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This is the first volume of a three volume collection of Andrey Nikolaevich
Tyurin’s Selected Works. It includes his most interesting articles in the field of
classical algebraic geometry, written during his whole career from the 1960s;
most of these papers treat different problems of the theory of vector bundles
on curves and higher dimensional algebraic varieties. This theory is central to
algebraic geometry and most of its applications. The spectrum of the prob-
lems considered is very broad, ranging from the geometry of stable vector
bundles on algebraic curves to the description of symplectic structures and
metrics on the moduli varieties of vector bundles on surfaces, from the method
of superposition in the theory of mathematical instantons to the application
of classical enumerative geometry to the description of differentiable struc-
tures on four manifolds, from the theory of theta functions and Lagrangian
geometry to the construction of Delzant models in Quantum Conformal Field
Theory.
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§ 1 The adjoint Poincaré bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
§ 2 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
§ 3 Problems and conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 3

Elementary operations and their variations

§ 1 Elementary operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
§ 2 Variations of elementary operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 4

The geometry of the inversion problem

§ 1 Construction of the minimal family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
§ 2 The second Chern class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9



10 Contents

Chapter 5

The Narasimhan–Ramanan theorem

§ 1 The double bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
§ 2 The inversion theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

On the classification of rank 2 vector bundles over an algebraic curve of arbitrary genus

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 1

Invariants of bundles

§ 1 Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
§ 2 Exceptional sub-bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
§ 3 Quasi-bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 2

Construction of ”universal” families and solution of the universal

problem for the families of extensions.

§ 1 Matrix divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
§ 2 Reduction to the normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
§ 3 Algebraic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
§ 4 Construction of universal family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
§ 5 The solution of the universality problem for EC(n, k, d) . . . . . . . . . . . . . . . . . 83

Chapter 3

Weak independence of the invariants

§ 1 Properties of quasi-bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
§ 2 Sections of a matrix divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
§ 3 Computation of the codimension of variety M(n, k, d) . . . . . . . . . . . . . . . . . . . 91
§ 4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Vector bundles of finite rank over infinite varieties

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Chapter 1

Infinite variety

§ 1 Linear extensions and infinite variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
§ 2 The linear connectivity of an infinite projective variety . . . . . . . . . . . . . . . . . . 105



Contents 11

Chapter 2

The simplest families of vector bundles over P1

§ 1 Vector bundles on F1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
§ 2 Vector bundles over ruled varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Chapter 3

Vector bundles of finite rank over infinite varieties

§ 1 Vector bundles on P∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
§ 2 Vector bundles on infinite projective varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces
with pg > 0

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Chapter 1

Symplectic structure

§ 1 The big lattice and hierarchy of moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
§ 2 The Mukai lattice and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
§ 3 Symplectic structure and the local invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Chapter 2

Modular operations

§ 1 Special modular families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
§ 2 The universal extension operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
§ 3 The universal division operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Chapter 3

Universality

§ 1 Constructive equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
§ 2 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
§ 3 The image of the moduli variety in K0(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

The moduli spaces of vector bundles on threefolds, surfaces and curves I

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
§ 1 Polarisations. Embedding theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
§ 2 Compactification. Extension of the restriction map . . . . . . . . . . . . . . . . . . . . . 185
§ 3 The projective space of conformal blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
§ 4 The constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202



12 Contents

The classical geometry of vector bundles

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
§ 1 Clebsch and Darboux curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
§ 2 Vector bundles on an algebraic surface and their sections . . . . . . . . . . . . . . . . 221
§ 3 The first interpretation – moduli spaces of stable pairs . . . . . . . . . . . . . . . . . . 223
§ 4 Noncommutative planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
§ 5 Compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
§ 6 Differential geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

The Weil–Petersson metric on the moduli space of stable vector bundles and sheaves on
an algebraic surface

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
§ 1 Hyper-Kähler metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
§ 2 Stratification of the moduli space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
§ 3 Twistor space of a component of the moduli space of bundles . . . . . . . . . . . . 254
§ 4 The twistor space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
§ 5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

On the superpositions of mathematical instantons

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
§ 1 Mn(H) as Determinantal Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
§ 2 The Superpositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
§ 3 The Special Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Delzant models of moduli spaces

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
§ 1 The toric structures on RC(π1(Σ)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
§ 2 Combinatorial constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
§ 3 Spaces of classes of representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
§ 4 Manipulations with moment polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
§ 5 The Delzant model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
§ 6 Conformal blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300



Contents 13

Commentaries

The geometry of moduli of vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
On the classification of rank 2 vector bundles. . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Vector bundles of finite rank over infinite varieties . . . . . . . . . . . . . . . . . . . . . . 314
Symplectic structures on the varieties of moduli. . . . . . . . . . . . . . . . . . . . . . . . 317
The moduli spaces of vector bundles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
The classical geometry of vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
The Weil – Petersson metric on the moduli space. . . . . . . . . . . . . . . . . . . . . . . 323
On the superpositions of mathematical instantons . . . . . . . . . . . . . . . . . . . . . . 325
Delzant models of moduli spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326





Introduction of the Chief-Editor

This is Volume 1 of a three volume collection of selected works of Andrey
Nikolaevich Tyurin. This publication is not an complete one, and we omit a
number of his papers, although the substance of his work is well reflected in
the articles included here.

This publication serves a two-fold purpose. On the one hand it is our
homage to the memory of a close friend and colleague, whose work in the field
of algebraic geometry was most productive and influential over many years.
On the other hand, Andrey Tyurin played a very essential role in the creation
of the modern theory of vector bundles, and in advancing the methods of alge-
braic geometry within topology and theoretical physics. His articles collected
together provide a bright and dramatic picture of the development of this area
of algebraic geometry over the last forty years. We hope this publication will
serve future generations of scientists as a good introduction to a number of
very interesting problems in algebraic geometry. We would like to provide an
introduction to a broad circle of ideas and projects of Andrey Tyurin, some of
which were left unfinished due to his sudden and untimely death. Several gen-
erations of mathematician were fortunate enough to work and develop in the
atmosphere of creative quest that his energy and talent fostered. We hope that
this collection will at least in part communicate a colourful image of Andrey
Tyurin’s personality to future generations.

F. Bogomolov

15



Andrey Nikolaevich Tyurin

Andrey Tyurin chose his mathematical theme very early in his career, al-
ready as an undergraduate, and he was to remain faithful to it in essence for
his whole life. This chosen theme, the theory of vector bundles and their mod-
uli spaces, turned out to be very brilliant: alongside its own internal beauty,
the subject has many diverse connections with other branches of geometry and
mathematical physics. One aspect of Tyurin’s own personality is already ap-
parent from this: his ability to spot these connections as soon as they appear,
to find them for himself and to take part in their development.

The theory of vector bundles was just beginning to take shape as an area
of mathematics when Tyurin started to work on it in the early 1960s. A
prewar paper of André Weil served as a foundation for it, using the language
of “matrix-valued divisors” to describe what we now called vector bundles on
algebraic curves. This theory already contained one of the foundational points
for the development of the subject, the idea that it can be understood as a
“non-Abelian analog” of the classical theory of divisors, in which we replace
numbers (that is, 1× 1 matrices) by matrices of any rank. This idea then took
hold of Tyurin, and formed the driving force for his work over many years.
Also available at the time were lecture notes of Weil, in which he showed
how the notions of the theory of vector bundles, currently popular in topology
and differential geometry, could be formulated in algebraic geometry. Serre’s
lecture at the Bourbaki seminar stimulated assimilation of these ideas. Among
the more concrete results known at the time were the classification of vector
bundles on curves of genus 0 (Grothendieck) and genus 1 (Atiyah).

This was the starting point for Tyurin’s own research. In a paper written
while still an undergraduate, he found all rank 2 vector bundles on curves of
genus 2 having determinant 0, and showed that they are described by points
of the variety P3 \ V , where V ⊂ P3 is the Kummer surface. His subsequent
studies were concerned with the analogous problem over curves of any genus,
and later also its generalisation to the case of dimension ≥ 2.

Here he ran into the fact that posing the problem is itself a difficulty. As
he soon discovered, this relates to nonrepresentability of certain functor under
discussion. In order to make it representable, one introduces a certain extra
rigidity, from which point onwards the question about the moduli space makes
sense, and can be studied. A natural point of view on this type of problem is
given by the notion of stability, which originates with Hilbert, and was revived

16



Foreword by I. R. Shafarevich 17

in more recent times by Mumford, in connection with the theory of moduli of
algebraic curves. Tyurin soon mastered this circle of ideas. Quite generally, I
believe it is fair to say that our Moscow circle of algebraic geometers was able
to assimilate the “stability philosophy” due in large part to Tyurin’s influence.

In application to the theory of vector bundles over a curve, the conclusion
from this philosophy is that the natural object to study is the moduli space of
stable bundles (or its completion, that includes the semistable ones). In this
direction, Tyurin was responsible for a fundamental “noncommutative” analog
of the classical Torelli theorem. Namely, he proved that, for bundles over a
curve of fixed rank and fixed degree of their determinant, if the rank and the
degree are coprime, the moduli space of these bundles determines the original
curve uniquely. Slightly after this (and entirely independently – obviously,
in view of the complete lack of connections between the Soviet Union and
the rest of the world), Mumford, Newstead, Ramanan and Seshadri obtained
similar results. They obtained another striking result, one that can be stated
as the “absence of a Schottky problem” in the theory of higher rank vector
bundles. This period represents a second flight of the theory of vector bundles
over algebraic curves, following Weil’s initial work. Tyurin’s survey, setting
out precisely everything known at this time, was to stimulate the subsequent
development of the subject.

Tyurin was swift to adapt to the new ideas in algebraic geometry, reworking
them enthusiastically from his “philosophy of vector bundles” point of view.
For example, Hartshorne drew attention to certain properties of extensions of
a variety, when a projective variety X can be realized as a hyperplane section
of a variety X1; (this is always possible if X is a hypersurface or a complete
intersection). Varieties for which this extension can be carried out sufficiently
far (so that one obtains a “variety of small codimension”) have a number of
remarkable properties. Tyurin formulated these ideas as a certain theory of
“infinite dimensional manifolds” (that is, he assumed the possibility of extend-
ing the manifold indefinitely). In this formulation, Hartshorne’s results mean
that an infinite dimensional manifold is a complete intersection in an “infinite
dimensional projective space”. Naturally enough, he related these ideas at once
to the theory of vector bundles. Here we consider an extension of pairs (X, E)
where E is a vector bundle on X, and we demand not just that X should be
realized as a hyperplane section of a variety X1, but also that E should be the
restriction to X of a bundle E1 on X1. An infinite sequence of pairs is called
a vector bundle (of finite rank) on an infinite dimensional algebraic manifold.
One of the results then says that any such bundle is a direct sum of line bundles.
This result (and his other results in this paper) also admits a finite statement,
when the infinite dimensionality of the manifold is replaced by a sufficiently
long series of extensions.

Needless to say, Tyurin’s interests were not limited to the theory of vector
bundles (although certain analogies with vector bundles played a role in most
cases). Thus, he proved two completely different “Torelli-type theorems”. The
first of these starts off from the classical problem of classifying linear trans-
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formations (or classifying n × n matrices up to conjugacy A �→ C−1AC).
The characteristic polynomial det(A − tE) is obvious an invariant, and with
it the “spectrum” of the matrix – its set of roots. A fundamental classical
result asserts that in the case of a “simple” spectrum, the spectrum is a com-
plete system of invariants. In the 19th century, mathematicians preferred to
speak of a pencil of matrices λA + μB, and to consider the discriminant form
det(αA+μB) = ϕ(λ, μ). The assumption of “simple spectrum” corresponds to
the case when the discriminant does not have multiple factors. Here the natural
transformations are of the form (A,B) �→ (CAD,CBD). If we are discussing
symmetric matrices (that is, quadratic forms), we set D = C∗, with detC �= 0.
An analog of the theorem mentioned above is the statement that in the case
of a simple spectrum, a pair of quadratic forms can simultaneously be reduced
to a sum of squares. Going further, the next question is a net of matrices
λA + μB + νC, or the intersections of the three corresponding quadrics. The
analog of the spectrum is now the plane curve det(λA+μB +νC) = 0, and the
“simple spectrum” assumption corresponds to the case that this curve has no
singular points. The theorem Tyurin proved is that in this case the “spectrum”
(that is, the plane discriminant curve) again determines the net of quadrics,
but only up to a finite number of possibilities. These additional invariants are
determined by a certain double covering of the curve det(λA + μB + νC) = 0;
he indicated exactly which type of covering curves can occur, so that as a result
one obtains a one-to-one correspondence (in the “simple spectrum” case) be-
tween intersections of three quadrics and their nonsingular discriminant curves
of degree n in the projective plane plus a certain double cover, where both are
considered up to projective transformation.

While Tyurin was writing this paper, he was unaware that his main result
had been obtained by Dixon in the early 20th century (this is not the Leonard
Dickson who is well-known for his study of finite fields and algebraic groups
over them, but another person, Arthur Dixon, whose surname is even spelt
differently). However, this phenomenon is inevitable. Over a few decades,
mathematicians start to think in different terms, and cease to understand their
predecessors. Their results are forgotten, except for some really famous ones.
For this reason, reestablishing these results in a modern setting is no less of an
achievement than proving new ones.

Tyurin’s activity with nets of quadrics led him to a construction that I am
convinced has yet to play its full role in geometry; it relates to Riemannian
geometry (or pseudo-Riemannian geometry). For every point x ∈ X of a
(pseudo-)Riemannian 4-manifold X, the exterior square

∧2
Tx of the tangent

space has three intrinsically defined quadratic forms. The first of these is the
exterior product (since

∧4
Tx is a line). The second is defined by the (pseudo-

)Riemannian metric on X. The third is given by the curvature form. In our
case rank

∧2
Tx = 6, and the projectivization of the whole construction defines

three quadrics in P5. The intersection of these quadrics (assuming that it is
transversal) is a K3 surface, or in general a certain degeneration of one. Thus, in
a quite remarkable way, every point of a Riemannian 4-manifold X corresponds
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to a certain K3 surface (possibly degenerate). Thus there is defined a map of X
into the moduli space of K3 surfaces (compactified in a suitable way). The K3
surfaces corresponding to points of X are by no means arbitrary K3s. As well as
being realized as surfaces of degree 8 in P5, they have the special property that
their lattice of integral 2-dimensional homology classes contains a sublattice of
algebraic cycles of rank 9, with completely determined intersection properties.
However, it is known that these special K3 surfaces also have a moduli space,
which is where the 4-manifold X gets mapped to. Moreover, the 3 quadratic
forms we have constructed are real, so that we are in the domain of K3 surfaces
over R, that Nikulin has already studied; these constructions further stimulated
Nikulin’s work. This seems to be a very promising direction of study, with many
interesting questions arising.

Another Torelli-type theorem proved by Tyurin concerns a classical object
of study in algebraic geometry – the nonsingular cubic hypersurface in P4.
It has been known for a long time that a hypersurface of this type contains
infinitely many lines, which are parametrized by a surface, the Fano surface
of the cubic. Whether the cubic is determined by its Fano surface was also
a long-standing open question. It was Tyurin who gave the positive solution
to this question; at the same time, he showed that the Fano surface of the
cubic satisfies the analog of the Torelli theorem. This paper belongs to a
period of intense activity on 3-folds in Moscow, in connection with Manin and
Iskovskikh’s negative solution of the Lüroth problem, and the study of Fano 3-
folds by Iskovskikh and his school. At around the same time, Tyurin also wrote
his survey on 3-folds, stimulated by the work of Griffiths and Clemens on the
irrationality of the cubic 3-fold; the survey in its published form is entitled “Five
lectures on threefolds”, and these five lectures were really given at the algebraic
geometry seminar in Moscow. It was at these lectures that the majority of the
seminar participants first became acquainted with intermediate Jacobians and
Prym varieties and their application to the proof of the irrationality of certain
algebraic 3-folds.

Tyurin always assimilated new ideas appearing in algebraic geometry in a
creative way, especially those that he was able to connect with the theory of
vector bundles. Thus, starting off from an observation of Gunning, according to
which the classical theory of uniformization of Riemann surface can be viewed
as specifying a “special geometric structure” whose “transition functions” are
fractional-linear transformations, Tyurin related this to theory of quadratic
differentials that had been developed a long time ago (since Poincaré), and
to the theory of rank 2 vector bundles (or in the current application, their
projectivization) on Riemann surfaces. In the spirit of the general conception
of vector bundles as a non-Abelian analog of the theory of divisors, he proved
the non-Abelian analog of the main theorems of the theory of differentials of the
third kind, determining how they are specified by their periods and principal
parts in a neighborhood of the poles.

It became clear during the 1980s that the theory of vector bundles can be
fruitfully applied in the geometry of manifolds of dimension greater than 1;
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Tyurin played a large role in this. Thus he showed how the theory of vector
bundles can be applied to the study of zero-cycles on algebraic surfaces, and
he obtained especially vivid results in the case of K3 surfaces. These articles
contain in particular the extension to the 2-dimensional case of Brill–Noether
theory of “special divisors” on algebraic curves. The construction discovered
by Tyurin led to a new direction of research: how to use a complex symplectic
structure on an algebraic surface S to construct a structure of the same type
on its moduli space of vector bundles.

At the same time, during the 1980s, relations developed between the the-
ory of vector bundles and their moduli spaces with questions of mathematical
physics (quantum field theory). This direction of study occupied Tyurin during
his last two decades. However, classical constructions from the theory of vector
bundles were frequently visible under the cloak of physical terminology. This
applies right up to the final publication of Tyurin’s life, where the terminology
of Delzant models — however exotic it may sound to the traditional mathe-
matician — corresponds to the moduli space of vector bundles on an algebraic
curve. In particular, this paper involves a role for the space P3 \V , where V is
the Kummer surface, that appeared in Tyurin’s very first paper.

There are many of his ideas that Tyurin did not himself carry to a conclusion
in a published paper, sharing them instead with the young mathematicians who
constantly surrounded him. For example, he drew attention to the paper of
Drézet and Le Potier, in which certain at first sight strange fractions appeared
as the “slopes” of exceptional bundles on P2. He succeeded in interesting
young mathematicians working at the time in A.N. Rudakov’s seminar in these
questions. They succeeded in linking them with Markov numbers, braid groups,
derived categories,. . . . This led to a beautiful theory, in which the impact of
Tyurin’s influence will probably be felt for a long time to come. The same
applies to many of the scientific impulses originating with him.

As an eye-witness of the whole of Tyurin’s scientific life, from his first steps
onwards, I was constantly amazed by the extent of his emotional involvement.
This moved Tyurin himself, and attracted many young mathematicians to work
with him. It seems to me that his scientific work can best be characterized in
the words of our common beloved Aristophanes:

. . . like a torrent of glory rushing across the plain, uprooting oak, plane
tree and rivals and bearing them pell-mell in its wake.

Aristophanes’ Hippeis (Knights), 526

(Here “rivals” stands for scientific and logical difficulties, of course.)

I.R. Shafarevich
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Preface.

An algebraic curve is both a one-dimensional subscheme of projective space
and a Riemann surface. Hence the theory of the Jacobian of a curve has two
aspects: the geometric and the analytic. The geometric theory of the Jacobian
is the description of its properties as a projective variety, above all, of those
properties that are preserved under variations, that is, the geometry of Abelian
varieties.

