and the CDI measurement on
logarithmic scale. The reconstructed objects for NFH (b) and CDI (d). The number in
the upper right corner of each panel denotes the resolution Ar in 1/px. The scalebar
indicates 50 px in all panels.
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Figure A.4.: CDI reconstruction without the virtual beam stop. The simulated mea-
surement for & = 500 px (a) and the corresponding reconstructed object’s phases (b).

A.3. Results

First the influence of £ < co on the measurement M is surveyed in Fig. A.3. The
M for varied £ are shown in (a) for NFH and (c) for CDI, note the different choice
of £ for NFH and CDI. The left half of the measurement panels shows the ideal
fully coherent M, while the right half shows M for the £ given in the title with
Npgr = 5000. The NFH measurements are shown on linear scale in a diverging cool-
warm colormap [162], which illustrates the oscillation of fringes. By increasing &,
the fringes spread out wider and sub-structure in the fringes becomes visible. The
recovered objects (b) used the respective measurement from (a). The increase in € is
accompanied by an increase in resolution Ar, given in the upper right corner of the
reconstruction panels. At £ = 225 px, for comparison, the object has an horizontal
extension of 306 px, NFH reaches full resolution and the recovered object exhibits
no visible deviations from the phantom. Interestingly, the corresponding hologram

shows more deviations to the ideal hologram.

The CDI measurements are depicted on a logarithmic scale. For small £ they show
a strong smearing. With increased £ the speckles become sharper, but the fine lines
between the speckles do not become zero as in the ideal measurement. The cor-
responding reconstructions (d), do not show the same blur as in NFH, but rather
a total reconstruction failure for £ = 20 px and 100 px. The reconstruction for &
= 325 px still shows low frequency and stripe artifacts but the smallest features
are quite clearly visible. For ¢ = 450 px the reconstruction has nearly reached

full resolution and is close to artifact free. The reader probably has noticed the
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Figure A.5.: Results as a function of the coherence length &. The &-resolution result
for NFH and CDI (a) for typical experimental parameters. { has been varied from 20 to
900 px, each £ had 20 realizations with each 5000 realizations of the source to generate
the measurement. The ¢* error (Eq. (3.9)) of the reconstruction (b) with respect to the
original phantom.

white circles in (c). These are virtual beam stops to block the zeroth order in the
diffraction patterns and to exclude these values during the reconstruction process.
The beam stops’ radii have been chosen as 2 - Asyax, with Aspayx the maximum
shift of the measurement for a given 6.. This value seems prohibitively high but
ensures stable reconstructions without introducing noticeable reconstruction arti-
facts. Figure A.4 shows a measurement (a) for £ = 500 px without beam stop and
the reconstructed phases (b) obtained from (a). The high coherence length results
in a Aspmax = 0.5 px. Despite this low value, the reconstruction fails without beam
stop. The artifacts encountered are not just low frequency deviations, also the
inner structure is not recovered, only the support shows a strong imprint in the

reconstruction.

Next, we turn to the coherence-resolution relationships which are computed by
performing the automatized reconstruction and FRC analysis for measurements
of systematically varied coherence length &. For each £ covering the range from 20
to 900 px, 20 realizations have been generated and reconstructed, each with the
same parameters. Figure A.5 shows the results. The &-resolution curve (a) shows
two different behaviors, for NFH the resolution increases linearly until it reaches
full resolution at & = 225 px. For CDI the resolution does not improve over the
range of £ = 20 px to 250 px, then we notice a steep increase in resolution which
saturates at & = 475 px. The error plot (b) shows A, as defined by Eq. (3.9). For

NFH we see up to & = 225 a steep decrease and afterwards a slower reduction in
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Figure A.6.: £-resolution results as function of the setup parameters Fr and L for
(a) NFH and (b) CDI, respectively. The NFH result (a) for varied Fresnel number Fr. A
smaller Fr needs a larger & for a high resolution reconstruction. The CDI result (b) for
varied size L of the object under survey. The objects with larger size L need a higher de-
gree of coherence in the illumination for a high resolution reconstruction. In both settings
Ngr = 5000 and 20 realizations per £ have been used.

A. The CDI curve shows again at larger £ a steep decrease, but overall the error

is roughly an order of magnitude larger than it is the case for NFH.

The results shown so far have been obtained at fixed simulation parameters, no-
tably Fr and object size L. The change of these parameters has different effects
on NFH and CDI as the results in Fig. A.6 show. The algorithm and realization
parameters are set as before. (a) shows the effect of changing Fr on the NFH re-
sult. The plot shows variation of Fr from 0.7 - 1073 to 5 - 1072. Smaller Fr need
a larger £ to be properly reconstructed. This can be explained by the fact, that
at smaller Fr, the fringes of the hologram are propagated further out. Consider
two features in the object that have a large separation distance. In the small Fr
case the fringes emanated from these features come in contact. The fringes have to
interfere coherently in order to form the correct hologram. This requires a larger
£.

(b) shows the effect of changing the object size L on the CDI result. The plot shows
the &-resolution curves for varied L = {256,512,700,800} px. This corresponds
to object extensions of {153,306,418,478} px. The plot supports the standard
recommendation for CDI to use ,compact and isolated“ objects. Small objects need
significantly less coherence to reconstruct than larger objects. Also the demands

on the coherence seem to scale worse for larger objects.

The obvious next step is to study the influence of noise on the partially coherent
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Figure A.7.: Resolution as function of £ at varied fluence w (photons per pixel). (a)
results for NFH and (b) for CDI. Note, (a) and (b) show not exactly the same choice of
w also the sampling of £’s has been adapted to the respective method. The dashed lines
indicate the noise free result from Fig. A.5(a).

measurements. The findings of this experiment are shown in Fig. A.7. The results
have been obtained as for Fig. A.5(a), i.e. Fr = 1-1073 and L = 512. Due to the
larger numerical cost, added further by the variation of the fluence p (photons per
pixel), the realizations per measurement were reduced to Ng = 3000 and each &
has been repeated just 10 times for averaging. The noise has been added after the
simulation of the partial coherent measurement, following the recipe described in
Chapter 3.2. Both NFH (a) and CDI (b) show stagnation of the resolution below
0.5 1/px if p is too small, e.g. up to p = 399 ph./px for NFH and p = 5000 ph./px
for CDI. For NFH we observe the interesting case p = 2512 ph./px where the
increase in £ increases the contrast in the measurement so that the fringes have
sufficient contrast, yielding full resolution for the reconstructed object. As for the
pure fluence resolution survey we note roughly 5 times higher requirements on the
fluence for CDI then for NFH, before the reconstruction reaches full resolution.

A.4. Summary

The survey of the coherence requirements for near- and far-field propagation-based
x-ray imaging, NFH and CDI respectively, shows a different behavior for these
two optical regimes. NFH shows for a given Fr a linear behavior in the increase
of resolution. With smaller Fr the increase in resolution is still linear but the full

resolution is reached at larger £. For sufficiently small samples, CDI can reach the
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full resolution earlier than NFH. Larger samples show an unfavorable scaling be-
havior for £ and could be thus easier imaged under relaxed coherence requirements
with NFH.

Taking also noisy measurements into account shows again the robustness of NFH
compared to CDI. These results are also in line with the recent success of phase-
contrast tomography [163-165] at laboratory setups.






B. Iterative Reconstruction Algorithms

In the following, different approaches to iterative phase retrieval are compared.
The algorithm’s performance are compared on noisy measurements of given fluence
p. Chapter 3 has surveyed the influence on the resolution on the reconstruction.
The noise added to the measurements is clearly a form of inconsistency between
the sought object, physical constraints and measurements. Phase retrieval is an
example of a feasibility problem, where multiple constraints shall be satisfied at
the same time. The set of solutions for this problem can be empty. The algorithm
should find then the best approximation point in the configguration space to fit