The analytic theory of the Jacobian is the theory of θ–functions. From
the geometric point of view the Jacobian = the Picard variety = the variety
of moduli of one-dimensional bundles of degree 0. From the analytic point
of view it is the manifold of one-dimensional unitary representations of the
fundamental group of the curve.

The variety S of moduli of many-dimensional vector bundles can also be
regarded both as an algebraic variety and as a set of unitary representations
of the fundamental group of the curve. In the present article we are concerned
exclusively with the geometric aspect of the theory of moduli of bundles.

The most striking result of this theory is: every ”Abelian” variety (that is,
a variation of S) is the ”Jacobian” of a curve, (that is, the variety of moduli
of bundles over some curve) (Chapter II, § 2). The geometrical ideas operating
here were suggested by Newstead, Narasmhan and Ramanan (see [8], [10] and
[13]). So that these ideas do not become lost in technicalities, we include in this
article our own proofs of the basic results of the theory. As it is self-contained,
it should allow the non-specialist to master its contents quickly.
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chapter 1

Introduction

§ 1 Various interpretations of vector bundle concept.

A vector bundle of dimension n on a manifold X is an element of
H1(X,GL(n)), where GL(n) is the sheaf of germs of mappings of X into
the full linear group GL(n).

Each cocycle h ∈ H1(X,GL(n)) associates with an affine covering {Ui} of
X a set {hij} of matrix functions such that hij is regular and regularly invertible
on Ui ∩Uj and hijhjkhki = 1 on Ui ∩Uj ∩Uk. If V0 is an n-dimensional vector
space, then the matrix functions hij enable us to glue together the V0×Ui into

a single variety V with projection V
π� X π−1(Ui) = V0 × Ui. This triple

(V, π, X) is again called a vector bundle.
In algebraic geometry vector bundle have four different interpretations.
I. The sheaf interpretation. A vector bundle is a locally free sheaf on

X.
More precisely, with a bundle V we can associate its sheaf V of germs of

sections. This is a locally free sheaf. Conversely, each locally free sheaf is the
sheaf of germs of sections of a unique bundle V . The rank of the locally free
sheaf is the dimension of the bundle.

This association has become so habitual that V and V are not even distin-
guished notationally.

II. The geometric interpretation. Over the complete variety X a vector
bundle V as a variety is neither affine nor complete. There is a simple method of
turning it into a complete (compact)variety, the operation of projectivization.
Let P (V0) be projective space corresponding to the vector space V0. Then
P (V0)×Ui can be glued by the same matrices hij into projective variety P (V )
with projection π : P (V ) � X. This is now a complete variety, a geometrical
object. It is easy to see that P (V ) = P (V ′) if and only if there is a one-
dimensional bundle L such that (V ′) = V ⊗ L.

The bundle π∗(V ) on P (V ) contains a one-dimensional ”tautological” sub-
bundle L whose fibre Lp at the point p ∈ P (V ) is the same one-dimensional
subspace that defines the point p of the projectivization P (V ). The bundle
τ = L∗ is called the anti-tautological bundle on P (V ).

23
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The pair (P (V ), τ) uniquely determines the bundle V on X (in fact, con-
structively, by V = (R0π(τ))∗).

Projectivization is the simplest but not the only method of associating
with a vector bundle a bundle with a complete fibre. Let k be an integer
with 0 < k < dim V . Then Gk(V )

π� Xis a bundle on the Grassmann
manifolds of k-subspaces of fibers. It is a compact manifold. In π∗(V ) there is
a sub-bundle E of dimension k, whose fiber over a point of the Grassmannian
is the subspace corresponding to that point. The bundle τ = E∗ is called the
anti-tautological bundle over Gk(V ).

The pair (Gk(V ), τ) uniquely determines V on X: constructively, by

V = (R0π(τ))∗ .

It is clear that P (V ) = G1(V ).
III. The arithmetic interpretation. A vector bundle is a class of matrix

divisors.
Let X be a curve. A matrix bundle on X associates with each point x ∈ X

a functional matrix Mx in such a way that there are only finitely many points
x ∈ X at which Mx is not regular and regularly invertible at x. The assignments
Mx and M ′

x are equivalent if M−1
x M ′

x is regular and regularly invertible at x
for every x.

A class of matrix assignments is called a matrix divisor. The matrix divisors
Mx and M ′

x are equivalent if M ′
x · M−1

x = G is a matrix of rational functions
on X not depending on the point x ∈ X.

The concept of a matrix divisor is analogous to that of a divisor, and the
connection between matrix divisors and vector bundles is the same as that
between divisors and one-dimensional (linear) bundles.

IV. The analytic interpretation. Among the vector bundles there are
those obtained from a representation ρ of the fundamental group π1(X) in the
full linear group GL(n). These are the so-called flat bundles. Their precise
construction is the following: let ρ : π1(X) � GL(n) be a representation
of the fundamental group, U the universal covering manifold of X, and V0 an
n-dimensional vector space. Then π1(X) acts diagonally on U × V0, that is,
g(u, v) = (g(u), ρg(v)) and U × V0/π1(X) = V is a bundle on X.

The condition for a bundle to be flat is purely algebraic [2] and for curves
is very simple.

These four interpretations of a vector bundle can be well illustrated in the
one-dimensional case.

example. One-dimensional bundles. This example is well-known to every-
body. We only recall that the equivalence of a divisor class with a locally free
sheaf of rank 1 provides the divisors with higher cohomology; in fact, cohomol-
ogy first entered into arithmetic through this equivalence.

The geometric interpretation gives nothing for one-dimensional bundles,
since P (V ) = X and τ = V ∗.
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A one-dimensional bundle can be obtained from a representation of the fun-
damental group if and only if its Chern class is 0. Hence we get the analytic con-
struction of the Picard variety: PicX = {set of unitary characters of π1(X)}
[14].

The one-dimensional case is the intuitive mental baggage on which we de-
pend in this article.

We recall some techniques of the geometric interpretation in the many-di-
mensional case, which are tautologous or lacking in the one-dimensional case.

These simple methods play such an important role in what follows that we
have decided to devote a separate section to them.

§ 2 Exact triples of Grassmannizations.

Let V0 be an n-dimensional vector space and Gk(V0) the Grassmann mani-
fold of k-dimensional subspaces in V0.

Let V0 denote the trivial bundle on Gk(V0) with fibre V0. Then V0 contains
a sub-bundle E ⊂ V0that is tautological, that is, the subspace h ⊂ V0 is itself
the fibre Eh at the point h ∈ Gk(V0). The bundle E∗ = τV0 is called anti-
tautological. We have the embedding

0 � τ∗V0
� V0.

To describe the factor bundle, we note that Gk(V0) = Gn−k(V ∗0 ) on Gk(V0)
is the second antitautological bundle τV ∗0 , and is also the factor bundle:

(1) 0 � τ∗V0
� V0

� τV ∗0
� 0.

The dual triple
0 � τ∗V ∗0

� V∗
0

� τV0
� 0

corresponds to the right-hand side of the equation

Gk(V0) = Gn−k(V ∗0 ) .

The bundles τV0 and τ∗V0
have very simple cohomology.

Proposition 1.

1) Hi(Gk(V0), τ∗V0
) = 0 for all i;

2) H0(Gk(V0), τV0) = V∗
0;

3) Hi(Gk(V0), τV0) = 0 for all i �= 0;

4) H0(Gk(V0), End τV0) = C;

5) Hi(Gk(V0), End τV0) = 0, i > 0.
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This will be proved later.
It is easy to show (and even easier to recall), that the tangent bundle to

the Grassmannian coincides with Hom(τ∗V0
, τV ∗0 ):

(2) Θ(Gk(V0)) = τV0 ⊗ τV ∗0 .

Now let V be a vector bundle on X and π : Gk(V ) � X its Grassman-
nization. Then π∗(V ) Contains the tautological bundle E = τ∗V and τV is the
anti-tautological bundle. Since Gk(V ) = Gn−k(V ∗), we have, analogously to
(1):

0 � τ∗V � π∗V � τV ∗ � 0 (I.G.e.t.).

Definition 1. This exact triple of bundles on Gk(V ) is called the first
Grassmannization exact triple (or I.G.e.t., for short).

Thus, if x ∈ X is a point and Vx the fibre of V over x, then the Grassman-
nian Gk(Vx) is the fibre of Gk(V ) over x, τV |Gk(Vx)= τVx and the restriction
of I.G.e.t. to Gk(Vx) gives (1).

Let Gk(V )
π� X be the projection of the bundle. The symbol Riπ, as

usual, denotes the i-th direct image of a sheaf.
Proposition 2.

1) Riπτ∗V = 0 for any i;

2) R0πτV = V ∗;

3) RiπτV = 0, i > 0;

4) R0πEndτV = OX ;

5) RiπEndτV = 0, i > 0.

proof. Applying the see-saw principle [7], we find that assertion j) of
Proposition 2 follows from the corresponding assertion of Proposition 1 when
j is odd.

We consider the triple on Gk(V ) dual to I.G.e.t.:

0 � τ∗V ∗ � π∗V ∗ � τV
� 0,

and the direct image functor

0 � R0πτ∗V ∗ � R0π(π∗V ∗) � R0π(τV ) � R1πτ∗V ∗ .

But R0πτ∗V ∗ = R1πτ∗V ∗ by 1). In addition,

R0π(π∗V ∗) = V ∗ ⊗ R0πOGk(V ) = V ∗ ⊗OX = V ∗.

Hence we get the isomorphism 2).
Let E be any bundle. Then EndE splits into the direct sum EndE =

I ⊕ad E, where I is the trivial one-dimensional bundle and ad E is the bundle
on the endomorphisms with trace zero.
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Definition 2. The bundle ad E is called the adjoint bundle of E.
Clearly, if L is a one-dimensional bundle, then

ad (E ⊗ L) = ad E, ad E∗ = ad E, (ad E)∗ = ad E.

Thus, EndτV = I ⊕ ad τV and, According to 4) of Proposition 1,
R0πEndτV = R0π(OGk(V )) = OX . This proves Proposition 1.

The projection Gk(V )
π� X is nowhere degenerate, and we have the

epimorphism of tangent bundles

ΘGk(V )
dπ� π∗ΘX � 0;

the kernel of dπ is called the relative tangent bundle and is denoted by Θπ.
It is easy to obtain a formula analogous to (2): Θπ = τV ⊗τV ∗ . Multiplying

I.G.e.t. by τV , we get the triple

0 � EndτV
� π∗(V ) ⊗ τV

� Θπ
� 0 (II.G.e.t.),

which is called the second Grassmannization exact triple (II.G.e.t.).
The bundle Θ∗π = Ωπ is called the relative cotangent bundle or the bundle

on relative differentials.
Proposition 3.

1) R0πΘπ = ad V ;

2) RiπΘπ = 0, i > 0;

3) R1πΩπ = OX ;

4) RiπΩπ = 0, i �= 1.

proof. We apply the direct image functor to II.G.e.t.:

0 � R0πEndτV
� R0πτV ⊗ π∗(V ) �

� R0πΘπ
� R1πEndτV

� · · ·

But RiπτV ⊗ π∗(V ) = V ⊗ RiπτV and, According to 2) and 3) of Proposition
2, R0πτV ⊗ π∗V = V ⊗ V ∗ = EndV R0πτV ⊗ π∗V = 0, i > 0. Identifying the
extreme terms of the resulting sequence by 4) and 5) of Proposition 2, we get

0 � OX
� EndV � R0πΘπ

� 0

and it is clear that the embedding OX
� EndV corresponds to the endo-

morphisms of multiplication by a constant. Note that, by definition R0πΘπ =
ad V . Assertion 2) follows immediately from 5) of Proposition 2. We invert
II.G.e.t.:

0 � Ωπ
� π∗(V ∗) ⊗ τ∗V � EndτV

� 0
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and apply the direct image functor:

0 � R0πΩπ
� V ∗ ⊗ R0πτ∗V � OX

� R1πΩπ
�

� π∗(V ∗) ⊗ R1πτ∗V � · · ·
But by 1) Proposition 2 Riπτ∗V = 0, and by 5), RiπEndτV = 0. Hence all

that remains of the sequence is the isomorphism

0 � OX
� R1πΩπ

� 0,

as required.
Now let F be an arbitrary sheaf on Gk(V ). The projection

Gk(V )
π� X

enables us to decompose the cohomology of F on Gk(V ) into the cohomology
of the direct image of F in X:

Hi(X, RjπF) ⇒ H∗(Gk(V ),F).

Applying this spectral sequence to the bundles τ , Θπ and Ωπ we obtain the
next result.

Proposition 4. For any i:

1) Hi(Gk(V ), τV ) = Hi(X, V ∗);

2) Hi(Gk(V ), Θπ) = Hi(X, ad V );

3) Hi+1(Gk(V ), Ωπ) = Hi(X,OX).

Note that in the last case Hi+1(Gk(V ), Ωπ) = Hi(X, R1πΩπ); because of
this the dimensions are not the same.

So we see that the cohomology of Ωπ on Gk(V ) does not depend on the
bundle V .

In the special case k = 1, Grassmann manifold is projective space G1(V ) =
P (V ) and Grassmannization is called projectivization. In this case τV is a one-
dimensional bundle and I.G.e.t. is obtained from II.G.e.t. by multiplication
by τ∗V . In the many-dimensional case we cannot do this and are forced to have
two exact triples.

Note now that for k = 1, that is, for projective space, Proposition 1 is well
known: τV0 is the hyperplane bundle and EndτV0 = OPn−1 .

We now prove Proposition 1 for any k.
proof of proposition 1. We consider the projectivization of the bundle

τ on Gk(V0):
P (τ)

π1� Gk(V0) .

Let ττ be the one-dimensional anti-tautological bundle of this projectivization.
Then H0(P (τ), ττ ) = V ∗0 and we get a mapping π2 : P (τ) � P (V0), given
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by the linear kernel | ττ |. If h is the one-dimensional hyperplane bundle on
the projective space P (V0), then

(3) ττ = π∗2(h).

But geometrically π2 can be split into the embedding P (τ) ↪→ P (V0) × X
and the projection onto P (V0). Thus, the fibre π−1

2 (p) is the manifold of k-
subspaces Passing through the point p in P (V0), that is π−1

2 (p) = Gk−1(V0/p).
Hence π2 : P (τ) � P (V0) is a locally trivial bundle on the Grassmannians.
(More precisely, P (τ)

π2� P (V0) is Gk−1(ΘP (V0)), the Grassmannization of
the tangent bundle to the projective space.) The spectral sequence

Hi(P (V0), Riπ2(τ)) ⇒ Hi(P (τ), τ) = Hi(Gk(V0), τV0)

degenerates into the isomorphism Hi(P (τ), ττ ) = Hi(P (V0), h), since by (3)

Riπ2(ττ ) = h ⊕ Riπ2(OP (τ)) =

{
0, for i > 0
1, for i = 0 ,

since a Grassmann manifold is regular.
1), 2) and 3) of Proposition 1 follow from this, as do 1), 2) and 3) Proposition

2.
Assertions 4) and 5) of Proposition 1 can be restated as follows:

Hi(Gk(V0), ad τV0 = 0 ∀ i

that is

(4) Hi(P (τ), Θπ1) = 0.

(Here we have used Proposition 3 for projectivization.)
The following argument is the exact prototype of the basic core of the whole

article (see Chapter V, § 1, diagram (27)).
I. We have two projections of the variety P (τ):

P (τ)

Gk(V0)
�
π1

P (V0)

π
2�

Here P (τ) = G1(τ), and it is easy to see that relative to the second projec-
tion

P (τ) = Gk−1(ΘP (V0)) .

II. It is easy to see that Θπ1 = τ∗ΘP (V0)
; in words: the relative tangent bundle

of the first projection is the tautological bundle of the Grassmannization of the
tangent bundle for the second projection.
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From this (4) follows automatically:

Hi(P (τ), Θπ1) = Hi(Gk−1(ΘP (V0)), τ∗ΘP (V0)
) = 0

by 1) of Proposition 2, which has already been proved. This completes the
proof.

§ 3 Special properties of bundles on curves.

Let V be a bundle on a manifold X of dimension n. Then we can apply to V
the sheaf operations of exterior powers ΛiV (i = 1, · · · ). For i > n, ΛiV = 0,
and ΛnV = detV is the one-dimensional bundle called the determinant of V .

In this article we consider bundles over an algebraic curve X. Naturally,
they have special properties, which simplify their investigation.

In this section we list these properties.
In the first place, every one-dimensional bundle L on X determines an

integer, its degree deg L, the degree of the divisor to which it corresponds.
For a many-dimensional bundle V

deg V = deg det V.

This integer not only splits the variety of classes of bundles into components,
but also enables us to distinguish the components of highest dimension, the
stable bundles.

Definition 3. A bundle V on a curve X is called stable, if for any proper
sub-bundle M ⊂ V

(5)
deg M

dim M
<

deg V

dim V
.

Multiplication of V by a one-dimensional bundle L adds deg L to each side
of the inequality (5), and so does not alter it. Hence stability is preserved under
multiplication of V by a one-dimensional bundle.

Next, for V ∗ this inequality is multiplied by -1, but M∗ becomes a factor-
bundle of V ∗, and the inequality is preserved for the kernel. Thus, stability is
preserved under inversion.

Intuitively, this numerical concept of stability means nothing to people who
do not work with bundles. Hence, for the time being, stable bundles may be
thought of as bundles forming the component of maximum dimension in the
set of classes, and having no non-trivial endomorphisms.

As we have already noted in § 2, the bundle EndV is the direct sum of the
trivial bundle I and ad V . Therefore, also for sections we have: H0(X, EndV ) =
I ⊕ H0(X, ad V ). The sections of the sheaf ad V are those endomorphisms of
V for which the image is a proper subbundle in V ; such endomorphisms are
also called non-trivial.
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If e ∈ H0(X, ad V ), then E can be represented as an extension

0 � ker e � E � Ime � 0;

here deg E = deg ker e + deg Ime and dimE = dim ker e + dim Ime. Then
the fraction deg E

dim E lies between deg ker e
dim ker e and deg Ime

dim Ime and is less than one of
them, violating the inequality (5). Hence stable bundles have no non-trivial
endomorphisms.

On a curve X every point is a divisor. This leads very easily to the first
property:

PROPERTY I. As an element of the K-functor, every bundle on a curve
is a sum of one-dimensional bundles.

More simply, this means that every bundle can be represented as a chain of
extensions of one-dimensional bundles.

PROPERTY II. If V is generated by global sections, then it has an (n−1)-
dimensional trivial subbundle, that is, V can be represented in the form of an
extension

(6) 0 � In−1
� V � det V � 0.

Let H0(X, V ) = H0(X, V ) × X be the trivial bundle on X with fibre
H0(X, V ). The mapping H0(X, V ) ϕ� E, ϕ(s, x) = s(x), is an epimor-
phism if and only if vector of the fibre is generated by global section. Consider
ker ϕ and the projection of kerϕ into H0(X, V ). This projection is layer-
wise linear and we can projectivize it: f : P (ker ϕ) � P (H0(X, V )) = P ,
codimP f(P (ker ϕ)) � (n − 1). But f(P (ker ϕ)) ⊂ P is a manifold of sections
having zeros. Thus, any subspace not intersecting f(P (ker ϕ)), consists of non-
vanishing sections and so defines a trivial sub-bundle on V . Hence it follows
that a subbundle In−1 not only exists in V , but can be chosen so that it passes
through an arbitrary point of V .