the constraints.
The algorithms under consideration are:
o algorithm of alternating projections (AP) [125]
o hybrid input output algorithm (HIO) [166]
o relaxed averaged alternating reflections (RAAR) [73]
o Wirtinger-flow (WF) [167]
AP/HIO and RAAR belong to the type of projection algorithms. These algorithms

make use of consecutive projections P on the constraint sets S (specimen, sample,

support) and M (measurement). AP is then written as
HIO with support S and negativity constraint on the phases [98] is given by

v, = min(Pg (¥, (z)),0) ifexesS 7 (B.2)
U, (x) — B(Ps else

M(¥n(x)))
with constant 8 € [0, 1]. Additionally the implementation from [98] uses a ,soft
projection” on the measured intensities, this takes the distortion of noise into

account. The intensities M are modified to yield M

— D D
- (1-2) a2 o
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where D is a discrepancy parameter and A the normalized €2 error of reconstructed

to measured intensity

1/2

A=(yn Y [M—\\I/nﬁ] . (B.4)

Vpixels

The algorithm is iterated as long A > D is true. The optimal choice of D is
Dig = (2/w)'/? ]98], but due to stagnation or too early abortion D should be
chosen smaller than D;4 [168]. This extension of HIO seems somehow artificial,
but experimentation has shown that it is necessary. Figure B.4 (c) shows a recon-
struction obtained with the standard magnitude projector which AP and RAAR
use. This standard HIO (sHIO) shows artifacts in form of rings and low frequency
distortions, the resolution is only Ar = 0.267 1/px.

The RAAR iteration is repeated (cf. Egs. 2.1, 3.5, 4.6, 5.5) here for completeness

Bn

‘I/n+1 = 7 (RS(RM(‘I’n)) + ‘I’n) + (1 - 5n)PM<\IJn) ) <B~5)

where Rg/n/(e) = 2P/ (e) — e denotes a (mirror) reflection by a given constraint

set. The parameter (3, controls the relaxation. It follows the function

B =exp (= (0/8.)°) Bo+ [1 = exp (= (0/8)°) | Buax » ~ (B6)

where Sy < 1 denotes the starting value, Spax the final value of g, and S5 the
iteration number when the relaxation is switched. The choice of 35 influences the
convergence speed and fpax changes the fix point to which RAAR converges, for
example Bmax = 0.5 has the same fix points as AP. This is demonstrated in the
following. Figure B.1 depicts the calculation of a new RAAR iterate with a geomet-
rical interpretation of the intermediate steps. It also geometrically illustrates the
construction of a reflector, in particular Rps(¥,). We see by the use of reflectors

the space of possible configurations is better explored.

HIO is given in algorithmic notation and RAAR/AP in fix point notation, cf. [73,
169, 170]. Note, that the algorithmic form depends on the constraints in use.

WF is a gradient scheme, which employs coded measurements Y with | = [1, L]

random phase masks M; or more general sampling vectors, which are known,
Y =Vi: [Dg (M 0 W), (B.7)

where * is the complex conjugate and © denotes the point-wise product. It does
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Figure B.1.: Sketch of the operations involved in a RAAR iteration step for $=0.75.
The red line indicates the path from the start of the iteration at V,, to the next iterate
W, +1. Solid lines indicate position vectors. A certain color corresponds to a vector. The
dashed lines denote auxiliary vectors to construct the next intermediate step (not all con-
structions are shown). Notably, the construction of Ry (¥, ) = 2Py (¥,) — ¥, is shown
to illustrate the notion of the reflector(in light blue and purple). The other construc-
tion shown is (3, /2(Rs(Rwm) + 1): Starting at Rs(Rar) (yellow) the vector ¥, is added
(dashed purple). The end point of this addition is denoted (Rs(Rar) + 1). The position
vector is downscaled along the dashed green line by a factor of 8, /2. The argument ¥,
on projectors and reflectors has been omitted to shorten notation. For the illustration of
further algorithms refer to [9].

not rely on other constraints. The update is given by

\I,nJrl - \I]n

- |\IJ0‘2VF(\I/n), (B-8)

with |\I/0|2 being a normalization with respect to the measurements and «,, the

step length for the gradient step in iteration n
oy, = min(1 — exp(—n/330),0.4) . (B.9)
The gradient VF(¥,,) is calculated by

VF(,) = At ((|A(\I/n)|2 . Y) © A(\Ifn)) . (B.10)
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A is the forward operator
A(W)=Vl: Dy (M} O W) (B.11)

the result is a 3d tensor of size N, x N, x L. A is the backward operator, operating

on the tensor quantity

L
Al(@) =Y "M ©D_p (o) (B.12)
=1

yielding a 2d matrix of size IV, x N,. More details on WF can be found in the
original publication [167]. The WF implementation is online available [171] and

has been adapted for near-field measurements for the following simulations.

For the simulations we have used Fr = 1073 for data generation, image sizes and
paddings have been chosen as in Chapter 3. The reconstruction of the cell phantom
cf. Fig. 3.2(a) has been carried out for photon fluence u = {10, 100, 200, 1000, 2000}
and the four algorithms RAAR, AP, HIO and WF using the same constraints of

pure and negative phase as well as a support constraint.

The input and constraints have been chosen as identical as possible, still each
algorithm has some specialties. The starting guess was chosen as amplitude 1 and
phase 0. The algorithms have been executed on the same input data, except WF,
which needs L = 21 measurements. For RAAR we have chosen 5y = 0.99, 8, = 100
and Bpax = 0.4, HIO has used § = 0.7 and D = \/2/7 - 0.65. AP has no free
parameter to choose. WF used the parameters for step length adaption as described
above.

Figure B.2 shows the results of the reconstructions after 200 iterations for each
algorithm. The reconstructions obtained by RAAR and AP show in this setting
the best quality and they are by eyeball norm indistinguishable. In the RAAR/AP
reconstructions the medium-sized compartments of the phantom are already distin-
guishable at 1 = 10. Note, the column with the RAAR results basically reproduces
the results of Chapter 3. HIO shows an improvement in quality with increasing w,
but the overall quality lags behind the one of RAAR/AP. For u = 2000 ph./px. the
object reconstructions of HIO shows equal resolution as RAAR/AP but it shows
flawed low spatial frequencies. The WF reconstructions start quite noisy, but with
increasing p the noise vanishes. Note, that the fluence has been split up uniformly
over all 21 measurements for WF.

As a quantitative measure the Fourier ring correlation (FRC) to the original phan-

tom has been used. Figure B.3 shows the calculated FRC curves. For the calcu-
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Figure B.2.: Comparison of the reconstruction quality for iterative phase-retrieval meth-
ods for varying photon fluence p (rows). The first columns show the reconstructions
obtained by RAAR, HIO, AP and WF, respectively.
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Figure B.3.: The corresponding Fourier ring correlations to the reconstructions shown
in Fig. B.2.
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lation of this, the values only inside the support have been taken into account.
The FRC has for all algorithms a continuous increase in resolution for increased
pn. RAAR and AP yield the same high resolution results. HIO yields comparably
high resolution but we note a drop in the FRC at low frequencies, as observed in
the reconstructions. The visible inspection of the WF reconstructions exhibits no
visible difference to RAAR/AP but the FRC reveals that higher spatial frequencies

are recovered slightly worse.

The equal quality of RAAR/AP can be explained by the observation, that RAAR
acts as accelerator for the reconstruction. RAAR finds the same minimum as
AP but with fewer iterations (for certain choice of ). This is illustrated in
Fig. B.4 (a,b). In this case RAAR and AP have been iterated only for 30 iter-
ations. The RAAR parameters have been adapted to S5 = 10 and Bpax = 0.5. The
RAAR reconstruction (a) shows at this point already optimal recovery, while the
AP reconstruction lacks the lower spatial frequencies. This property is of interest if
a large amount of data has to be processed, e.g. a tomographic data set consisting

of hundreds of measurements.

Thus a strategy on real data is: First test if a reconstruction with AP works and
then use RAAR as an accelerator. If the reconstruction with AP fails, still use

RAAR for its better convergence properties.