PROPERTY III. Let V be an arbitrary stable bundle of degree d on X.
Then there exists an integer N(d) such that if L is any one-dimensional bundle
of degree � N(d), then V can be represented in the form of an extension

(7) 0 � L∗ ⊗ In−1
� V � det V ⊗ Ln−1 � 0.

The previous property reduces this assertion to the following.
There exists an absolute constant N0 such that any stable bundle of degree

� N0 is generated by global sections (is very ample).
Let V (−x) = V ⊗ L∗(x), where L(x) is the bundle corresponding to the

divisor x.
Suppose that the fibre Vx over x ∈ X is not generated by global sections.

This means that the increase of the sections dim H0(X, V )−dim H0(X, V (−x))
is less than the increase in the Euler characteristics χ(V ) − χ(V (−x)) =
dim V = n, but this is equivalent to H1(X, V (−x)) �= 0. Then, by Serre
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duality, H0(X, Ω⊗V ∗(x)) �= 0, where Ω is the one-dimensional canonical bun-
dle on X. A section of Ω⊗V ∗⊗L(x) determines a subbundle M of non-negative
degree, but Ω ⊗ L(x) ⊗ V ∗ is stable, so that

0 � deg M < −deg V + n(2g − 1).

It follows that if deg V � n(2g − 1) and V is stable, then V is generated by
global sections.

§ 4 Variations of bundles.

The example of one-dimensional bundles on a curve already shows that
bundles have moduli, that they depend on algebraic parameters and can be
varied.

We consider first the theory of local variation of bundles.
We note at once that the association of the one-dimensional bundle detV

with V reduces the classification of bundles to the description of bundles with
a fixed detV and the description of classes of one-dimensional bundles, which
is already known.

Here it does not matter what value the determinant takes, since for a one-
dimensional bundle L

det(V ⊗ L) = det V ⊗ Ln,

and by such a multiplication we can reduce detV to an arbitrary bundle of the
same degree.

In addition, the classification of bundles V with fixed determinant coin-
cides locally with the classification of the projectivization P (V ), since there
are only finitely many bundles V with the same determinant and the same
projectivization.

But P (V ) is a compact non-singular variety, and we can apply to it the
theory of local variation of Kodaira and Spencer [4].

According to this theory, if M is a piece of the variety of moduli around a
point of P (V ) and H2(P (V ), ΘP (V )) = 0, then

ΘMP (V ) = H1(P (V ), ΘP (V )),

that is, the tangent space to the set of variations at a point of P (V ) is a
one-dimensional cocycle with coefficients in the sheaf of germs of vector fields.

Let us investigate the corresponding cohomology spaces. The variety

P (V )
π� X
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is fibered by the projection π on X, from which we get an exact triple on P (V ):

(8) 0 � Θπ
� ΘP (V )

dπ� π∗(ΘX) � 0.

We now recall equation 2) of Proposition 3 in § 2:

Hi(P (V ), Θπ) = Hi(X, ad V ) .

Also Hi(P (V ), π∗(ΘX)) = Hi(X, ΘX). But X is a curve, therefore, Hi(X, ∗) =
0 for i > 1, hence of the whole cohomology sequence of the triple (7) there re-
mains the exact triple

(9) 0 � H1(X, ad V ) � ΘMP (V )
� H1(X, ΘX) � 0.

and H2(P (V ), ΘP (V )) = 0. This means that locally the variation of a projec-
tive bundle decomposes into the variation of the base X (H1(X, ΘX) is tangent
to the variety of moduli of the curves at the point of X), and the variation of
the bundle with fixed base.

Here we must pause. The inertia of the classificatory idea urges us to use
this decomposition, to forget about the variation of the curve, and to study only
the variations of the bundles with fixed base. But if we return to the example
— fundamental to our intuitive baggage — of a one-dimensional bundle, we
see that such a decomposition should be avoided at all costs.

In fact, the theory of variations of a one-dimensional bundle, that is the
theory of the Jacobian variety of a curve, originated in the middle of the last
century as the theory of theta-functions, which combined both the variations of
the divisor and those of the curve. The unity is not broken, and the price of this
is known to any geometer who has ever translated properties of the singular
points of the Poincaré divisor of the Jacobian of a curve into the language of
moduli of the curve itself.

The theory of the Jacobian of a curve gave rich information about the
variety of moduli of curves, and we shall try to present here the theory of
variation of many-dimensional bundles so that this information is increased.
The étale theorem, the symmetry theorem and Torelli’s theorem to be given
below show that the many-dimensional theory reflects the properties of curves
more precisely, and it is possible that with its help we may succeed in getting
decisive information on the geometry of varieties of moduli of curves.

This remark touches on the general direction of our thought, but meanwhile
even the local variation, the triple (8), enables us to count the number of
moduli of bundles on a fixed curve with a fixed determinant. This number
is equal to dimH1(X, ad V ), and for a ”general” stable bundle it is equal,
by the Riemann–Roch theorem, to χ(ad V ), since H0(X, ad V ) = 0. Now
deg ad V = 0, hence χ(ad V ) = dim ad V · (g − 1) = (n2 − 1)(g − 1), where n
is the dimension of the bundle.

We now turn to the global variation, that is, to the global variety of moduli.
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The only correctly stated problem on the global variety of moduli is the
”universal problem” of Grothendieck. For bundles with fixed base and fixed
determinant it runs as follows.

I. There exists a quasi-projective variety Sn,d and n-dimensional bundle Un,d

on the direct product X × Sn,d such that :

a) for any stable bundle V on X with dim V = n, deg V = d , and with fixed
determinant there is a unique point s on Sn,d such that V ∼= U |(X×s);

b) for any bundle V on X×B, where all bundles V |(X×b) are stable and have
the same determinant, there exists a regular morphism ϕ : B � Sn,d

and a one-dimensional bundle L on Sn,d such that V = (1 × ϕ)∗(U⊗pr∗SL).

We recall once more that by multiplying a bundle by a one-dimensional
bundle we can make its determinant arbitrary, and its degree has the same
residue modulo n.

Thus, the possible suffixes n and d of the series of varieties Sn,d are arranged
as follows: n runs through all integers and d runs through all residues modulo
n.

Proposition 5. I. For any given (n, d) there exists a quasi-projective vari-
ety Sn,d, parametrizing the classes of stable bundles of dimension n with fixed
determinant of degree d.

II. If n and d are coprime, then on X ×Sn,d there exists a universal family
Un,d with the properties a) and b). In this case Sn,d is a non-singular compact
variety.

I is a simple special case of Mumford’s general theory [5]. II is in [14].
Note that if n and d are not coprime, then no universal family exists on

X × Sn,d ([13] and [11]).
However, for projective bundles there always exists a universal family that

is not the projectivization of a vector bundle and is locally isotrivial, but not
trivial [5].

In what follows, we do not need the suffixes n and d and we shall consider
a non-singular compact variety S and a universal bundle U on X × S, that is,
the case when (n, d) = 1, And we shall specially mention all the results that
hold for arbitrary n and d. As a simple consequence of the universal problem
we have:

Proposition 6. S is unirational.
proof. For any stable bundle V we have the representation (7)

0 � In−1 ⊗ L∗ � V � det V ⊗ Ln−1 � 0,

where L is a one-dimensional bundle of sufficiently high degree.
The set of such extensions is given by the following projective space: P =

P (H1(X, det(V ∗×L∗)⊗In)) [2]. We can collect all the extensions into a family
with base P , and an open set P0 in P is formed by the stable bundles. (We
shall meet this in Chapter III, § 2). Then we have a mapping ϕ : P0

� S into
the set of classes. This is a rational uniformization, which proves the theorem.
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It is not much harder to prove the rationality of S (Newstead [12]).



chapter 2

The Poincaré bundle

§ 1 The adjoint Poincaré bundles.

Thus, let us consider a universal family, that is, a bundle U on X ⊗ S.
We can regard it as family of bundles on X and as a family of n-dimensional
bundles on S parametrizing the curve X.

Definition 4. The bundle Ux = U |(x×S) on S is called the Poincaré
bundle.

We note, first of all, that this definition depends on choice of the universal
family U on X ⊗ S. It follows from property b) of the universal family (see § 4
Chapter I) that, for any one-dimensional bundle L on S,

U ′ = U ⊗ pr∗SL

is also universal, and any universal family is of this form.
Hence the Poincaré bundle Ux is only determined up to multiplication by

a one-dimensional bundle, that is, only the projectivization P (Ux) is uniquely
determined.

This concept is entirely vacuous in the one-dimensional case. To define a
Poincaré vector bundle uniquely we need the normalization of the universal
bundle on X ⊗ S.

The Riemann normalization. In the one-dimensional case S = Pic X,
the universal bundle U on X×Pic X corresponds to a divisor D on X×Pic X.
Suppose that D is effective and that H0(X × Pic X, D) = C. Then D is
uniquely determined, and Dx = Θ ⊂ Pic X is called the Poincaré divisor ([7]).

Normalization in the many-dimensional case. As will be proved a
little later (the theorem on h∗,1), Pic S = Z. Hence the bundle on S also have
degree deg det V . The Poincaré vector bundle Ux on S is uniquely determined
by the inequalities 0 � deg Ux < n.

Definition 5. The bundle ad Ux is called the adjoint Poincaré bundle on
S.

The adjoint Poincaré bundle is completely unique because ad (Ux ⊗ L) =
ad Ux.

Hence, there are two families of bundles on S: Ux and ad Ux, parametrized
by the curve X.

36
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THEOREM 1. The curve X is the variety of moduli for the Poincaré
bundle.

Let S(V ) be the connected component of the variety of moduli of bundles
on a manifold M containing V . Then S(Ux) = X for any bundle Ux on S.

If, as in the one-dimensional case, we could fix a ”polarisation” on S, the
Poincaré bundle Ux, then the construction of Torelli’s theorem would be quite
simple: S(Ux0) = X.

Note that in the one-dimensional case there is no such simple reconstruction
of the curve X from the Poincaré divisor, because in this case S(Θ) = Pic X.

The proof of Theorem 1 is divided into two parts.
THEOREM 2. All the Poincaré bundles are distinct, that is, Ux � Ux′ ,

x �= x′.
It follows that X

ϕ� S(Ux) is an embedding. For X to coincide with a
component of S(Ux), it suffices to prove that S(Ux) is one-dimensional, or, what
comes to the same thing, that the tangent space to S(Ux) is one-dimensional.
According to the isomorphism for local variation, ΘS(Ux)Ux

= H1(S, ad Ux).
Hence the second step of the proof is purely cohomological.

THE NARASIMHAN–RAMANAN THEOREM. For any x ∈ X

Hi(S, ad Ux) = Hi−1(S,OS)

for i � Ng(n), where Ng(n) is a constant depending only on the genus g of
the curve and the dimension n of the bundle. A crude estimate is: Ng(n) �
n2

2 (g − 3)(see Chapter V, § 1).
This theorem has no analogue in the one-dimensional case. The proof of

Theorem 2 is an analogue of the theory classically known as the ”inversion
problem”. To make the analogy clear we recall the geometrical part of the
”inversion problem” in the one-dimensional case.

I. An immersion X
ϕ
↪→ Pic X = S is constructed such that the restrictions

of the Poincaré divisor Θ0 to all the variations of ϕ give all the classes of one-
dimensional bundles. On the other hand, the restrictions of the divisors Θx

to ϕ(X) give different divisors on X. Hence it follows finally that Θx � Θx′ ,
x �= x′ on Pic X.

II. The immersion X
ϕ
↪→ Pic X has the simple topological property:

ϕ∗ : H1(X,Z) � H1(Pic X,Z)

is an isomorphism. In fact, it is defined by this property. The isomorphism ϕ∗
induces an isomorphism of the Albanese variety A(X) = Pic X.

In the many-dimensional case an analogous mapping ϕ : X � S can be
constructed having the ”inversion” property. Also we can construct a mapping
of the direct product P 1×X

ϕ� S such that for each point of the projective
line p ∈ P 1 the mapping ϕ |(p×X) is an “inversion” mapping and

(10) ϕ∗ : H3(X × P 1,Z) � H3(S,Z)
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is an isomorphism. It induces an isomorphism J(X) ∼= J3(S) between the
Jacobian of the curve X and the third intermediate Jacobian of S (for definition
see [17]).

In Chapter IV we shall construct ϕ, establish the isomorphism (9), and
show that

Ux |ϕ(X×P 1)� Ux′ |ϕ(X×P 1)

for x �= x′, from which the assertion of Theorem 2 follows. Chapter V is devoted
to the proof of the Narasimhan-Ramanan theorem, but now we obtain all the
geometrical consequences of it and Theorem 2.

§ 2 Tensors.

Let U be the universal bundle on X × S. Then R1prS ad U = ΘS is the
tangent bundle to S. This statement globalizes the local statement ΘSs =
H1(X, ad Us), where Us = U |(X,s), and s is a point of S.

the symmetry theorem. R1prS ad U = ΘX.
proof. By the Narasimhan–Ramanan theorem,

H2(S, ad Ux) = 0 and H1(X, ad Ux) = 1

do not depend on x. By the see-saw theorem ([7]), R1prX ad U is a locally free
sheaf of rank 1. The family of bundles {Ux}, x ∈ X, determines a homomor-
phism of the local variation

ΘX � R1prX ad U .

Since by Theorem 2 the variation is non-trivial, this homomorphism is an em-
bedding and the equality of dimensions shows that it is an isomorphism.

Two Leray spectral sequences converge to the space of sheaf cohomology of
ad U on X × S:

H∗(X × S, ad U)

Hi(X, Rjprx ad U)

�

Hi(S, Rjprs ad U)

�

But Rjprx ad U = 0, j < Ng, j �= 1, by the Narasimhan–Ramanan theorem,
and Rjprs ad U = 0, j � 2, since the fibre of the bundle prs is one-dimensional,
and R0prs ad U = 0, since H0(X, ad U) = 0, because Us is a stable bundle on
a curve (see Chapter I, § 3). Thus, in dimensions � Ng the spectral sequence
reduces to the isomorphisms:
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(11)

Hi(S × X, ad U)

Hi−1(X, R1prx ad U) =============
�

�

Hi−1(S, R1prs ad U)

�
�

As a corollary we obtain some important theorems.
the automorphisms theorem. The group of biregular automorphisms of

S is finite.
proof. H0(S, ΘS) = H0(X, ΘX) = 0 hence, the group of automorphisms

is discrete. Also, the anticanonical bundle of S is ample. Finiteness now follows.
the étale theorem. H1(X, ΘX) ∼= H1(S, ΘS).
This isomorphism has the following interpretation.
Let Mc be the variety of moduli of curves, and MS the variety of moduli

of S (that is, of variations of S as a variety). Then the correspondence X �
∼ � S induces a morphism Mc

f� MS . At X ∈ Mc the tangent space
to Mc is identified with H1(X, ΘX), and at S = f(X) with H1(S, ΘS). The
isomorphism of the theorem can be interpreted as df , the differential of f ,
and so f is étale, that is, the local Torelli theorem holds for X �∼ � S,
furthermore, it follows from the global Torelli theorem (see [15] or Chapter III)
that f is an isomorphism:

The variety of moduli of S coincides with the variety of moduli of curves.
This many-dimensional effect is absent in the one-dimensional case, since

then MS = Ma is the variety of moduli of Abelian varieties. The mapping
Mc �f∼ � Ma is an embedding (Torelli’s theorem), but the image is not the
whole of Ma and has a complicated description by Shottky relations (see also
[1]).

the theorem on h∗,1. Hi(S, ΩS) ∼= Hi−1(X,OX) for i � Ng(n)
Proof. By Serre duality,

(R1prS ad U)∗ = R0prS(pr∗XΩX ⊗ ad U).

Again we use two spectral sequences:

H∗(S × X, prXΩX⊗ ad U)

Hi(S, RjprS(pr∗XΩX

�

⊗ ad U)) Hi(X, ΩX ⊗ RjprX ad U)

�

It follows from the stability that for j �= 0

RjprS(pr∗XΩX ⊗ ad U) = 0 and R0prS′(pr∗XΩX ⊗ ad U) = ΩS.

By the Narasimhan-Ramanan theorem, RjprX ad U = 0, j �= 1 (within the
necessary limits), and R1prX ad U = TX by the symmetry theorem. Hence we
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obtain isomorphisms

(12)

Hi(S × X, pr∗XΩX ⊗ ad U)

Hi(S, ΩS) =======================
∼�

∼

Hi−1(X,OX)

∼
�

and tensor invariants

h0,1(S) = 0, h1,1(S) = 1, h2,1(S) = g.

�
COROLLARY. Pic (S) = Z.
REMARK. For i = 2 the isomorphism (12)

H2,1(S) ∼= H1,0(X)

can be interpreted as the differential of the isomorphism

J3(S) ∼= J(X),

which will be constructed in Chapter IV.

§ 3 Problems and conjectures.

The problems and conjectures scattered throughout the article and collected
in this section indicate certain directions of thought. We do not insist by any
means on their competitive value. Many of them are obviously not difficult and
are simple exercises, but they either fill out the general picture or underline
the analogy with the classical theory (n = 1).

First of all, if n and d are not coprime, then S is not complete, but it
can be completed by a standard method (Seshadri [14]) and the completion
desingularised. Let S̃ be the resulting variety. As already mentioned, there is
no Poincaré bundle Ux on S̃, but there is its adjoint ad Ux.

Problem I. Do the theorems of the previous section hold for S̃?
On the curve X there exists a series of bundle canonically connected with

the curve:
Ek

n(X) = RkprX ad ad · · · ad︸ ︷︷ ︸
n times

U

We know that E0
1 = 0 and E1

1 = ΘX. There is the same series on S:

Ek
n(S) = RkprS ad ad · · · ad U,

E0
1 = 0, E1

1 = ΘS .
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Problem II. What are the bundles Ek
n(X) and Ek

n(S)?
Apparently they are bundles on jets.
By the theorem on automorphisms, the group AutS is finite.
Let Jn(X) be the group of points of order n on J(X), that is, the group of

divisor classes of order n on X. This group acts in the following way on S:

σ ∈ J(X), Eσ = E ⊗ L(σ).

It is clear that det Eσ = detE and that stability is preserved.
Conjecture. There is a central extension

1 � Jn(X) � AutS � AutX � 1

where AutX is the automorphism group of the curve X.
This conjecture has been proved by Newstead [10] in the case n = 2, g = 2.

It is needed for the construction of an analogue to the theory of theta-constants
of Mumford’s method [6].

Finally: Problem III. Calculate all the hp,q(S).
Conjecture. Hi+q(X, Ωq) ∼= Hi+p(S, Ωp) for any independent q and p.
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Elementary operations and their variations

§ 1 Elementary operations.

I. An elementary operation on the divisor of a curve X is the addition of a
point x ∈ X to the divisor or the subtraction of a point ξ − x; in the language
of sheaves this means:

0 � elmxL(ξ) � L(ξ)
α� Ox

� 0,

where α is any non-zero homomorphism into the skyscraper Ox over x ∈ X.
In the many-dimensional case we consider a k-dimensional subspace g ∈ Vx

in the fibre of a bundle Y over the point x ∈ X. This uniquely determines the
epimorphism

V
α(g)� On−k

x
� 0,

where On−k
x is the skyscraper of dimension x ∈ X over n−k, where n = dimV .

In fact, as a homomorphism into a skyscraper, α(g) is uniquely determined by
its restriction α(g)x to the fibre over x, and α(g)x is uniquely determined by
the condition kerα(g)x = g. The kernel of α(g) is a locally free sheaf.

Definition 6.