The experimental feasibility of WF to x-ray imaging seems to be questionable.
Since high quality phase masks are required in order to reach high image quality. In
the visible regime WF has been applied successfully to Fourier ptychography [172],
without the need of masks.
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(a) RAAR reconstruction 6 (rad.) (b) AP reconstruction 6 (rad.)
u =200
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Figure B.4.: Variation of Algorithm parameters at u = 200 ph./px. (a) and (b) show
the object reconstruction after 30 iterations for RAAR and AP, respectively. The RAAR
parameter were chosen as s = 10 and Bmax = 0.5. (¢) HIO Reconstruction for the
standard magnitude projector (sHIO). (d) Comparison of reconstruction errors at | =
200 ph./px.
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C. Matlab Routines

Programming is an art and every artist has its own style. The following describes
the structure of a typical simulation script and lists some of the developed functions
for MATLAB.

Despite the availability of auto completion for variables there are some commonly
used abbreviations in the scripts: ax — axis, tmp — temporary(never trust the value
of this variables), p — parameters, pha — phase, amp — amplitude, filt — filter (for
an image), holo — hologram, rec(-on) — reconstruction, id — ideal.

The structure of script is given next:

Structure of a typical numerical experiment.

%% Setup defaults for matlab

% The almighty IRP toolbox

TB_path = ’/home/AG_Salditt/Projects_X-ray_Imaging/Toolbox/release/’;
addpath (genpath (TB_path))

% More defaults for figures

%% Set parameters

% see below for an example

%% Prepare inputs

% see section "Dada generation" below

%% Run simulation / reconstruction

% excute a fancy reconstruction algorithm or simulation

%% Data analysis/plot results

% see section "Data analysis" and "Data presentation" below

The values stored in the parameters structure p are mostly single value variables.
These set a certain physical parameter or toggle a specific action during the nu-

merical experiment. p is used throughout the scripts.
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An exemplary collection of parameters p.

%% Simulation parameters

% Size of the actual phantom image
p.width = 512;

p.height = 512;

% Padding for e.g. data generation

i|p.width2 = 2048;

p.height2 = 2048;

% The actual reconstruction size can differ again.
p.rec_width = 1024;

p.rec_height = 1024;

% Fresnel number
p.F = 1le-3;

% fluence for Poisson noise

p.num_photons = 10;

% RAAR algorithm parameters

p.b_0 = 0.99;
p.b_m = 0.75;
p.b_s = 150;
p.num_iterations = 200;

% support mask
p.supp = ones(p.rec_height, rec_width);

% Amp_valid is a mask to discriminate deffect pixels (real data...)

p.Amp_valid = logical(true(p.rec_height, p.rec_width));

C.1. List of Routines

Data generation

This list contains some functions to setup wave fields and simulate multiple dis-

tance holographic data sets.

[beam] = prepare_probe(pha_path, amp_path, lower_phase, upper_phase,
lower_amp, upper_amp, p, gauss_filt_fwhm)
This function prepares a wave field (probe or object) from two given images.

The function reads the images from the given paths and converts them to gray

scale. The gray values are interpreted as amplitude and phase in the given
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ranges. The images are scaled to size p.height Xp.width px? and then smoothly
padded with pad_fadeout. The output is of size p.height2Xp.width2.
Example:

probe = prepare_probe([TB_path, ’phantoms/mandrill.png’], [TB_path, ’phantoms/

durer.png’], -0.4, 0.4, 0.8, 1.2, p, 1); ' the authors preferred choice

[f_constraints] = multiple_beam_distances(object, probe, F, p, weights, noise)

This function simulates measurements for the given wave fields object and
probe at multiple Fresnel numbers F. probe is a cell-array for a multi modal
probe. weights holds the occupation numbers for the modes. noise is a boolean
to switch on noise measurements. The number of photons per pixel is given
via p.num_photons.