1) The kernel of α(g) is denoted by the symbol elmk
x(g)(V ).

2) The operation V � elmk(g)(V ) is called an elementary operation of de-
gree k.

3) The exact triple

0 � elmk
x(g)(V ) i� V

α(g)−→ On−k
x

� 0 (a.e.t.)

is called adjoint exact triple (a.e.t. for short).

42
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It is clear that dim elmk
x(g)(V ) = dim V . The restriction of a.e.t. to the

fibre at a point x gives a four-term sequence:

0 � ker ix � (elmk
x(g)(V ))x

ix� Vx
α(g)x� On−k

x
� 0.

Thus, the fibre over x of the bundle elmk
x(g)(V ) contains the (n−k)-dimensional

subspace ker ix = g′. It is easy to see that

(13) V ⊗ L∗(x) = elmn−k
x (ker ix)(elmk

x(g)(V )).

From a.e.t. it follows immediately that

(14) det elmk
x(g)(V ) = det V − (n − k)x.

Proposition 7 (ITERATION OF OPERATIONS). Suppose that Vx

contains two subspaces g1 and g2, with g1 ⊂ g2, dim g1 = k1, dim g2 = k1 + k.
Then (elmk1+k

x (g2)(V ))x contains the subspace i−1
x (g1) and

(15) elmk1
x (g1)(V ) = elmn−k

x (i−1
x (g1))(elmk1+k

x (g2)(V )).

The proof follows at once from a.e.t.
This proposition shows that among the elm’s there is a ”most” elemen-

tary one, and an elementary transformation of any stage can be obtained
from it by superposition. This elmn−1

x (g)(V ), which we shall simply denote
by elmx(g)(V ).

The next propositions follow at once from a.e.t.
Proposition 8.

1) elmk
x(g)(V ⊗L) = L⊗ elmk

x(g)(V ), that is, an elementary operation com-
mutes with multiplication by a one-dimensional bundle;

2) (elmk
x(g)(V ))∗ = elmn−k

x (g∗)(V ∗).

From the first statement it follows that an elementary operation can be
described in terms of the projective variety P (V ).

However, before this description we investigate the relation between the
elm′’s and stability.

Clearly, the elm of a stable bundle need not be stable.
Definition 7. A bundle V is called superstable, if every elementary opera-

tion of any degree from V is a stable bundle.
Proposition 9 (NUMERICAL CRITERION FOR SUPERSTA-

BILITY). A bundle V is superstable if and only if for any proper subbundle
M ⊂ V

deg M

dim M
<

deg V

dim V
− dim V − dim M

dim V
.
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proof.We have the inclusion

0 � elmk
x(g)(V )

i� V
α� On−k

x
� 0,

0 � M ′
∪

�

� M
∪

�

� Ol
x

∪

�

� 0,

where n = dimV , n1 = dimM , e = dim(Mx ∩ ker ix). Thus

M ′ = elmn1−l
x × (Mx ∩ ker ix)(M)

and e � max(0, n1 − k).
We need the inequality

(16)
deg M − l

n1
<

deg V − (n − k)
n

which is equivalent to

deg M

n1
<

deg V

n
− n − n1

n
+
(

e

n1
− n1 − k

n

)
,

that is, (16) +
(

e
n1

− n1−k
n

)
. But the last difference is always positive. This

proves Proposition 9.
Let S0 ⊂ S be a submanifold of the classes of stable, but not superstable

bundles. It is easy to see that S0 is a closed submanifold.
Proposition 10. codimSS0 > n2

4 (g − 2).
proof. Let us count constants. Let M1 ⊂ V be a proper subbundle with

maximal ratio deg M1/ dim M1. Then V can be represented as an extension
(17)

0 � M1
� V � M2

� 0 ,

deg Mi = di , dim Mi = ni (i = 1, 2) ,

deg V = d = d1 + d2 , dim V = n = n1 + n2

If M1 is a maximal subbundle, then

1) M1 and M2 are stable;

2) H0(Hom(M2,M1)) = 0.

Assertion 1) is obvious, for if M1 is maximal in V , then M2 is maximal in V ∗.
If s : M2

� M1 is a homomorphism of stable bundles, then d1
n1

> d2
n2

,
hence d1

n1
> d1+d2

n1+n2
> d2

n2
.

The dimension of the variety of all extensions (17) is equal to

dim Sn1,d1 + dim J(X) + dim Sn2,d2 + dim P (H1(X, Hom(M2,M1))) =

= (n2
1 − 1)(g − 1) + g + (n2

2 − 1)(g − 1) + n1 · n2

(
d2

n2
− d1

n1
+ (g − 1)

)
− 1.
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If V is not superstable, then d1
n1

> d
n − n2

n or d1n2 > d2n1 − n1 · n2, that is,
1 > d2

n2
− d1

n1
. Hence,

dim S0 < (n2
1 + n1 · n2 + n2

2 − 1)(g − 1) + n1 · n2.

But dim S = (n2 − 1)(g − 1). Therefore,

codimSS0 > n1 · n2(g − 2) � n2

4
(g − 2),

as required.
Hence it follows that the superstable bundles form an open subset of the

variety of classes of bundles.
This completes the description of the elm’s in the language of sheaves.
II. Geometric interpretation of elm’s. We now turn from vector bun-

dles to their projectivizations. The embedding i in a.e.t. determines a bira-
tional morphism

P (elmk
x(g)(V ))

i� P (V ),

Which decomposes in the following way:

P(elm V)

P(elm V)x

P
(k

er
i

)
x �

� �
�

��

P(g)

P(V)x

P(V)

P(elm V)x

P(V) x

P(g)

Ðèñ. 1

σ1 is a blow-up on P (elmV ) with center P (ker ix) ⊂ P (elmV )x. After this
blow-up two components will lie over x: the old fibre P (elm)x and the result
of the blow-up. The old fibre is a ”ruled” variety, which can be retracted by
σ−1

2 onto the subspace P (g) ⊂ P (V )x.
If V is a two-dimensional bundle, then P (V ) is a ruled surface and elmx(p),

p ∈ P (V ), is the well-known elementary transformation of ruled surfaces ([18],
Chapter V).
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Every ruled surface is obtained from the trivial P 1×X by a finite collection
of elementary transformations. It is easy to see that the same is true for bundles
of arbitrary dimension ([16]).

Moreover, in the same way as we can construct the Jacobian as the sym-
metric gth power of a curve, so we can construct S by ordering the elementary
operations ([16]).

III. Arithmetic interpretation of elm’s. Suppose that a matrix divisor
is given by an assignment Ex, x ∈ X. Then

elmx0(Ex) =

⎧⎪⎨⎪⎩
Ex, x �= x0,(

1 0
0 τx0

)
Ex0 ,

Where τx0 is a local parameter at x0 ∈ X. The operation of multiplication by(
1 0
0 τx0

)
is defined on assignments, but not on classes of assignments of matrix

divisors; it does not commute with multiplication on the left by Ax, a regular

and regularly invertible matrix. But on the set of left cosets
(

1 0
0 τx0

)
Ax0 the

operation is well-defined.

A choice of coset
(

1 α
0 τ

)
, α ∈ C, is a choice of g ∈ Vx, and determines

elmx0(g) (see [16]).

§ 2 Variations of elementary operations.

The symbol for an elementary operation elmk
x0

(g)V is adorned with three
suffixes, three continuous parameters: the point x ∈ X, the subspace g ∈
Gk(Vx) and the bundle V ∈ S. We can vary the operation with respect to all
these parameters, obtaining a family of bundles.

The most important special cases of variations are the following.
I. Minimal variation. We fix the bundle V and its subbundle V1 in such

a way that V/V1 is one-dimensional. Then {elmxV1x(V )}, x ∈ X, is a family
of bundles parametrized by the curve X. This is the minimal variation. It is
used in the inversion problem. The determinants of the bundles of the family
are varied, and we shall “touch up” this family a little in the next chapter.
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The minimal variation can be described in terms of extensions. We have a
commutative diagram

(18)

0 0 0

0 � elmx(L) = L(−x)

�

� L

�

� Ox

�

� 0

0 � elmx(V1x)(V )

�

� V

�

� Ox

�

� 0

0 � V1

�

� V1

�

� 0

�

0

�

0.

�

and if an extension of the middle vertical column is given by a cocycle h ∈
H1(X, V1 ⊗ L∗), then the extension of the left column is given by the cocycle
rx(h) ∈ H1(X, (V1 ⊗ L∗)(x)), where rx = H1(X,F) � H1(X,F(x)) is the
epimorphism of adjunction of a point induced by the exact triple

0 � F � F(x) � F(x)x
� 0 .

II. Variation with fixed point x ∈ X. Let T be the base of a family of
bundles on X, that is, a bundle X×T is given on W . We can then construct the
new family {elmk

x(g)(Wt)} of all elementary transformations with fixed point
x ∈ X. The base of the new family is Gk(Wx) and the bundle on X ×Gk(Wx)
defining the family is denoted by ELMk

x(W ). When k = n − 1, the operation
is simply denoted by ELMx(W ).

We now take the most non-trivial family consisting of one trivial n-dimensional
bundle In on X, and apply the operation ELMx to it (n + 1)(g − 1) times:

ELMx( · · · (ELMx︸ ︷︷ ︸
(n + 1)(g − 1) times

(In)) · · · )

We obtain a family of bundles on X with determinant (n + 1)× (g − 1)x. The
base of this family is a variety P(n+1)(g−1), which can be decomposed into a
tower of (n − 1)-dimensional projective bundles

(19) P(n+1)(g−1)
π� P(n+1)(g−1)−1

� · · ·
· · · � Pi

πi−1� Pi−1
� · · · π1� P1 = Pn−1,

where Pi
πi−1� Pi−1 is an (n−1)-dimensional projective bundle and P1 = Pn−1

is projective space. The precise inductive description of this tower is as follows.
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Suppose Pi
πi−1� Pi−1 is already constructed. Then Pi+1 = P (I ⊕ Ωπi−1),

that is, the bundle Pi+1
πi� Pi is the projectivization of the direct sum of a

trivial bundle and the relative cotangent bundle.
We can multiply all the bundles of the resulting family by Lg−1(x) and

transform, that is, pass to the family

[pr∗XLg−1(x) ⊗ ELM(n+1)(g−1)
x (In)]∗

on X × P(n+1)(g−1).
The mapping to the class of bundles of this family gives us a rational map-

ping
ϕ : P(n+1)(g−1)

� Sn,g−1 .

This mapping is rational, because it is not defined on the non-stable bundles.
Note that dimP(n+1)(g−1) = dimSn,g−1, and it is easy to see that it is a

mapping onto the whole of Sn,g−1.
conjecture. ϕ is a birational morphism.
The case n = 2, g = 2 is very convenient for verification of this conjecture.
Consider a bundle V with determinant 3x, where x ∈ X is a fixed point.

Then, by the Riemann-Roch theorem, V has a section. It is easy to see that
Vgen has only one section and has no zeros. This means that Vgen is uniquely
represented as an extension

0 � I � Vgen
� L3(x) � 0,

that is, if P (H1(X, L(−3))) = P 3 is the base of the family of extension, then
there is a birational isomorphism ϕ : P 3 ↔ S2,1.

The operation of adjunction of a point x to the sheaf gives us two epimor-
phisms:

H1(X, L(−3x))
π2� H1(X, L(−2x))

π1� H1(X, L(−x)),

which determine two projections:

P 3 =P (H1(X, L(−3x)))
π2� P (H1(X, L(−2x)))

π1� P (H1(X, L(−x)))=P 1.

It is easy to see that this is just the chain (19). Thus, our conjecture is true
for n = 2, g = 2. These arguments can easily be generalized to the case when
g − 1 ≡ n − 1 mod n.

Our construction has an obvious generalization. Let k1, . . . , kN be a se-
quence of positive integers < n such that

N∑
i=1

ki(n − ki) = (n2 − 1)(g − 1).

We consider the family of bundles on X

ELMkN
x · · ·ELMk1

x︸ ︷︷ ︸
N times

(In)
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The determinants of the bundles of this family are
N∑

i=1

ki−Nn. The base of this

family is a manifold GN , which decomposes into a tower of Grassmannizations

GN
πN� GN−1

� · · · π1� G1 = Gn−1
k1

.

Again we get a rational morphism ϕ : GN
� Sn,d, where d =

N∑
i=1

ki.

It is easy to see that we can find number ki such that

N∑
i=1

ki(n − ki) = (n2 − 1)(g − 1) and
N∑

i=1

ki ≡ (any residue)(mod n) .

Hence the rationality of Sn,d follows for any n and d.
For (n, d) = 1 the rationality of Sn,d was proved by Newstead [12].
The variation of the elm’s with a fixed point will appear again in Chapter

V, But meanwhile we turn to the minimal variation and the ”inverse problem”.
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The geometry of the inversion problem

§ 1 Construction of the minimal family.

Let L1 be any one-dimensional bundle on X of degree 1. Then the family
{elmx(L1)}, x ∈ X, is parametrized by the curve X and

1) the mapping ϕ : X � Pic X induced by this family is an embedding;

2) ϕ∗ : H1(X,Z) � H1(Pic X,Z) is an isomorphism;

3) the mapping ϕ solves the inversion problem, that is, the family of bundles
(varϕ)∗(Θ0), where Θ0 is the Poincaré bundle on Pic X, and varϕ) are
all possible variations of ϕ, is universal.

In the many-dimensional case the construction is more complicated, but the
idea is the same. Let E ⊂ E0; then in the family of bundles {elmx(Ex)(E0)}
the determinants change, and by extending each bundle by a one-dimensional
one

0 � elmx(Ex)(E0) � Ẽ � L(x) � 0,

we obtain a family with constant determinant.
But {elmx(Ex)(E0)} is itself an extension (see. (18)):

0 0 0

0 � (E0/E)(−x)

�

� E2

�

� L(x)

�

� 0

0 � elmx(Ex)(E0))

�

� Ẽ

�

� L(x)

�

� 0

0 � E

�

� E

�

� 0

�

0

�

0

�

50
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so that Ẽ is an extension of a constant bundle E and a non-trivial two-
dimensional one.

Only this two-dimensional bundle requires a careful description; inciden-
tally, it solves the inversion problem for two-dimensional bundles .

A bundle on X × X giving a family with a mapping into the classes ϕ :
X � S solving the inversion problem is not unique, from the very concept.
We look for the bundle V on X × X among the symmetric bundles.

Definition 8. A bundle V on X ×X is called symmetric, if i∗V = V ⊗ L,
where i is the involution that interchanges the direct factors, and L is a one-
dimensional bundle.

Definition 9. A bundle V is absolutely symmetric, if i∗V = V .
Consider on X × X the extension

(20) 0 � L(−Δ) � V0
� L(Δ) � 0,

where Δ is divisor of the diagonal on X×X, and the space H1(X×X, L(−2Δ))
giving all such extensions. Let

(21) 0 � − 2Δ � − Δ � − Δ |Δ � 0

be the exact triple of the adjunction and

(22) 0 � ΩX � R1pri(−2Δ) � R1pri(−Δ) � 0

a piece of the exact sequence of the direct image functor relative to the projec-
tion pri on a factor of the direct product.

From
0 � − Δ � OX×X

� OΔ
� 0

and

0 � R0priOX×X
� R0priOΔ

� R1pri(−Δ) � R1pri(OX×X) � 0 ,

OX

�����
OX

�����
it follows that R1pri(−Δ) = R1pri(OX×X) = Ig is the trivial g-dimensional
bundle.

Also it is easy to see that

R1pri(−2Δ) = ΩX ⊕ Ig

and that the direct decomposition

H1(X × X, L(−2Δ)) = H0(X, R1pri(−2Δ)) = H0(X, ΩX) ⊕ H0(X, Ig)

corresponds to the decomposition into the symmetric and antisymmetric sub-
spaces relative to the involution i that interchanges the direct factors in X×X:

H0(X, ΩX) = H0(X × X, L(−2Δ))+, H0(X, Ig) = H0(X × X, L(−2Δ))−.



52 The geometry of moduli of vector bundles

We now choose the trivial two-dimensional bundle I2 ∈ Ig = R1pri(−Δ)
and consider the family of extensions (20) {Vh}, h ∈ P (I2) = P 1, on X × X.
Let ϕ : I2

� H1(X × X, L(−2Δ)) be the corresponding embedding.
The bundle V on X ×X × P 1 giving this family can be represented as the

extension:

(23) 0 � pr∗X×X(L(−Δ)) � V � pr∗X×X(L(−Δ)) ⊗ pr∗P 1τ∗ � 0

where τ is antitautological bundle on P 1, that is, τ = H is the bundle of points
on P 1.

The cocycles giving such extensions, decomposed according to the Künneth
formula:

H1(X × X × P 1, pr∗X×X(L(−2Δ)) ⊗ pr∗P 1τ∗) =

= H1(X×X, L(−2Δ))⊗H0(P 1, τ) = Hom(H0(P 1, τ)∗,H1(X×X, L(−2Δ)) ,

can be interpreted as linear mappings P 1 � P (H1(X × X), L(−2Δ)).
As a cocycle giving (23) we take the embedding ϕ : P (I2) � P (H1(X ×

X, L(−2Δ))).
The family so constructed consists of symmetric inequivalent bundles. We

complete the family as far as the n-dimensional bundles and consider the ex-
tension on X × X × P 1:

(24) 0 � pr∗1 ⊕ M ⊗ pr∗2MIn−3 ⊗ pr∗1M
′ ⊗ pr∗2M

′ � E � V � 0

where M and M ′ are certain one-dimensional bundles chosen so that (24) gives
the symmetric (or antisymmetric) cocycle of deg E congruent to a preassigned
number d modulo n and that the general bundle E|(X×x,p) is stable.

§ 2 The second Chern class.

The resulting bundle can be interpreted as:

1) a family of bundles {E|X×x×p}, on X, parametrized by the ruled surface
X × P 1 (then we have a rational map ϕ : X × P 1 � S);

2) a family of bundles {E|x×X×P 1}, on the ruled surface X×P 1, parametrized
by the curve X.
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We calculate the Künneth component c3,1 of E in (24):

c3,1 ∈ H3(X × P 1,Z) ⊗ H1(X,Z).