Example:

f_constraints = multiple_beam_distances(sample, probe, p.F, p, p.mode_weight,

p.use_noise);

PropagatorGPU(fresnelx,fresnely, nx, ny, f)

PropagatorGPU implements the Fresnel propagator given in Eq. 1.2. It is a class
returning an object of type PropagatorGPU. The calculation is carried out by
calling an external CUDA-kernel. It is possible, that the kernel needs recom-
piling, then the script toolbox/propagators/compile_kernel.sh needs to be run.
The parameter £ chooses a padding factor for the propagation. Note: due to
the limited RAM on a GPU be careful with large (nx > 8192 px) arrays. This
can change with future hardware. A CPU variant with the same behavior is
thus available under the name Propagator.

Example:

prop = PropagatorGPU(1le-3, 1le-3, 2048, 2048, 2); 7 only once

sample = phantom(2048);

holo = prop.propTF(sample); 7% can be used as often as needed
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res = pad_fadeout(im_in, N_out, transition_length, padval, method)

This function has been written by Simon Maretzke. It smoothly pads a given
image im_in to the size N_out, given as tupil. The transition length can be
chosen in units of pixels by transition_length and the target value after the
transition zone by padval.

Example:

padded_img = pad_fadeout(amp, [p.height2, p.width2], (p.width2-p.width)*0.03, 1)

out = mid(in, m, n) Or out = mid(in, p)
This function returns the middle quadrant of size mxn of an image MXN image.
In a second form mid takes the parameter object p
Example:
A

rand (2048) ;
B

mid(A, 512, 512);

out = copy_mid(imi, im2, m, n)
This function copies the mxn middle pixels of matrix im1 to the mxn middle
pixels of matrix im2.
Example:
a = randn([6 6]); b = randn([6 6]);

copy_mid(a,b, 2,2);
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Data analysis

The functions presented here are used to calculate metrics on a reconstruction or

input data.

offsets = find_phase_offset_for_modes(recons, phantom, p)

This function determines the global phase offset from a reconstruction recons
to a given phantom phantom. By minimizing the ¢? difference with the use of
lsgnonlin.

Example:

offsets = find_phase_offset_for_modes(reconstruction, probe, p);

[stat] = analyze_noise(method)

This function analyzes the noise in the current figure. It calculates the his-
togram and Gaussian fit for an image region selected by mouse. It returns a
histogram plot and statistics(max, mean, standard deviation and FWHM).
method chooses the fit type (hist, gaussian Or poisson);

Example:

figure; imagesc(imnoise(uint16(ones(2048)#*200), ’poisson’))

analyze_noise

[J, g, counter, d_range, time] = calc_J2(model, F, norm, p)

This function calculates the mutual optical intensity J Eq. (4.4) on a given
mode mode1. By the choice of F the propagated J can be calculated. The result
can be normalized or not (norm). In order to get J for an ensemble of modes,
J has to be calculated for each mode and summed.

Example:

A = rand(p.width); F = inf; % no propagation

[J, g, counter, d_range, time] = calc_J2(A, F, ’norm’, p);
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[g_ges, counter_ges] = calc_g_from_J(J, bin_size, x1_start, x1_end, p)

1(

This function takes J as input and carries out the normalization to yield g or
j as defined by Eq. (4.5). Next the binning of values for bins of size bin_size
is carried out. x1_start, x1_end give start and end index, respectively, for the
computation. This can be x1_start = 1, x1_end = p.width, that calculation can
take a while. An efficient way of evaluating this function is shown in the ex-
ample.

Example:

This example is more complex, but it demonstrates the efficient parallel eval-

uation of this function, making use of parfeval.

jj = 1; % counts currently running evaluations
max_num_evaluations = 10; %maximal number of concurrent
evaluations
pool = parpool(max_num_evaluations); 7 pool of workers
pctRunOnAll maxNumCompThreads (5) Ynumber of threads per
evaluation
chunk_size = 13;
x1_start = 1:chunk_size:p.width;
x1_end = chunk_size:chunk_size:p.width;
if (x1_end(end) ~= p.width)
x1_end = [x1_end p.width];
end
for ii = 1:numel(xl_start)
if(jj < max_num_evaluations)
£f(jj) = parfeval(pool, @calc_g_from_J, 2, J, bin_size,
x1_start(ii), x1_end(ii), p);
jj = 33 + 1

else
fprintf (’fetching results\n’)
for idx = 1:numel (f)
[completedIdx, this_g, this_counter] = fetchNext(f);
counter_ges = counter_ges + this_counter;
g_ges = g_ges + this_g;
end
ij = 1
end

end

The for-loop in line 11 runs over all chunks of 1 to p.width, here x1_start.
If fewer evaluations than max_num_evaluations run, a new evaluation is started
(line 13). If the maximum number of evaluations is reached we wait and fetch
results (line 17) with fetchNext and add these to the global results counter_ges
, g_ges. The evaluations counter is reset in line 22 then we continue with the

next batch of calculations.
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[result, goodness_of_fit]=fit_gauss(x, y, domain, FWHM_g, b, mu, za, zc, show_plot)

MATLAB’s standard Gaussian fit model is not that, one wants to use in most

cases. fit_gauss sets up a fit according to the function

—(x - mu)2 -8- 10g(2)
FWHM_g?2

f(FWHM_g,b,mu,za,zc,x) =Db-exp ( ) + za - x + zc,
this is a fit of a Gaussian function depending on the full width at half maxi-
mum (FWHM), not the standard deviation, with linear za-x and constant off-
set zc. The function requires as inputs the z-coordinates x and corresponding
measured values y. Data points outside domain = [x_min x_max] will be excluded
from the fit. b, mu, za, zc can be optionally used to pass initial guesses for
these parameters.

Example:

fit_foc = fit_gauss(x’, data’, [-3 3], 1.6645,1, 0, 0, O, p.show);
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Data presentation

The following functions are used for data presentation.

len = jscalebar(length, pixelsize, posx, posy, color, sbtext)

This function adds a scale bar to figures. The coordinates posx, posy are given
relative to the figure’s size, thus it is insensitive to size changes. Length and
pixel size have the same unit e.g. 5 pm=5000nm in 10 nm pixel. sbtext adds
a label to the scale bar. The color is given in standard MATLAB specifiers.
Example:

figure; imagesc(rand(2048));

jscalebar (100, 1, 0.95, 0.95 , ’w’); Yscale bar of 100 px

colorbar_label(label, varargin)

Adds a label to the colorbar in the current figure. While changing the color
bar label has become comparatively easy in recent MATLAB versions, it still
requires some code for each figure. This function encapsulates these code
snippets and makes them reusable. label contains the (IXTEX-)label string.
varargin controls properties of the label for example: FontSize, position (in
pt.), HorizontalAlignment. Properties are given as property-value pair, the list
of supported properties can be extended.

Example:

figure; imagesc(rand(512));

colorbar_label(’$\phi$ (rad.)’);

side_by_side(iml, im2, varargin)

side_by_side plots two images vertically or horizontally next to each other. This
is well suited for comparisons. imi is the left/upper and im2 the right/lower
half of the composite image. varargin controls properties of the figure for
example: range (tupil of lower and upper percentile of plotted value range),
orientation (h,v), 1w (line width of separator), 1ine_position (percent of image),
figure_handle (for reuse of figure). Properties are given as property-value pair,
the list of supported properties can be extended.

Example:

side_by_side(rand(512), rand(512)) 7 standard options

side_by_side(rand(512), rand(512), ’range’, [20 80], ’orientation’, ’v’, ’lw’,

3, ’line_position’, 0.3)
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C.2. Implementation of RAAR

Here the implementation of RAAR with near-field propagation is shown which has
been used for reconstruction in App. B. The actual algorithm has a length of only
a few lines, but the actual implementation is, as always, lengthened by initializa-
tions, error control, etc. In the implementation shown below the projections and
in particular the constraints (pure phase constraint and single distance magnitude
constraint) are hard coded. The structure of the projection algorithms written in
fix point notation shows already, that they are perfectly suited for a templated im-
plementation. This allows easy substitution of constraints without rewriting the
algorithm, which can basically stay untouched. In MATLAB this can be achieved
by implementing the projectors as functions and then calling these via feval. An

implementation of this approach exists in the ProxToolbox [173].