From (24) c2(E) = c2(V ), and from (23) c2(V ) = Δ2×P 1+(Δ×P 1)·(X×X×p),
where p is a fixed point of P 1. Hence

(25) c3,1(V ) = (Δ × p) = (Δ × P 1) · (X × X × p).

corollary. The Poincaré bundles Ux on S are all distinct.
For E|(x×X×P 1) = ϕ∗(Ux). But c2(E|(x×X×P 1)) = (x × p) + const, so that

the bundles for different x are distinct. Theorem 2 is now proved.
Proposition 11. (Ramanan [13]) ϕ∗ : H3(S,Z) � H1(X,Z) is an

isomorphism.
proof. Let U be a universal family on X × S and c3,1 ∈ H3(S,Z) ⊗

H1(X,Z). By the duality (H1(X,Z))∗ = H1(X,Z) we can then regard c3,1, as
a homomorphism H1(X) into H3(S). We consider the commutative diagram

(26)

H1(X,Z)
c3,1(U) � H3(S,Z)

X × S

X ×
z }| {

X × P 1

�
1×ϕ

�

H1(X,Z)

1∗

����������
c3,1(E)� H3(P 1 × X,Z)

ϕ∗

�

induced by the equation E = (1 × ϕ)∗U ⊗ L.
We decompose c3,1(E) into the product of c1,1(Δ × P 1) and τ :

H1(X,Z)
c3,1(E) � H3(P 1 × X,Z)

H3(P 1 × X,Z)

τ
�

c 1,1
(Δ×

P 1
)�

where c1,1(P 1×Δ)(γ)[γ′] = [γ � γ′ ·P 1×Δ]P 1×X×X = (γ � γ′)X , and τ is mul-
tiplication by the two-dimensional form of the fibre P 1. Clearly, c1,1(Δ×P 1) is
an isomorphism and τ is an isomorphism, hence c3,1(E) is an isomorphism. We
know that H3(S,Z) (theorem on h∗,1) and H3(P 1 × X,Z) are free Z-modules
of rank 2g. Therefore, it is sufficient to show that ϕ∗ is an epimorphism. But
ϕ∗−1 = c3,1(U) · (c3,1(E))−1. This completes the proof.

corollary. J3(S) ∼= J(X).
corollary. The curve X can be reconstructed uniquely in terms of S.
We return to the beginning of § 1, the mapping ϕ : X ↪→ Pic X, which

solves the inversion problem. For ϕ, the properties 2) and 3) are equivalent.
conjecture. Let X × P 1 ϕ

↪→ Z be a mapping such that

H3((X × P 1),Z) � H3(S,Z)

is an isomorphism. Then the mapping ϕ|X×p0 solves the inversion problem,
that is the family (ϕ|X×p0)

∗(Ux0) is universal (Ux0 is any Poincaré bundle).
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The Narasimhan–Ramanan theorem

§ 1 The double bundle.

In Chapter III, § 2 we defined the operation ELMk
x(V ) from an arbitrary

bundle V on X × T . We now apply it to the universal bundle U on X × S.
Then ELMk

x(U) is a bundle on X ×Gk(Ux), that is, the Grassmannization
of the Poincaré bundle Ux is the base of the new family. The determinant of
the bundles of the resulting family is changed to −(n − k)x.

If n � 3, we can always choose k so that d + k and n are coprime.
If S = Sn,d, let Sk = Sn,d+k. The resulting family defines a rational map

ϕk : Gk(Ux) � Sk.
Proposition 12. If E is a superstable bundle, then ϕ−1

k (E) = Gn−k(Ex).
The proof follows immediately from the inversion formula (13) of Chapter

III, § 1.
Let Gk(Ux) be the maximal open set such that π(Gk(Ux)) is contained in

an open set of superstable bundles and ϕ(Gk(Ux)) in the set of superstable
bundles. Let S̄ = π(Gk(Ux)) and S̄k = ϕπ(Gk(Ux)). Then we have the effect
of a double bundle

(27)

Gk(Ūx)=Gn−k(Ūkx)

S̄
�

S̄k

�

where Ūx = Ux|S̄ and Ūkx = Ukx|S̄k
.

Proposition 13. codimGk(Ux)

(
Gk(Ux) − Gk(Ux)

)
� n2

4 (g − 3).
proof. By definition

codimGk(Ux)

(
Gk(Ux) − Gk(Ux)

)
= codimS

(
S − S̄

)
+ dim Gk �

� n2

4
(g − 2) + k(n − k) � n2

4
(g − 3).

(We have used Proposition 10).

54
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The diagram (27) is called a double bundle. It was first discovered by
Newstead (g = 2, n = 2, [10]).

the inversion theorem. Θπ = Θ∗πk
.

The proof will be given in the next section.
We now show that the Narasimhan–Ramanan theorem follows from this.
Proof of the Narasimhan–Ramanan theorem. We first need a tech-

nical lemma.
Hartogs’ theorem. Let S be a compact non-singular manifold, and

S̄ an open part such that codimS(S − S̄) � m. Then for any sheaf F
Hi(S̄,F) � Hi(S,F) is an isomorphism for i � m − 2.

The proof is not difficult and is in [3].
Hence for i � n2

4 (g − 3) − 2 we obtain

Hi(Gk(Ux), Θπ) = Hi(Ḡk(Ux), Θπ) =

= Hi(Gn−k(Ukx), Θ∗πk
) = Hi(Gn−k(Ukx), Θ∗πk

),

and the Narasimhan–Ramanan theorem follows at once from Proposition 4
(Chapter I, § 2).

§ 2 The inversion theorem.

We consider X × Gk(Ux) and calculate the bundle ELMk
x(U),which gives

this family.

1) Let τU∗x be the antitautological bundle on Gk(Ux) and

π∗(Ux)
α� τU∗x

� 0

be the epimorphism G.e.t. (Chapter I, § 2).

We identify τU∗x with a skyscraper over x×Gk(Ux) in the direct product
X × Gk(Ux). Then α uniquely determines the epimorphism

(1 × π)∗(U)
α̃� pr∗GτU∗x ⊗ pr∗XOx

� 0,

α̃|x×Gk
= α.

2) The kernel of α̃ is the required bundle ELMk
x(U), that is, there is an exact

triple

(28) 0 � ELMk
x(U)

i� (1 × π)∗(U)
α̃� pr∗GτUx ⊗Ox

� 0,

the restriction of which to (X, g) is a.e.t.

0 � elmk
x(g)(Us) � Us

� On−k
x

� 0
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We restrict (28) to (x,Gk(Ux)), that is, we multiply it by the torsion sheaf
pr∗XOx:

(29)
0 � TorOX×G

1 (τUx , pr∗XOx) � (ELMk
x)x

� π∗Ux
α� τUx

� 0

As a resolution of pr∗XOx we use triple

0 � pr∗XL(−x) � OX×G
� pr∗XOx

� 0.

Hence we have an exact quadruple

0 � TorOX×G

1 (τUx
, pr∗XOx) � τUx

� τUx
� τUx

� 0

Tor0

�����
Tor0

�����
Tor0

�����
which splits into two isomorphisms:

0 � TorOX×G

1 (pr∗GτU∗x , pr∗XOx) � τU∗x
� 0 � τU∗x

� τU∗x
� 0.

(29) can now be rewritten as:

(30) 0 � τU∗x
� (ELMk

x)x
� π∗Ux

α� τU∗x
� 0,

and (ELMk
x)x can be represented as an extension

(31) 0 � τU∗x
� (ELMk

x)x
� τU∗x

� 0,

since ker α is the tautological extension.
We now consider Gn−k(Ukx) πk� Sk and its first Grassmannisation exact

triple:

(32) 0 � τ∗Ukx
� π∗kUkx

α� τU∗kx

� 0.

Fundamental assertion. The extensions (31) and (32) are proportional
on Gk(Ux) = Gn−k(Ukx) that is, there is a one-dimensional bundle L̄ such that

(31) ⊗ L = (32).

In fact, ELMk
x|X×Ḡ = π∗k(Uk) ⊗ pr∗SL∗, therefore (ELMk

x)x = π∗k(Ūk) ⊗ L∗.
Here from the geometric argument itself (see the inversion formula (13) of
Chapter III) the fibres of the subbundle τUx

in (ELMk
x)x are the kernels of

elementary transformations.
It follows that

0 � τU∗x ⊗ L � (ELMk
x)x ⊗ L � τ∗Ux

⊗ L � 0

0 � τ∗Ukx

����
� π∗kUkx

�����
� τU∗kx

�����
� 0.
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Thus,
τ∗U∗x ⊗ τ∗Ux

== τUkx
⊗ τU∗kx

Θ∗π

��
======== Θπk

,

���
according to formula (2) in Chapter I, § 2. This proves the inversion theorem.

As we wanted to exemplify the method, we did not pay attention to ob-
taining the best-possible bounds (such as Proposition 10). The Narasimhan–
Ramanan theorem is, in fact, true for n = 2, g � 2 [8], and not only for n � 3,
g � 4, as our bounds show].

In their own proof of the theorem in [8], the authors apply a ”two-level”
construction

ELMx(ELM∗
x(U))

and go back to S.
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On the classification of rank 2 vector
bundles over an algebraic curve of
arbitrary genus

In this paper rank 2 algebraic bundles over an algebraic curve X of any
genus g are classified. To do this we construct a category of quasi bun-
dles and a functor (the rigidity functor) from this category to the category
of rank 2 bundles, mapping finitely many (� 2g) quasi-bundles to the
same bundle. For this category of quasi-bundles a universal problem of
the Grothendick type is solved and the corresponding moduli space is com-
puted.

Izv. AN SSSR. Ser. Math. (1964) 28:1 p. 21–52.



Introduction.

The present paper contains an attempt to classify vector bundles over alge-
braic curve of arbitrary genus. Known results, established in the classification
problem, are contained in papers of Atiyah [2] and Grothendick [6]. In the first
paper the classification over an elliptic curve is given, in the second one the
classification over a rational curve. In the present paper one studies rank 2
vector bundles over a curve X of arbitrary genus. For this we start from the
following formulation of the classification problem. Construction of a ”classify-
ing space” or a universal family of bundles would be the best (ideal) solution.
This is understood as a family of rank 2 bundles over curve X, parameterised
by an algebraic variety B (so as a rank 2 bundle B over X ×B), such that any
family of rank 2 bundles E � E, parameterised by an algebraic variety E,
is uniquely represented in the form E = f∗(B|f(E)), where f : E � B is a
regular map. In other words the situation can be described if one says that the
functor F , attaching to any algebraic variety E the set of all families of rank 2
bundles over X, parameterised by E, is representable (see [4]).

But really this functor F is not representable and, hence, such a universal
family B does not exist. However in the present paper one proves that the
universal family itself does exist if one changes the notion of bundle itself. For
this one introduces the notion of exceptional line sub-bundle of rank 2 bundle
(§1). One proves that any rank 2 bundle over a curve X of genus g has at most
2g exceptional sub-bundles. A new object, consisting of a rank 2 bundle and
some of its exceptional sub-bundle, is called a quasi-bundle. One establishes
that for the quasi-bundles a universal family does exist whose base B is the
union of finitely many algebraic varieties. Each of these varieties corresponds
to integer values of four invariants of the bundle: n(E), k(E), d(E) and α(E).

Among bases of universal families K(n, k, d, α) � K(n, k, d, α), which
correspond to bundles with given values of the invariants, K(g, 1, 0, 0) and
K(g − 1, 0, 1, 0) have the maximal dimension.

The quasi-projective variety K(g, 1, 0, 0), describing the main class of quasi-
bundles with fixed determinant of even degree, is an open subset of the projec-
tive bundle, associated with vector bundle I3g−4 ⊕ T 3(X) over X, where I3g−4
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is (3g− 4)-dimensional trivial bundle over X, T (X) is the tangent bundle of X
and T 3(X) is the third tensor power of T (X).

The quasi-projective variety K(g−1, 0, 1, 0), which describes the main class
of quasi-bundles with fixed determinant of odd degree, is a (3g−3)-dimensional
projective space without a subvariety. Further, the variety K(g − 1, 0, 1, 0) is
the moduli space of the main class of bundles (not only quasi-bundles) with
invariants (g − 1, 0, 1, 0).

One has to remark that classification of rank 2 bundles with trivial de-
terminant is equivalent to bi-regular classification of ruled surfaces. The last
statement follows from the paper of Nagata [7]. Evidently, it would be inter-
esting to translate the present paper into the geometrical language of paper
[7].

The author uses the case to express his deep gratitude to I.R. Shafarevich
for his advice, remarks and help, given during the writing time of this paper.

Everywhere in what follows the main field k is an algebraically closed field
of characteristics �= 2.

The base of the bundles is a nonsingular complete algebraic curve X of
arbitrary rank g.

The main notation is the same as in the paper [2]. The symbol E denotes
the sheaf of section germs of the bundle E.

Divisors are denoted by Greek letters. L(η) denotes the line bundle with
divisor η; η(L) denotes the divisor of line bundle L; Ls is the line bundle,
defined by section s; ηs is the zero divisor of section s; L(η) is the space of
functions, comparable with η; |L| is the linear system |η(L)|.



chapter 1

Invariants of bundles

The aim of this chapter is to show that for any rank 2 bundle there exists
a finite number of line sub-bundles, which possess two properties: the height
minimality and exceptionality. Two subsequent paragraphs are devoted to the
study of these properties.

§ 1 Height.

Every bundle over an algebraic curve is reducible, so it has a line sub-bundle;
possibly more than one such sub-bundle. Let us study which line sub-bundles
a given bundle E could contain.

Definition 1. The height of a divisor ξ with respect to a point D ∈ X
is the minimal integer number n such that ξDn ∼ η, where η � 1 so it is an
effective divisor. The height of a divisor ξ is denoted as hD(ξ). As the height
of a line bundle L(η) one takes hD(ξ).

In what follows we deal only with the height with respect to a permanently
fixed point D, which is not a Weierstrass point.

Remark 1. It is not hard to see that hD(ξ) is an invariant of the equivalence
class, and the representation of a divisor ξ in the shape ηD−hD(ξ) uniquely
realizes the choice from each equivalence class.

Indeed, if
ξ ∼ ηD−h(ξ) ∼ η′D−h(ξ),

then η ∼ η′ and hence dimL(η) � 2 and dimL(ηD−1) � 1, from which it
follows ξ ∼ η′′D−h(ξ)+1, and gets a contradiction with the definition of h(ξ).

Definition 2. The index of a divisor ξ is deg η, where ηD−h(ξ) ∼ ξ. The
index is denoted as k(ξ).

It is not hard to see that if deg ξ = n then h(ξ) � g − n.
Lemma 1. Let J be the Jacobian variety of a curve X. Then the set of all

σ ∈ J such that h(σ) � i, (0 � i � g), is an i-dimensional subvariety of J (we
denote it as Gi).

Proof. Indeed, let Sg(X) be the g-th symmetric product of the curve X,
represented by divisors of the shape c1 . . . cgD

−g and let φ : Sg(X) � J
be the canonical map, identifying equivalent divisors. Consider the variety
Si(X) ⊂ Sg(X) consisting of divisors of the shape c1 . . . ciD

−i. The Variety
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φ(Si(X)) has dimension i. The set of exceptional divisors in Si(X) is a sub-
variety and it is proper if there exists at least one non special divisor. Such
a divisor, for example, is given by the i-th power of any point which is not
a Weierstrass point. The variety φ(Si(X)) consists of divisors of height � i
and only of such divisors. In analogy with the Poincare divisor the subvariety
φ(Si(X)) of the Jacobian is called the i-dimensional Poincare cycle.

Lemma 2. Let Jk be the homogeneous space of classes of divisors of degree
k. Then the subvariety Gk,i = {σ ∈ Jk, h(σ) � i} is transferred to the (i + k)-
dimensional Poincare cycle under the natural map Jk

� J .
Proof. The map ψ : I � Ik, ψ(σ) = σ ·Dk transfers Gi+k to Gk,i. Then

our statement follows from this fact and Lemma 1.
Remark 2. It follows from Remark 1 that Gk,i/Gk,i−1 is bi-regular equiva-

lent to Sk−i(X), where S̃n(X) = Sn(X)−Sn and Sn(X) is the n-th symmetric
power of the curve X, while

Sn = (D · Sn−1(X)) ∪ {σ ∈ Sn(X), dimL(D) > 1}.
Definition 3. The height of a bundle E is min

L⊂E
h(L) taken over all possible

line sub-bundles L. The height of a bundle E is denoted h(E).
In other words, h(E) is an integer number, such that

(1)
dim H0

(
X, E ⊗ L

(
Dh(E)−1

))
= 0, dim H0

(
X, E ⊗ L

(
Dh(E)

))
= i > 0.

In the set of all sub-bundles of the bundle E we distinguish the subset Sph0(E)
of all sub-bundles of minimal height. The next lemma shows that Sph0(E)
consists of either a single point or the points passing through a projective line
(see §2).

Lemma 3. In formula (1) one has 1 � i � 2.
Proof. Assume, that i � 3. Let us choose a basis

s1, . . . , si ∈ Γ
(
X, E ⊗ L

(
Dh(E)

))
.

Since the fiber of E has dimension 2, there exists a linear combination

s =
i∑

j=1

αjsj ,

such that s(D) = 0, so there is an effective sub-bundle with a divisor, containing
D. But in this case

dim H0
(
X, E ⊗ L

(
Dh(E)−1

))
> 0,

which contradicts the first condition from the definition of h(E).
Definition 4. Let us denote by c(E) the divisor which is the greatest

common divisor for all divisors of sections of the bundle E. In other words
c(E) denotes the divisor of common zeros of all sections of the bundle E.



64 On the classification of rank 2 vector bundles. . .

Each section s ∈ Γ(X, E) defines some sub-bundle Ls of the bundle E (see
[2]) and Lαs = Ls (α �= 0).

Consider the space Γ(E) = H0(X, E) and the corresponding projective
space P(Γ(E)). It’s clear that any Ls � L(c(E)) (the symbol L � M means
that L⊗M is equivalent to an effective line bundle or, equivalently, that there
exists a nontrivial homomorphism M � L).

Let L and L′ be different line sub-bundles of the bundle E.
Definition 5. Consider the set of points Pi of our base X, in which L and

L′ coincide. Take the product of these as divisors. The resulting divisor we will
call the divisor - support of the intersection L and L′ and denote it by ξ(L,L′).
It is clear that ξ(L,L′) � 1. The multiplicities for the points which one takes
are defined by Lemma 5.

For complete correctness of the definition we need to show that the set of
points from our base X, over which L and L′ coincide, is finite (see Lemma 5).

Obviously, if s, s′ ∈ Γ(E) define sub-bundles Ls and Ls′ respectively then
P ∈ ξ(Ls, Ls′) if and only if

s(P) = αs′(P), α ∈ k, α �= 0.

Lemma 4. If ξ(L,L′) = 0, i.e. L and L′ do not intersect each other, then
E = L ⊕ L′.

The Lemma is obvious.
Lemma 5. Any distinct sub-bundles L and L′ of the bundle E coincide

over finitely many points. At the same time

(2) ξ(L,L′) ∈ |L−1 ⊗ (L′)−1 ⊗ det E|,

where |M | denotes the complete linear system of effective divisors, which are
equivalent to a given divisor, defining M .

Proof. We have the following diagram, where the top line is exact:

(3)

0 � L
i� E

j� L∗ ⊗ det E � 0

L′

i′
�

ji
′

�

0

�

The homomorphism ji′ vanishes on the intersection of L and L′ and is iden-
tically zero if and only if L = L′. This homomorphism is a section of the
sheaf

Hom(L′, L∗ ⊗ det E) = (L′)∗ ⊗ L∗ ⊗ det E,

and the zero-set of this section is formed by the points, in which L and L′

coincide.
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Let s and s′ ∈ Γ(E) and Ls �= Ls′ .
Lemma 6. ξ(Lαs+α′s′ , Lβs+β′s′) = ξ(Ls, Ls′) for all except a finite number

of pairs (α, α′), (β, β′).
This Lemma follows directly from definition 5.
Denote the divisor of a section s by the symbol ηs. Let s, s′ ∈ Γ(E) and

Ls �= Ls′ . Then it is easy to check the following statement.
Lemma 7. ηαs+α′s′ξ(Lαs+α′s′ , Lβs+β′s′)ηβs+β′s′ = ηsξ(Ls, Ls′)ηs′ for any

(α, α′) and (β, β′).
Thus if s, s′, s′′ and s′′′ lie on one line in P(Γ(E)) then

ηsξ(Ls, Ls′)ηs′ = ηs′′ξ(Ls′′ , Ls′′′)η
′′′

.

Due to Lemma 5 the following important relationship occurs:

(4) ηsξ(Ls, Ls′)ηs′ ∈ |det E|.
Corollary 1. If a non-decomposable bundle E with detE = L(Dd), d =

0, 1, admits a sub-bundle L with h(L) �
[

g−d
2

]
, where [α] is the integer part

of number α, then h(L) = h(E) and Sph(E)(E) is a single point.
Proof. All sub-bundles with h(L) � n are defined by sections of the

bundle E ⊗ L(Dn). According to (2), for the existence of at least two such
sub-bundles one needs that |det E ⊗ L2(Dn)| should contain at least a point.
But if n �

[
g−d
2

]
then

|det E ⊗ L(D2n)| = |Dk|, k � g.

And, since D is not a Weierstrass point, one deduces that |D| is empty.
Corollary 2. If E is irreducible and contains at least two effective sub-

bundles L and L′ then either the degree of L or the degree of L′ is less than[
deg E−1

2

]
. In other words, deg c(E) �

[
deg E−1

2

]
.

These statements easily follow from Lemma 5 and formula (4).
Let us apply now the results obtained to bundles with fixed determinant

L(Dd), d = 0, 1.
Lemma 8. h(E) � g − d.
Proof. Indeed, according to the Riemann–Roch theorem (see [2])

dim H0(X, B) � deg B − r(1 − g),

where r is the dimension of the fiber (in our case r = 2). Let

B = E ⊗ L(Dn);

then
deg B = d + 2n,

so if d + 2n + 2 − 2g > 0, then n � h(E). This gives the statement of the
lemma.
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§ 2 Exceptional sub-bundles.

Denote by the symbol Sp(E) the set of line sub-bundles of a bundle E and
call it the spectrum of the bundle. It is quite natural to try to introduce some
algebraic structure on this set. The set Sp(E) is stratified by the heights of line
sub-bundles. Denote by Spn(E) the set of sub-bundles of heights � n. Each
element L ∈ Spn(E) is defined by a section sL ∈ Γ(E ⊗ L(Dn)) such that

αsL = s′L, α �= 0,

so the proportional sections define the same sub-bundle. Consider the space
Γ(E ⊗L(Dn)⊗L∗(c(E ⊗L(Dn))) and the corresponding projective space Pn.
We have a map

Pn
Sn� Spn(E),

and Sn is a map onto Spn(E). If this map is one–to–one then one introduces
the structure of a projective space on Spn(E).

Definition 6. A component Spm(E) is called regular if the map Sm is
one–to–one.

It was proven in §1 that at least one regular component in Sp(E) does exist,
namely the one is given by Sph(E)(E).

Regular components are projective spaces.
On the other hands, it is clear that the component Spn(E), n > h(E) + g,

is irregular.
Let Nn be the set of sections of any bundle E which have zeros and Mn be

the set of sections possessing Γ(X, Ls) � 2. Obviously, Nn ⊃ Mn.
The subsequent proposition proves that Nn is a proper algebraic subvariety

of the space Pn.
Proposition 1. Let E be a bundle such that Γ(E) � s0, Ls0

∼= 1. Then
the set N of such s for which Ls > Ls0 , forms a proper homogeneous algebraic
subvariety of the space Γ(E).

Proof. It’s sufficient to consider the kernel of the map of two fibered
spaces:

(4’) 0 � N̄ � V α� E,

where V = Γ(E) × X and the map α sends each section to its value at the
point of base (see (2)). It’s clear that

N = projΓ(E)(N̄),

where projΓ(E) denotes the projection of variety V to Γ(E). The properness
of the subvariety N follows from the existence of s0 �∈ N .

Denote as χ(E) the set of equivalence classes of set Sp(E) and as φ the map
Sp(E)

φ� χ(E), identifying equivalent line bundles.
Corollary 1. Either φ−1(ζ) consists of a single point or it is a projective

space without a subvariety, i.e. it consists of infinitely many points.
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It is sufficient to apply Proposition 1 to E ⊗ L∗(ζ) which gives us the
statement of the corollary.

Definition 7. Elements of the set Sp(E) such that φ−1(φ(L)) = L, i.e the
ones which are uniquely defined by the equivalence classes, are called excep-
tional elements of the spectrum or exceptional sub-bundles.

The following obvious proposition holds:
Proposition 2. A pair (L,E), where L is an exceptional sub-bundle of

E, uniquely determines a point h ∈ P(H1(X, L2 ⊗ det E∗) and is uniquely
determined by such a point.

The above proposition is a well-known statement about extensions of the
form

(5) 0 � L � E � L∗ ⊗ det E � 0

(see [2] and [3]).
Thus, if we prove the existence of the exceptional sub-bundles, then the clas-

sification problem for the bundles would be reduced to finding some canonical
exceptional sub-bundles and solving the extension problem.

Let us prove first of all that for each bundle the exceptional sub-bundles do
exist. Introduce some invariants of a bundle class:

• h(E) (see Definition 3).

• L
(
c
(
E ⊗ Dh(E)

))
= L(E) (clearly dim Γ(L(E)) = 1).

• If dim Γ
(
E ⊗ L(Dh(E))

)
= 2 then put

ξ
(
L
(
c (E ⊗ L(Dh(E)))

)
, L′
(
c(E) ⊗ L(Dh(E))

))
= ξ(E) ,

where L and L′ are distinct sub-bundles of E. If dim Γ
(
E⊗L(Dh(E))

)
= 1

then put ξ(E) = X.

It is not hard to prove the correctness of the definition for these invariants; we
prove only the correctness of the definition for ξ(E). Indeed,
dim Γ

(
E⊗L(Dh(E))

)
equals either 1 or 2 (Lemma 3). If dim Γ

(
E⊗L(Dh(E))

)
=

2 then the correctness of the definition for ξ(E) follows from Lemma 6.
The following theorem is the main one for the present paper. Our idea of

the classification is based on it.
Theorem 1.
I. Any non-decomposable bundle E has an exceptional sub-bundle.
II. If ξ(E) = X, then L(E) is an exceptional sub-bundle.
III. If ξ(E) �= X then there exist only a finite number N of exceptional

sub-bundles of the minimal height. Let L(ηiD
h(E)), i = 1, . . . , N , be such

sub-bundles. Then:
(1) N � 2h(E) − 2 deg L(E) + deg E � 2g;
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(2) dimL(ηi) = 1, i = 1, . . . , N , where L(η) is the space of the functions
over our curve X, comparable with divisor η;

(3) (ηi, ηj) = 1, i �= j, where (ηi, ηj) is the greatest common divisor of ηi

and ηj ;

(4)
N∏

i=1

ηi = ξ(E).

Proof. It is clear that all sub-bundles of the minimal height are defined
by sections of the bundle B = E⊗L(Dh(E)). According to Lemma 3 dim Γ(B)
equals either 1 or 2. If the first case occurs, then L(E) is the unique sub-bundle
of the minimal height and hence is an exceptional sub-bundle.

If the second case takes place, let us take a basis s1, s2 in Γ(B) such that

Ls1
∼= Ls2

∼= L(E).

Obviously, dim Γ(L(E)) = 1 and therefore if

Ls = Ls′ , s, s′ ∈ Γ(B)

then s = αs′, α �= 0. The sections s1 and s2 are linearly dependent over points,
contained in the divisor

ξ(E) = P1 . . .Pm ∈
∣∣∣det E ⊗ L2(Dh(E)) ⊗ L−2(E)

∣∣∣
(according to Lemma 5). Let αi be elements of the field k such that

s1(Pi) = αis2(Pi).

Then the vector {αi} is an invariant of the extension class, and the sub-bundles
Li = Ls1−αis2 are the desired ones. The properties (1) — (4) follow from this
arguments.

The next two lemmas are corollaries of our general considerations for the
concrete case when det E = L(Dd) where d = 0 or 1.

Lemma 9. If L ∈ E and deg L > 0 then L is an exceptional sub-bundle.
If d = 0 so det E ∼= 1, L ⊂ E and deg L = 0, then either L is an exceptional
sub-bundle or L2 = 1 and E = L ⊕ L.

Proof. If E ⊃ L′, L′ ∼= L, then according to Lemma 5 the space
|L−2 ⊗ det E| is not empty. From this point the statement of the lemma
obviously follows.

Lemma 10. If E is non-decomposable and L ⊂ E then deg L � g − 1.
Proof. Indeed, there is an extension (5) where detE = L(Dd). Due to

the duality

dim H1(X, L2 ⊗ L(D−d) = dimH0(X, K ⊗ L−2 ⊗ L(Dd))

and, if deg L � g, then

dim H1(X, L2 ⊗ L(D−d)) = 0,
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since deg K − 2 deg L + d < 0. Therefore

E = (L ⊕ L ⊗ L(Dd)).

§ 3 Quasi-bundles.

Theorem 1 makes it possible to reduce the classification of bundles to the
classification of extensions. When classifying bundles we have to fix some
invariants. First of all, one fixes the determinant of the bundles so one considers
the category of bundles with fixed determinant C(L). Obviously, in the case of
rank 2 bundles it is sufficient to consider two categories C(d) where d = 0 or
1, and detE = L(Dd) if E ∈ C(d). The category of bundles with determinant
L of even degree is derived from C(0) by the multiplication of each bundle on√

L where
√

L denotes one from two possible bundles M such that M2 = L.
Analogously, one gets the category of bundles with any odd determinant from
C(1). In all what follows the determinant is fixed.

Statement I of Theorem 1 in Chapter 1, where one describes the method
of computations for exceptional bundles, and Proposition 2 in §2 give us the
possibility to classify all bundles from the category C(d, L) — the bundles with
a fixed exceptional sub-bundle L. However, doing this we fix some continuous
invariant and this is undesirable.

Statements II and III of Theorem 1 give us the possibility to classify all
bundles up to a finite number in the category C(d, n, k, α) where (d, n, k, α)
are integer valued bounded invariants (so the domain of values for d, n, k, α is
just a finite set). To make the expression ”up to a finite number” more precise
we have to introduce the following notion.

Definition 8. An extension is a pair 0 � L � E where L is a fixed
sub-bundle of E.

The set of extensions form a category EC, in which the morphisms are
defined by commutative diagram

0 � L � E

0 � L′
�

� E′
�

Each extension (l, E) has the following integer valued invariants: deg detE,
h(L), deg L + h(L); moreover, in the future we will introduce once more im-
portant integer valued invariant, α(L,E), whose definition is placed below (see
Chapter II).

The symbol EC(n, k, d, α) denotes the category of extensions which consists
of pairs 0 � L � E such that E ⊂ C(d) so det E = L(Dd), h(L) =
n, k(L) = k and α(L,E) = α.
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Definition 9. An extension 0 � L � E is called a quasi-bundle if L
is an exceptional sub-bundle of the minimal height.

It is obvious that quasi-bundles form a subcategory in the category EC.
This subcategory is denoted by QS. The subcategory of quasi-bundles for the
category EC(n, k, d, α) is denoted as QC(n, k, d, α). It follows from statements
II and III of Theorem 1 that, although two quasi-bundles with equivalent rank
2 bundles could be non isomorphic in the category QC, one has only a finite
number of such quasi-bundles (� 2g).

Definition 10. A family of extensions is an algebraic family of rank 2
bundles E ρ� E and its subfamily of line bundles L ρ′� E such that

0 � (ρ′)−1(e) � ρ−1(e)

is an extension for each e ∈ E.
A family of quasi-bundles is a family of extensions

(L, E)
(ρ′,ρ)� E

such that 0 � (ρ′)−1(e) � ρ−1(e) is a quasi-bundle.
Let Var be the category of algebraic varieties and F : Var � Ens is a

functor to the category of sets which sends each variety V to the set of families
of rank 2 extensions of the type (n, k, d, α) with the base V . We will prove that
F is representable so there exists a family

E(n, k, d, α)
ρ′� E(n, k, d, α),

such that
F (V ) = Hom(V,E(n, k, d, α))

(see [4]).
On the other hand, we will prove (Chapter III), that the subset M of the

base E(n, k, d, α) of this universal family, consisting of non quasi-bundles, is a
proper algebraic subvariety E(n, k, d, α). It follows that the family
E(n, k, d, α) � (E(n, k, d, α) − M), given by the restriction of E(n, k, d, α)
to E(n, k, d, α)−M, belongs to the category of families of quasi-bundles and is
the universal object for the corresponding universal problem in this category.
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Construction of ”universal” families and solution of the universal
problem for the families of extensions.

§ 1 Matrix divisors.

An algebraic bundle over a variety V is defined by a covering {Ui} of the
variety V and matrices with functional entries φi,j where the functions are
regular and regularly invertible on Uij = Ui ∩ Uj , satisfying the relationship
φijφjkφki = 1. In other words, a bundle is defined by a 1-dimensional cocycle
of the sheaf GL(n,O) — the sheaf of matrices over the sheaf of the germs of
regular functions. The sheaf GL(n,O) is a subsheaf of the sheaf GL(n, R) —
the sheaf of matrices over the sheaf of the germs of rational functions. Hence
every 1-dimensional cocycle with coefficients in GL(n,O) can be considered
as a 1-dimensional cocycle with coefficients in GL(n, R). But every cocycle
with coefficients in the sheaf GL(n, R) splits so it is the coboundary of a zero
dimensional cochain {fi} ∈ C0(GL(n, R), {Ui}).

For us it is more convenient to define a bundle using the correspond-
ing 0-dimensional cochain {fi} ∈ C0(GL(n, R), {Ui}) such that δ({fi}) ∈
Z1(GL(n,O), {Ui}).

Definition 11. A 0-dimensional cochain {fi} of the sheaf GL(n, R), the
boundary of which is a 1-dimensional cocycle {fif

−1
j } of the sheaf GL(n,O),

is called a matrix divisor.
Let us define an equivalence relation for matrix divisor such that the equiv-

alence classes of matrix divisors would coincide with the equivalence classes of
the bundles.

Definition 12. Matrix divisors {fi} and {f ′i} are equivalent if there ex-
ists a 0-dimensional cochain {ai} of the sheaf GL(n,O) and a matrix c ∈
H0(V, GL(n, R)) such that fi = aif

′
ic on each Ui.

If the base variety V is an algebraic curve then the notion of matrix divisor
is equivalent to the following one.

Definition 13. Let us assign to each point x of the curve X the element
Ex ∈ GL(n, R)x, i.e. the matrix of the germs of rational functions at this point
x such, that only for a finite number of points Ex �= En, where En is the

71
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identity matrix. This assingment is called a matrix divisor on the curve. Two
matrix divisors E and E′ are equivalent if at each point x ∈ X

Ex = AxE′xF,

where Ax is a regularly invertible matrix of the germs of regular functions at
x and F is a functional matrix — the same for all x.

Exactly in this form algebraic bundles over a curve appeared first time in
the paper of A. Weil [9].

It’s not hard to check that a matrix divisor over a curve defines a matrix
divisor in the sense of Definition 11.

We will use the notion of matrix divisor over a curve since it simplifies the
computations.

Let E be a rank 2 bundle over a variety V and suppose that E admits a
line sub-bundle L, defined by a divisor D. Then the following exact sequence
takes place:

0 � L � E � L∗ ⊗ det E � 0,

and E is uniquely determined by a 1 - dimensional cocycle with coefficients in

Hom(L∗ ⊗ det E,L) = L2 ⊗ det E∗.

We will use the notion of matrix divisor and for this it is necessary to give a
new interpretation of 1-dimensional cocycle with coefficients in L(D).

To do this let us use the known exact sequence

(6) 0 � Ω � R � R/Ω � 0,

where Ω is the sheaf of germs of regular functions, R is the sheaf of germs of
rational functions and R/Ω is the sheaf of germs of principle parts.

Take the tensor product of (6) with L(D)

(6’) 0 � L(D) � R � R/L(D) � 0

and write down the exact sequence of the triple (6’)

(7) 0 � H0(V,L(D)) � H0(V,R) � H0(V,R/L(D)) �

� H1(V,L(D)) � H1(V,R) .

It is not hard to see that H1(V,R) = 0.
Sections of the sheaf R/L(D) are called the systems of principal parts with

respect to a divisor D. Every such section is defined by a 0-dimensional cochain
c of the sheaf R such that δ(c) ∈ Z1(L(D)). Denote the space of the chains
which possess this property as C

0
(R,D). Obviously,

H0(V,R) = Z0(R) ⊂ C
0
(R,D)
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for every D. Moreover, two co-chains c and c′ define the same section of the
sheaf R/L(D) if and only if c − c′ ∈ C0(L(D)). Thus from the sequence (7) it
follows that

H1(X, L(D)) = C
0
(R,D)/Z0(R) + C0(L(D)) .

In what follows cocycles will be defined in the form of elements from C
0
(R,D).

Lemma 11. Let S be a hyperplane section of V . Then every cocycle from
H1(X, L(D)) has a representative c ∈ C

0
(R,D) of the following form: let {Ui}

be a covering of V and C = {fi}. Then the functions fi have non zero principle
parts only on the divisor S.

Proof. The systems of principle parts {fi} can be regarded as the system
of principle parts on the variety V − S. But since V − S is an affine variety
one has H1(V − S, L(D)) = 0 and, consequently there exists a function f such
that {f − fi} has non zero principle part only on S and {f − fi} ∼ {fi}.

The next paragraph is devoted to the concrete description of all possible
matrix divisors over the curve X.

§ 2 Reduction to the normal form.

Consider all bundles which are nontrivial extensions

0 � L(η · D−n) � E � L(η−1Dn+d) � 0.

According to [3], they form the projective space P (H1(X, L(η2 · D−2n−d))).
Write down explicitly the corresponding matrix divisors. To do this first let us
compute H1(X, E(η2 · D−2n−d)). By the definition

H1(X, E(D−2n−dη2)) = R(X)/R(D−2n−dη2) + k(X),

where R(X) is the space of distributions in the Shevally sense over the curve
X, R(D−2n−dη2) — the space of distributions, comparable with the divisor
D−2n−dη2, and k(X) is the field of functions over the curve X (see, f.e., [8]).

Lemma 12. For any point P ∈ X and any integer number n there
is a number m such that there exists a function f(n,P) ∈ L(PnDm) with
νP(f(n,P)) = n, where νP(f) is the order of the function at P.

Proof. Let us choose m such that n+m � 2g. Then by the Riemann–Roch
theorem

dimL(Pn−1Dm) = n + m − g ,

dimL(PnDm) = n + m − g + 1 .

This proves the lemma.
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Corollary 1. In every class R(X)/R(η2D−2n−d) + k(X) it is possible to

choose a representative r such that rP = 0 if P �= D and rD =
2n+d−1∑
−m

αiτ
i
D,

where τD is some fixed once and for all local parameter.
Proof. Any distribution r is not comparable with 0 modulo R(η2D−2n−d)

only in a finite set of points P1, . . . ,Pl. Hence according to Lemma 12 we can
choose such a linear combination φ of functions of the shape f(Pi, k) that

rPi
+ φ = 0 mod R(η2D−2n−d).

Thus in any class from R(X)/R(η2D−2n−d) + k(X) one can choose such a

representative r that rP = 0 if P �= D and rD =
2n+d−1∑
−m

αiτ
i
D, and since D is not

a Weierstrass point then for any n > g there exists a function f(n, D) ∈ L(Dn)
such that

νD(f(n, D)) = −n.

Hence it is always possible to choose such r that

rD =
2n+d−1∑
−g

αiτ
i
D.

Definition 14. Fix a local parameter τD = τ at a point D ∈ X. Then for

any function f =
∞∑
−k

αiτ
i one has

[f ]n =
n−1∑
−k

αiτ
i.