The C++ approach to this problem is to use templated classes with the projectors
implemented as functors. This framework is called T-RAX (templated reconstruc-

tion algorithms for x-ray imaging) [174].

MATLAB implementation of RAAR as it has been used for the simulations in App. B.

function [result, error, gap] = RAAR_nf (M, psi, iteratiomns, F, p)
% inputs:

% M - measurement (amplitudes)

% psi - initial guess

% iterations - number of iterations

% F - Fresnel number for propagation

% p - parameters

if (isfield(p,’progress_bar’) == 1)

if p.progress_bar
h = waitbar (0, ’progress’);
progress_bar = 1;
else
progress_bar = 0;
end
else
h = waitbar (0, ’progress’);
progress_bar = 1;
end

% errors & gap

error = (zeros(iterations, 1));

gap = (zeros(iterations, 1));

% get input arrays and put them on GPU
M = gpulArray(M);

M_squared = (M."2); 7% measured intensity - for error calc
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%is used in support constraint to ensure energy conservation
mean_amplitude = mean(M(:));

supp = gpulrray(logical(p.supp));

% Amp_valid can be used to discriminate bad pixels
Amp_valid = gpuArray(p.Amp_valid);

psi = gpulArray(psi);

P_S = psi;

% Propagator objects
if (isfield(p,’oversample’) == 0)
warning (’using default oversampling factor = 1.’);
oversample = 1;
else
oversample = p.oversample;
end
prop = PropagatorGPU(F, F, size(M,2), size(M,1), oversample);
prop_back = PropagatorGPU(-F, -F, size(M,2), size(M,1), oversample);

%relaxation parameters
b_0 = p.b_0; b_m = p.b_m; b_s = p.b_s;

for ii = 1:iterations
if progress_bar
waitbar(ii / iteratiomns, h, ...
sprintf(’%d / %d’,ii, iterations));
end
% relaxation parameter for current iteration
b = exp(-(ii/b_s) 3)*b_0 + (1 - exp(-(ii/b_s) 3))*b_m;
psi_old = psij;
% P_M
psi = prop.propTF(psi);

% calculation of measurement error
if (isfield(p,’do_errors’) == 1)
if p.do_errors == 1
if ii > 1

err_val = .
norm(mid (P_M,p) -(mid(P_S,p)), fro’)./(p.height*p.width);
err_val = sqrt(err_val);
error (ii) = gather(err_val);
else
error (ii) = 0;
end

end
end

% carry out adaption on measurements
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end

psi(Amp_valid) = M(Amp_valid) .* exp(li.*angle(psi(Amp_valid)));
P_M = prop_back.propTF(psi);

% calculation of gap
if (isfield(p,’do_errors’) == 1)
if ii > 1 Jcalculation of gap, actually this is the valuefor

the last iteration

% project on S - pure phase constraint

P_S(supp) = mean_amplitude .* exp(li.xangle(P_M(supp)));

% support and negativity constraint

P_S("supp | angle(P_M) > 0) = mean_amplitude;

% gap = |P_M(psi) - P_S(psi)|

err_val =

norm(mid(P_M,p) -(mid(P_S,p)),’fro’)./(p.height*p.width);
err_val = sqrt(err_val);

gap(ii) = gather(err_val);

end
end
% Reflection on M
R.M =2 % P.M - psi_old;
% project S - pure phase constraint
psi(supp) = mean_amplitude .* exp(li.*angle(R_M(supp)));
% support and negativity constraint
psi(“supp | angle(psi) > 0) = mean_amplitude;
% Reflect on S
psi = 2xpsi - R_M;
% new RAAR iterate
psi = (b/2) * (psi + psi_old) + (1-b)*P_M;

% final projection on M P_M

end

psi = prop.propTF(psi);

psi(Amp_valid) = M(Amp_valid) .* exp(li.*angle(psi(Amp_valid)));
psi = prop_back.propTF(psi);

result = gather (psi);

if progress_bar

close (h);

end
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