The symbol [L(ξ)]n denotes the linear space of all [f ]n, f ∈ L(ξ).
Lemma 13. [L(ξ)]n = L(ξ)/L(ξD−n−νD(ξ)).
Proof. Associate to any function f ∈ L(ξ) the segment [f ]n of the power

series. This map is linear. For a function f ∈ L(ξ) [f ]n = 0 if and only if
f ∈ L(ξD−n−νD(ξ)).

Let us finish the computation of H1(X, L(D−2n−dη2)).
Lemma 14. Let Rn(τ) be the linear subspace of segments of the power

series of the form
2n+d−1∑
−g

αiτ
i. Denote H1(X, L(D−2n−dη2)) as H(n, η). Then

the following exact sequence exists
(8)

0 � L(η2D−2n−d) i� L(Dgη2) p� Rn(τ) j� H(n, η) � 0,

where p(f) = [f ].
Proof. According to Corollary 1 of Lemma 12, in each class

R(X)/R(D−2n−dη2) + k(X)
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we can choose as the representative some vector from Rn(τ). Two vectors h
and h′ would be cohomologous if and only if

h − h′ = [f ]D2n+d, f ∈ L(Dgη2).

Thus we get the desired exact sequence (8). We choose a section j′ of this
sequence and identify H(n, η) with j′(H(n, η)). Elements of the space H(n, η)
will be denoted by

h =
m∑

i=1

αiβi(τ),

where {βi(τ)} is a basis of the space j′(H(n, η)).
Theorem 2. Each extension class of the triple (7) can be realized by a

matrix divisor of the following shape:
at a point D (

τ−n 0
0 τn+d

)(
1 h(τ)
0 1

)
,

at a point Ci ∈ η(i = 1, . . . , k; η = C1 . . . Ck)

(9)
(

τCi
0

0 τ−1
Ci

)
,

at the remaining points (
1 0
0 1

)
,

where h(τ) ∈ H(n, η) and τCi
is a local parameter at the point Ci.

Proof. It was proven in [3] that any element of (7) has the form(
AP 0
0 BP

)(
1 hP
0 1

)
at each point P ∈ X where AP and BP are the distributions of the divisors
ηD−n and η−1Dn+d at the point P and hP is the germ of the cocycle

h ∈ H1(X, Hom(L(η−1Dn+d), L(ηD−n)))

at the point P. Using Lemma 14, we get the statement of our lemma.
We denote matrix divisors of the shape (9) as Eh(n, η).
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§ 3 Algebraic structure.

Extensions with the fixed sub-bundle L(ηD−n) were classified in § 2. The
set of the extension classes P (H(n, η)) has the structure of a projective space.

Consider the set

E(n, k, d) =
⋃

η∈S̃k(X)

(H(n, η)).

Recall that S̃k(X) is bi-regular equivalent to the variety of the classes of divisors
of height n and index k:

S̃k(X) = Sk(X) − Sk,

where Sk(X) is the k-th symmetric power of X, and Sk = D · Sk−1(X)∪ {σ ∈
Sk(X), dimL(σ) > 1} (see Chapter 1, §1).

We would like to endow E(n, k, d) with the structure of an algebraic variety
compatible with the structure of H(n, η) for every η and S̃k(X). Namely, we
will endow E(n, k, d) with the structure of an algebraic variety for which there
exists a morphism π(n, k, d) : E(n, k, d) � S̃k(X) such that the triple

(E(n, k, d), π, S̃k(X))

would be a locally trivial algebraic bundle and

π−1(n, k, d)(η) = H(n, η).

Remark. It is not hard to see that such an algebraic structure is defined
uniquely so for any other structure E′(n, k, d) possessing the same properties
the set E(n, k, d) should be bi-regular equivalent to E′(n, k, d) as an algebraic
bundle over S̃k(X).

Consider the exact sequence (8):

0 � L(η2D−2n) � L(Dgη2)
[ ]� Rn(τ) � H(n, η) � 0 ,

and assume k < n; then L(η2D−2n−d) = 0 and the sequence has the form

(10) 0 � L(Dgη2) � Rn(τ) � H(n, η) � 0 .

We would like to find such bundles L(k), R(k) and H(n, k, d) over S̃k(X) that
there is a following exact sequence

(11) 0 � L(k) � R(k) � H(n, k, d) � 0,

which fiberwise coincides with the sequence (10).
For this we can take Rn(τ) × S̃k(X) as R(n) and it remains just to endow

the set
L(k) =

⋃
η∈S̃k(X)

L(Dgη2)



Chapter 2. § 3 Algebraic structure 77

with the structure of an algebraic bundle over S̃k(X).
Theorem 3. The set L(k) =

⋃
η∈S̃k(X)

L(Dgη2) admits the structure of an

algebraic vector bundle L(k) → S̃k(X) with a fixed inclusion 0 → L(k) i→ R(n),
where R(n) = Rn(τ) × S̃k(X) and locally i = [ ].

Proof. We construct L(k) straight away as a sub-bundle of R(n). Consider

[L(Dgη2)]2n+d

and choose there a basis s1, . . . , s2k+1,

si =
2n+d−1∑
−g

αi
jτ

i.

Obviously,
dimL(Dgη2) = 2k + 1

for all η, since D is not a Weierstrass point. Hence such a basis always exists.
Moreover, there exists a non zero minor μi1,...,i2k+1 of order 2k + 1 in the
matrix ‖αi

j‖. Therefore the space [L(Dgη2)]2n+d could be identified with the
space spanned by {τ i

j}2n+d, j = 1, . . . , 2k + 1.
Consider a map φ : S̃k(X) � PN , where PN is the N -dimensional

projective space, N = C2k+1
g+2n+d defined as follows:

φ(η) = {μi1,...,i2k+1},

where i1, . . . , i2k+1 run through all collections of the numbers −g, . . . , 2n − 1;
in other words, the coordinates of a point φ(η) in the space PN are defined by
all possible minors of order 2k + 1 of the matrix ‖αi

j(η)‖. It is clear, that after
the change of the basis {si} to a new one all the coordinates are multiplied
by the same number, namely by the determinant of the transformation matrix
from the first basis to the second one. Moreover, it is not hard to see that the
map φ is rational. Now if we consider the covering

Ui1,...,i2k+1 = {η ∈ S̃k(X), μi1,...,i2k+1(η) �= 0}

and the transition functions φi1,...,i2k+1,j1,...,j2k+1 , transforming the basis

{τ il}, l = 1, 2, . . . , 2k + 1,

to the basis
{τ jl}, l = 1, 2, . . . , 2k + 1,

then we get the desired bundle over S̃k(X). This bundle is denoted as L(k).
Thus, we have derived the desired exact sequence of bundles

0 � L(k) i� R(n) j� H(n, k, d) � 0.
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Proposition 3. The sequence (11) splits so there exists a section

S : H � R(n)

and R(n) = L(k) ⊕ H(n, k, d). The existence of the section follows from the
fact that

Sk(X)/DSk−1(X)

is an affine variety and hence

H1(S̃k(X), Hom(H,L(k)) = 0.

We fix some section S in the triple (11) and identify H(n, k, d) and S(H(n, k, d)).
Thus, we have proved the following theorem.
Theorem 4. The set E(n, k, d) =

⋃
η∈S̃k(X)

(H(n, η)) admits the structure

of an algebraic variety with the following properties:
(1) there exists a map π:E(n, k, d) � S̃k(X) such that (E(n, k, d), π, S̃k(X))

is a locally trivial algebraic bundle with π−1(η) = H(n, η);
(2) (E(n, k, d), π, S̃k(X)) is a sub-bundle of the bundle R equals to R =

Rn(τ) × S̃k(X) and there exists a projection p : R � E(n, k, d) of the
bundle R to the sub-bundle E(n, k, d).

In the future we will use varieties

RN = S̃k(X) × RN
n (τ),

where

RN
n (τ) =

2n+d−1∑
−N

αiτ
i.

Let us define a canonical map φN : RN
n (τ) � Rn(τ) in the following way:

0 � k i� L(DN ) [ ]� RN
n (τ) φ� Rn(τ) � 0.

The map φ̃N : RN
� R, φ̃(σ, h) = (σ, φ(h)) defines a canonical projection

φ̃ : RN
� R where R is regarded as a sub-bundle of RN .

The varieties RN , R and E(n, k, d) will serve us as the bases of families of
bundles.

Let us study E(g, 1, 0). As will be shown below, this variety has maximal
dimension over all E(n, k, d). We have an exact sequence

(11’) 0 � L(DgC2) � Rg(τ) � H(g, C) � 0.

Proposition 4. Let E be a rank n bundle over X − D. Then E ∼=
In−1 ⊕ det E, where In−1 is rank n − 1 trivial bundle.

Indeed, any bundle over X − D is thin, since X − D is an affine variety.
From this fact, using a well known argument of Atiyah [2] applied to the exact
sequence (4’), one gets the exact sequence

0 � In−1
� E � det E � 0,
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which splits, so E = In−1 ⊕ det E.
Thus, any bundle over X − D is uniquely determined by its determinant.
From the exact sequence (11) it follows that

det H(g) = det∗L(g).

Let us compute detL(g).
Proposition 5. a) Any function from the space L(DgC2) is defined up to

an additive constant by its principal part at the point C;
b) there exists a function, which has a given principal part at C.
Indeed, let φ and φ′ ∈ L(DgC2) have the same principal part at the point

C. Then φ − φ′ ∈ L(Dg) and since D is not a Weierstrass point we have
L(Dg) = k and φ = φ′ + α.

On the other hand, according to the Riemann inequality

dimL(DgC2) � 3, dimL(DgC) � 2,

and since D is not a Weierstrass point

L(DgC) ⊃ L(Dg) = k.

It follows that there exists a function φ with any non zero principal part at C.
Corollary 1. L(g) ∼= M−2

0 , (M−2
0 )x = m−2

x /k, where mx is the maximal
ideal of the local ring Ox at any point x ∈ X − D and k is constants.

Corollary 2. a) There is an exact sequence

0 � M−1
0

� L(g) � M−2
−1

� 0,

where (M−1
0 )x = m−1

x /k, (M−2
−1 )x = m−2

x /m−1
x ;

b) detL(g) = M−3
−2 where (M−3

−2 )x = m−3
x /m−2

x ;
c) (M−3

−2 )∗ = M3
4 , where (M3

4 )x = m3
x/m4

x;
d) detH(n, 1) = T 3, where T is the tangent bundle, Tx = mx/m2

x.
Thus the variety P(E(g, 1, 0)) is completely described.
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§ 4 Construction of universal family.

We are going to construct a family of extensions

E(n, k, d) ρ� E(n, k, d)

such that

(12) ρ−1(η, h) = Eh(n, η).

According to Theorem 4, it is sufficient to construct a family with property
(12) over R = S̃k(X) × Rn(τ) and to consider its restriction to E(n, k, d).

Lemma 15. There exists a family R(n, k, d) ρ� R of rank 2 extensions
such that

ρ−1((η, h)) = Eh(n, η).

Proof. To prove this we have to construct an extension

(13) 0 � L(D) � R(n, k, d) � L(D′) � 0

over X × S̃k(X) × Rn(τ) such that

R(n, k, d)(x,η,h) = Eh(n, η)x.

Consider the following divisors

D̃1 =
k∑

i=2

Δ(X1 × Xi) ×
k∏

j=2,j 	=i

Xj ,

D̃2 = D ×
k∏

i=2

Xi,

in the direct product X1 ×X2 ×· · ·×Xk+1 of X with itself, where Δ(X1 ×Xi)
is the diagonal in X1 × Xi.

We introduce natural maps φ : Xk → S̃k(X) and φ̃ : X × Xk → X × Sk(X),
φ̃(x, y) = (x, φ(y)).

The divisor φ(D̃i) on X × Sk(X) is denoted by Di, i = 1, 2.
Consider the following coverings of our curve X:

U ′1 = X −
p∑

i=1

Pi,

where Pi is the divisor of zeros and poles of the function τ (which is the local
parameter we have chosen above), distinct from D, and

U ′2 = X − C,

where C is an arbitrary point, distinct from Pi and D.
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In this covering the divisor D2 is defined by functions f1 and f2: f1 = τ ,
f2 = 1.

The covering {U ′i}, i = 1, 2 defines the covering {U ′i ×Sk(X)} of the variety
X × Sk(X). This covering is denoted by {U ′i} too.

Let {U ′′i }, i = 1, 2, . . . , m, be a covering of the variety X ×Sk(X) such that
in U ′′i the divisor D1 is given by the equation τ1i = 0 and on U ′′i ∩ U ′′j the
function τ1iτ

−1
1j is regular and regular invertible.

Let {U ′′′ij } be a covering of the variety X × Sk(X) such that

U ′′′ij = U ′i ∩ U ′′j , i = 1, 2, j = 1, . . . ,m.

From this covering one can derive in a natural way a covering of the variety
X × Sk(X) × (Rn(τ)), namely

Uij = U ′′′ij × Rn(τ).

Now we construct an extension of the shape (13), where instead of D and D′

we take the following divisors:

D = (D1 − nD2) × (Rn(τ)),
D′ = (−D1 + (n + d)D2) × (Rn(τ)).

This extension is defined in the form of a matrix divisor. For every element
Uij of the covering, constructed above, we associate the following functional
matrix fij :

f1j =
(

τ1jτ
−n 0

0 τ−1
1j τn+d

)⎛⎝ 1
2n+d−1∑
−g

αiτ
i

0 1

⎞⎠ , f2j =
(

τ1j 0
0 τ−1

1j

)
,

where τ1j , τ and αk are the following functions on X × Sk(X) × Rn(τ):
τ1j(x, η, h) = τ1j(x, η) is the function defined above, τ(x, η, h) = τ(x) and

αk(x, η, h) = αk(h).
It is not hard to check that this matrix cochain is a matrix divisor, i.e. that

on Uij ∩ Ui′j′ the matrix fij �∼= f−1
i′j′ is regular and regularly invertible.

It is even easier to see that the restriction of this matrix divisor to any curve
(X×η×h) gives the matrix divisor Eh(n, η). The family of extensions we have
constructed is denoted by

R(n, k, d) ρ� Sk(X)Rn(τ).

The symbol E(n, k, d) denotes the restriction of this family to E(n, k, d).
It is easy to establish that the family R(n, k, d) is equivalent to a family

which is induced by the canonical projection p : R � E(n, k, d) and the
family

E(n, k, d) � E(n, k, d) .



82 On the classification of rank 2 vector bundles. . .

We denote by RN (n, k, d) the family on RN which is induced (via the canonical

projection RN
φ̃N� R) by the family R(n, k, d). This family will play an

important role for the solution of the universality problem.
Now, there remains just a single problem for us — ”the problem of pushing

down”. Namely, let varieties X and Y be given together with a bundle E over
X and a regular map φ : X � Y . Is it possible to find such a bundle E′

over Y that E would be equivalent to the lifting of E′ with respect to φ? In
our case the situation is sufficiently simple: as X we have X ×Rn(τ), as Y we
have X ×P(Rn(τ)), as φ we have a natural map φ(h) = φ(α, h), α = 0, and
as E we have our bundle R(n, k, d), which defines the family R(n, k, d). It is
not hard to show, however, that it is impossible to construct such a bundle in
our case. Because of this, we have to introduce another discrete invariant.

Definition 15. For any extension 0 � L � E we will denote by
α(E,L) the integer number g + νD(h), where Eh(L) is a matrix divisor of the
shape (9), which defines E.

Obviously, if (E,L) is a quasi-bundle, then α(E,L) is its invariant. In what
follows, we will consider (n, k, d, α)-families of extensions or quasi-bundles with

α(E,L) = α .

We will consider, further, the families E(n, k, d, α) � E(n, k, d, α), which are
the restrictions of the family R(n, k, d) on E(n, k, d)∩Rα

n(τ)S̃k(X), where Rα
n

is a subspace of

Rn(τ) =

⎧⎨⎩
2n+d−1∑

i=−g

αiτ
i

⎫⎬⎭ ,

defined by the relationships

αj = 0, j < α, αα = 1.

There obviously are no equivalent extensions among the elements of the family
E(n, k, d, α).

Remark. It is clear that

dim E(n, k, d, 2k) > dim E(n, k, d, α)

for any α �= 2k and that

dim E(n, k, d, 2k) = dimE(n, k, d) − 1.

Moreover, it is clear that

E(n, k, d, 2k) = P(E(n, k, d)) − A(n, k, d, 2k),

where A(n, k, d, 2k) is a proper subvariety of P(E(n, k, d)).
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§ 5 The solution of the universality problem for EC(n, k, d).

In this paragraph we will prove the following main theorem.
Theorem 5. The universality problem for the category EC(n, k, d, α) is

solvable and the family E(n, k, d, α) � E(n, k, d, α) is a universal object in
the category of families of (n, k, d, α)-extensions.

Proof. Consider the family (L,M) � M of (n, k, d)-extensions. Since
the universality problem for families of line bundles is solvable and the Jacobian
variety J of the curve X is the base of the universal family, the family L is
induced by a morphism σ : M � In−k. But since we restrict the investigation
to the case of (n, k, d)-extensions, σ : M � Gn−k,n/Gn−k,n−1.

The variety Gn−k,n/Gn−k,n−1, according to Remark 2 of § 1, Chapter 1, is
bi-regular equivalent to S̃k(X). Thus, the family L is induced by the morphism
σ : M � S̃k(X).

The family of (n, k, d)-extensions (L,M) ρ� M is defined by the exten-
sion

(14) 0 � L(D1) � M � L(D2) � 0

over X × M .
Let us first study the case when M is an affine variety. In this case the

divisor (D × M) of the variety X × M is a hyperplane section of it, that is
(X × M)/(D × M) is an affine variety.

Because of this, the divisor D1 is equivalent to a divisor of the shape

D′1 + m1(D × H),

where D′1 is an effective divisor. But, since over every curve (X×m) the divisor
D1 cuts a divisor of the height n, m1 = n, i.e.

D1 ∼ D′1 + n(D × M) = D̃1,

where D′1 is an effective divisor.
Analogous arguments show that

D2 ∼ D′1 + (n + d)(D × M) = D̃2.

Consequently we have an extension

(15) 0 � L(D′1−n(D×M)) � M � L(−D′1+(n+d)(D×M)) � 0.

The classes of such extensions are in one-to-one correspondence with elements
of the group

H1(X × M,L(2D′1 − (2n + d)(D × M))).

Let us write down this extension in the form of a matrix divisor.
Let {U ′i} be a covering of X × M such that in U ′i the divisor (D × M) is

determined by the equation τi = 0 where τ1 = τ(x,m) = τ(x) and τ2 = 1.
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Let {U ′′i }, i = 1, . . . ,m, be a covering of X ×M such that in Ui the divisor
D′1 is determined by the equation φi = 0.

Consider a covering {Uij} of the variety X × M such that

Uij = U ′i ∩ U ′′j , i = 1, 2, j = 1, 2, . . . ,m.

We shall write down the divisor of the extension (14) with respect to this
covering:

(16) Fij =
(

φjτ
−n
i 0

0 φ−1
j τd+n

i

)(
1 fij

0 1

)
,

where {fij} ∈ C
0
(R, D̃1D̃

−1
2 , {Uij}) (the definition was given in §1 of the

present Chapter).
According to Lemma 11, we can assume that the principal parts of the

functions fij with respect to D̃1D̃
−1
2 are different from zero only on S = D×M .

Because of this fact, the matrix divisor has the form

F1j =
(

φjτ
−n 0

0 φ−1
j τn+d

)(
1 f1j

0 1

)
, F2j =

(
φj 0
0 φ−1

j

)
,

where f1j =
2n+d−1∑
−Nj=l

αljτ
l, αlj are regular on U1j .

Let {Vj} a covering of (D × M) : Vj = U1j ∩ (D × M). Consider a map
γj : Vj

� (RNj (τ) − D), defined as follows:

γj(v) =
2n+d−1∑
−Nj

αlj(v)τ l.

Since {f1j} ∈ C
0
(M, D̃1D̃

−1
2 , {Uij}), all f1j have the same principal part with

respect to divisor D̃1D̃
−1
2 . Because of this, Ni = Nj = N and αlj(v) = αli(v)

on Vi ∩ Vj .
Thus, there is a regular map γ : M � RN

n (τ).
Consider a map (σ, γ) : M � S̃k(X) × RN

n (τ) = RN , defined as follows:

(σ, γ)(m) = (σ(m), γ(m)).

Obviously, the family (L,M) � M is induced by the map (σ, γ) : M � RN

and the family RN
� RN (the definition is given in the previous paragraph).

But the family RN itself is equivalent to the family which is induced by the
projection φ̃(P ) : RN

� E(n, k, d, α) and the family E(n, k, d, α) ρ�
E(n, k, d, α). Consequently, the family (L,M) � M is equivalent to the
family which is induced by the map M � E(n, k, d, α) and the family
E(n, k, d, α).

Now let us turn to the general case.
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Let M be an arbitrary variety, {Ui} is its covering by affine varieties and
Ui = M − Si.

In this case the family L is also induced by a morphism σ : M � S̃k(X).
There the extension (14) takes place, where

D ∼ D1 + n(D × M) + msi;

here D1 is an effective divisor, and we can take i to be any number since
si ∼ sj . For each k we can represent the extension of M in the form of (16)
where fk

ij have non zero principal parts only on (D × M) + (X × sk). The
restriction of the family M � M to Vk is induced by the map (σ, γkφ̃Nk

P ) :
Vk

� E(n, k, d). It remains to check that

(σ, γkφ̃Nk
P ) = (σ, γlφ̃Nl

P )

over (X × Vk) ∩ (Vl × X), so that

γkφ̃Nk
P = γlφ̃Nl

P

over Vk ∩ Vl.
But it is obvious, since the co-chains {fk

ij} and {f l
ij} defining the same

extension of M, are equivalent, so there exists a function f such that

{fk
ij − f l

ij} = {f}.

But this means exactly that the distributions defined by the restrictions of
{fk

ij} and {f l
ij} to the curve (X × v), where v ∈ Vk ∩ Vl, differ by a function

distribution so they are cohomologous to each other (see §2 of the present
Chapter). Thus, the family (L,M) � M is equivalent to the family which is
induced by the morphism (σ, ψ) : M � (E(n, k, d, α)). This proves that the
family E(n, k, d, α) ρ� E(n, k, d, α) is the universal object in the category
of families of (n, k, d, α)-extensions.



chapter 3

Weak independence of the invariants

§ 1 Properties of quasi-bundles.

Not every extension is a quasi-bundle.
Proposition 6. An extension 0 � L i� E is not a quasi-bundle if

and only if either there exists a homomorphism i′ : L � E, i′ �= i or there
exists a homomorphism L(D−n+1) � E where n = h(L).

The proof follows easily from the definition of quasi-bundles and the fact
that the height does not increase under homomorphisms.

Corollary. An extension 0 � 0 � E is not a quasi-bundle if and
only if either dim Γ(E ⊗ L(Dn−1)) > 0 or dim Γ(E ⊗ L∗) > 1.

Theorem 6. Let M(n, k, d) be the set of the extensions from E(n, k, d),
which are not quasi-bundles. Then M(n, k, d) is a homogeneous algebraic va-
riety.

Proof. Consider the family E(n, k, d) � E(n, k, d) and the family

E(n, k, d) ⊗ L(Dn−1) π� E(n, k, d),

defined as follows:

π−1(η, h) = Eh(n, η) ⊗ L(Dn−1).

The set {a ∈ E(n, k, d) : H0(X, π−1(a)) � 1} is an algebraic subvariety of
E(n, k, d) due to the semi-continuity principle for algebraic families (see [5]).
The statement of the theorem follows from the analogous arguments for bundles
of the height n with c(E) = η.

To compute the codimension of the variety M(n, k, d) and to construct it
explicitly we need to study more carefully matrix divisors of the type Eh(n, η).

86
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§ 2 Sections of a matrix divisor.

The notion of a matrix divisor over a curve is equivalent to the notion of
a bundle. It remains to define a notion which is equivalent to the notion of a
section of a bundle. The subsequent definition fills this gap. Here we use the
geometric terminology in order to emphasize the relationship of the consequent
arguments with the material of §1 and §2, Chapter 1.

Definition 16. A section of a matrix divisor E is a pair of functions
g1, g2 ∈ k(X) such that the components of the vector

Ex

(
g1

g2

)
= (u1

x, u2
x)

are regular at a point x of our curve X.
It is obvious how one constructs, starting with a section of a matrix divisor,

a section of the corresponding bundle and vice versa.

Zeros of the section
(

g1

g2

)
are given by the mutual zeros of u1

x and u2
x. Zeros

of the section
(

g1

g2

)
form a divisor ηs.

Let us study sections of a matrix divisor B = τmEh(n, η). We shall denote
by Lk the line bundle of the extension Eh(n, η). Write down the following
conditions on g1 and g2:

at the point D(
τm−n 0

0 τm+n+d

)(
1 h(τ)
0 1

)(
g1

g2

)
= (τm−n(g1 + hg2), τm+ng2),

at a point C ∈ η

(17)
(

τC 0
0 τ−1

C

)(
g1

g2

)
= (τCg1, τ

−1
C g2),

and at the other points(
1 0
0 1

)(
g1

g2

)
= (g1, g2).

Let us first of all write down the conditions on g2. We have:
g2 ∈ L(Dm+n+dη−1), so g2 defines a point in the linear system |Dm+n+dη−1|
and is determined itself by this point uniquely. Hence a linear map is defined

Γ(B) φ� Γ(Dm+n+dη−1) = Γ(L(Dm) ⊗ L∗(ηD−n) ⊗ L(Dd).

The geometrical meaning of this map is given by the following

Lemma 16. Let s =
(

g1

g2

)
be a section of B and (g2) = ξηηsD

−m−n−d.

Then ξ = ξ(Lk, Ls).
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Proof. Sections of the sub-bundle Lk are given by vectors
(

g
0

)
. Therefore,

in order to have

α

(
g1

g2

)
=
(

g
0

)
at a point x ∈ X, it is necessary and sufficient that

νx(g2) > νx(Dm+n+dη−1),

and this gives the statement of the lemma.
Before we write down the conditions on g1 let us introduce a couple of new

notations and notions.
Definition 17. A defect of a function f ∈ L(ζ) at a point x ∈ X is the

number
dζ

x(f) = νx(ζ) + νx(f).

This number is denoted as dζ
x(f).

The symbol g.c.d.(ξ, ξ′) is used for the divisor which consists of the mutual
points of effective divisors ξ and ξ′.

The symbol ξξ′ denotes the minimal mutual multiple of divisors ξ and ξ′.
Now let us write down the conditions on g1:
1) g1 ∈ L(Dg+n+m+dη),
2) g1 + hg2 = 0 mod τn−m−1 or
2’) g1

g2
≡ −h mod τ2n+d−1−dζ

D(g2), ζ ∼ Dn+m+dη−1.
In the future, speaking about a defect of a function g2 we will have in mind

the defect in the linear spaces L(Dn+m+dη−1). Therefore, if dD(g2) = 0 then

h = −
[
g1

g2

]
2n+d

.

Thus, we have proved the following theorem, which establishes the nec-

essary and sufficient conditions on h =
2n+d−1∑
−g

αiτ
i which a matrix divisor

B = Eh(n, η) ⊗ L(Dm) must satisfy to have a section.
Theorem 7. A divisor of the form B has a section s such that

ns · ξ(Lk, Ls) = ξ if and only if there exists a function for which
(1) f ∈ L(Dgη2ξ · D−νD(ξ)),
(2) h ≡ f mod τ2n+d−1−νD(ξ).
The next lemma makes it possible to compute the divisor - support of the

intersection of two line bundles - in terms of the matrix divisors.

Lemma 17. Let s =
(

g1

g2

)
and s′ =

(
g′1
g′2

)
be sections of B. Then

φ = g1g
′
2 − g′1g2 ∈ L(D2m+d).

Further, let ζ = (φ)0 be the divisor of zeros of φ. Then

ηsξ(Ls, Ls′)ηs′ = Dmax(D,n−k−m)ζ,
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where k = deg ζ.
Proof. We have:

φ = g2g
′
2

(
g1

g2
− g′1

g′2

)
.

According to Lemma 16,

(g2)0 = ξ, g2 ∈ L(Dm+n+dη−1)

and
g1

g2
∈ L(Dgη2ξ),

g′1
g′2

∈ L(Dgη2ξ′),

where ξ′ = (g′2)0. From Theorem 7 it follows that(
g1

g2
− g′1

g′2

)
∈ L

(
η2ξξ′

D2n+d−max(dD(g2),dD(g′2))

)
,

from which one deduces that(
g1

g2
− g′1

g′2

)
g2g

′
2 ∈

∈ L
(
D2(m+n+d)−dD(g2)−dD(g′2)−2n−d+max(dD(g2),dD(g′2)

)
∈ L(D2m+d).

This proves the first statement of the lemma.
The equality αs(P) + βs′(P) = 0 holds if and only if the following system

of homogeneous equations

αu1
P(P) + β(u′)1P(P) = 0,

αu2
P(P) + β(u′)2P(P) = 0

has a nontrivial solution, so if and only if

D(P) =
∣∣∣∣u1
P(P) (u′)1P(P)

u2
P(P) (u′)2P(P)

∣∣∣∣ = 0.

But if P = D then D(P) = τm−nφ(D); on the other hand if P �= D then
D(P) = φ(P). From this fact it follows the second statement of the lemma.
Thus the lemma is completely proven.

In §1, Chapter 1, we have seen that

ξ(Ls, Ls′) = ξ(Lαs+α′s′ , Lβs+β′s′)

for almost all (α, α′) (so on whole the projective line (α, α′) except a finite
number of points) and

ηsξ(Ls, Ls′)ηs′ = ηαs+α′s′ξ(Lαs+α′s′ , Lβs+β′s′)ηβs+β′s′

for every (α, α′), (β, β′).
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Let us solve the inverse problem, namely let

(18) ηsξ(Ls, Ls′)ηs′ = ηsξ(Ls, Ls′′)ηs′′ .

What could be said then about s′′? The answer is given by
Theorem 8. Let s, s′ and s′′ be sections of B and assume and assume that

they satisfy relation (18). Then s′′ = αs′ + s′′′, where s′′′ ∈ Γ(Ls).

Proof. Let s =
(

g1

g2

)
, s′ =

(
g′1
g′2

)
,s′′ =

(
g′′1
g′′2

)
and assume that the relation-

ship (18) is satisfied. This means that divisors (g1g
′
2 − g′1g2) and (g1g

′′
2 − g′′1 g2)

coincide with each other (see Lemma 17) and, consequently

α(g1g
′
2 − g2g

′
1) = (g1g

′′
2 − g2g

′′
1 );

implies that
g1

g2
=

αg′1 − g′′1
αg′2 − g′′2

.

Since
(

g1

g2

)
,
(

g′1
g′2

)
and

(
g′′1
g′′2

)
are sections of the same bundle, then

g1 αg′1 − g′′1 = g′′′1 ∈ L(Dg+n+m+dη)

g2 αg′2 − g′′2 = g′′′2 ∈ L(Dn+m+dη−1) .

Therefore our problem is reduced to the following: find a function φ such that

(20)
g1, g1φ ∈ L(Dg+n+m+dη),
g2, g2φ ∈ L(Dn+m+dη−1).

Let
(g2) = ξηD−n−m−d+dD(g2).

Then it is obvious that φ ∈ L(ξ). On the other hand, if

(g1) = ξ′D−(g+n+m+d)+dD(g1)η−1,

then ξ′ = ξ ·ζ since g1φ ∈ L(Dg+n+m+dη). It means that if the function φ does
exist then the divisor of the poles (φ)∞ belongs to the divisor of zeros of the

section s =
(

g1

g2

)
, and vice versa, if dimL(ηs) > 1, then taking any function

from L(ηs) we get the relationship (20). Obviously, the section

s′′′ =
(

g1φ
g2φ

)
belongs to Γ(Ls), Consequently,

s′′′ =
(

g1φ
g2φ

)
=
(

αg′1 − g′′1
αg′2 − g′′2

)
= αs′ − s′′,

so s′′′ = αs′ − s′′, which is what we wanted to prove.
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§ 3 Computation of the codimension of variety M(n, k, d).

In this paragraph one proves the following theorem, which is extremely
important for the classification of the bundles.

Theorem 9. codimP(E(n, k, d))M(n, k, d) > 0.
Moreover, one gives an effective method to construct

Mη(n, k, d) = M(n, k, d) ∩ (H(n, η))

and, in particular, one proves that the irreducible components of M(n, k, d)
are rational varieties.

The subset M(n, k, d) which consists of extensions but not quasi-bundles,
splits into two parts:

M(n, k, d) = M′(n, k, d) ∪M′′(n, k, d).

The first part M′(n, k, d) consists of such Eh(n, η) which contain a homomor-
phic image L(Dn−1), that is h(Eh(n, η)) < n. The second part M′′(n, k, d) con-
sists of such Eh(n, η) which contain a homomorphic image L(ηD−n) other than
Lk. Both these sets are varieties. The variety M′′(n, k, d) has big codimen-
sion in E(n, k, d) and can be computed in exactly the same way as M′(n, k, d).
Because of this we shall compute only M′(n, k, d). Denote by M′

η(n, k, d) the
intersection M′(n, k, d) ∩ H(n, η).

Let us study when bundles Eh(n, η)⊗L(D−n+1) have sections, that is when
m = n− 1. Then from the results of §1, Chapter 1, it will follow that for every
divisor Eh(n, η) the divisor-support of the intersection Lk and ψ(L(D−n+1))
(where ψ is a homomorphism) belongs to the linear system |D2n−1+dη−1|. Let
ξ ∈ |D2n−1+dη−1|. Then, according to Theorem 7 all the divisors Eh(n, η)
containing ψ(L(D−n+1)) and such that

ηsξ(ψ(Ls(D−n+1)), Lk) = ξ,

form a linear subspace in H(n, η) which is given by h ∈ H(n, η) such that

h ≡ f mod τ2n+d−1−νD(ξ),

where f is an arbitrary function from L(Dgη2ξDνD(ξ)).
Consider the direct product

P (L(Dg+n+m+dη)) × P(L(Dn+m+dη−1))

and define the following map Φ : P � Rn(τ),

(21) Φ(g, g′) =
[

g

g′

]
2n+d−dD(g′)

+
2n+d−1∑

2n+d−dD(g′)

αiτ
i,

where αi are any numbers.
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Lemma 18. The function Φ is regular on

L(Dg+n+m+d−1η) × {P(L(Dn+m+d−1η−1)/P(L(Dn+m+d−2η−1)}.
Proof. Let

R1
n(τ) = τgRn(τ),

where
Rn(τ) = τ−gk[[τ ]] mod τ2n+d.

Then R1
n(τ) can be regarded as a vector space over k and as a ring. Consider

the map Φ̃ : Rn(τ) × R1
n(τ) � Rn(τ),

Φ̃(a, b) = a · b−1 mod τ2n+d
D .

This map is rational. Let

b−1 =

(
g+2n+d−1∑

i=0

xiτ
i

)−1

=
∞∑

i=0

βiτ
i,

where

β0 =
1
x0

, b1 = − x

x2
0

, . . . , βk =
Pk(x0, x1, . . . , xk)

xk+1
0

and

a =
2n+d−1∑
−g

yiτ
i.

Then

ab−1 =
2n+d−1∑
−g

γiτ
i

and

γk =
∑

i+j=k

yiPj(x0, . . . , xi)
xj+1

0

.

It follows that the map Φ̃ is rational and regular on

Rn(τ) × R1
n(τ)/τR1

n(τ).

Restricting it to

τn+m+d−1
[L(Dg+n+m+d−1η)

]
2n+d

× τm+n+d−1
[L(Dn+m+d−1η−1)

]
2n+d

,

we get the statement of the lemma.
Lemma 19. The function Φ is linear and injective in the second argument.
Proof. The linearity of Φ follows from the linearity of [ ]2n+d (see §4). Let

g, g′ ∈ L(Dg+n+m+d−1η) , f ∈ L(Dm+n+d−1η−1)
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and Φ(g, f) = Φ(g′, f). Then

g

f
− g′

f
∈ L

(
η2ξ

D2n+d−dD(f)

)
,

where ξ′ = (f0). But
η2ξ

D2n+d − dD(f)
∼ η

D
,

so

dimL
(

η2ξ

D2n+d−dD(f)

)
= dimL

( η

D

)
= 0

due to the choice of η (see § 4, Chapter 1).
Lemma 20. Let M′

η(n, k, d) = M′(n, k, d) ∩ H(n, η) ⊆ H(n, η). Then

codimH(n,η)M′
η(n, k, d) � 2g − 2n − d + 1 − dimL(KD−2n−d+1η),

where K is the canonical divisor.
Proof. Indeed, according to §4, as H(n, η) we can choose any vector space,

complementary to the space [L(Dgη2)]2n+d. Hence

codimH(n,η)M′
η(n, k, d) = codimRn(τ)Φ(P ).

Since Φ is a rational map,

dim Φ(P ) � dim P = dim
∣∣D2n+d−1η−1

∣∣+ dim
∣∣Dg+2n+d−1η

∣∣+ 1.

The dimension of the last linear system equals to 2n + d− 1 + k since D is not
a Weierstrass point. It follows that

codimRn(τ)Φ(P ) � g − k − dim
∣∣D2n−1+dη−1

∣∣ .
Applying the Riemann–Roch theorem we get

codimH(n,η)M′
η(n, k, d) � 2g − 2n − d + 1 − dimL (KD−2n−d+1η

)
.

Proof of Theorem 9. Let us prove that codimM′(n, k, d) in E(n, k, d) is
greater than or equal to 2g − 2n + 1 − d. We need to compute the dimension

dim
⋃

η∈Sk(X)

ξ∈|D2n+d−1η−1|

P(L(Dgη2ξD−νD(ξ))) = r.

Note that
r � dim

⋃
ζ∈|D2n−1+d|

L(Dgηζ),

where ηξ′ = ζ. Indeed, for any ζ ∈ ∣∣D2n+d−1η−1
∣∣ one has:

ξ · η = ζ ∈ ∣∣D2n−1+d
∣∣ , L(Dgη2ξ) = L(Dgηζ),
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where η = cβ1
1 . . . cβn

n , if ζ = cα1
1 . . . cαn

n ; here βi � αi.
Then, we have

dim
⋃

ζ∈|D2n−1+d|
(L(Dgηζ)) = 4n + d + k − 1 − g,

since D is not a Weierstrass point, and for any ζ = cα1
1 . . . cαn

n there exists just

a finite number of η’s; this number is less than or equal to
n∏

i=j

(αi + 1), hence

codim M(n, k, d) � 2g − 2n + 1 − d.

The next lemma studies the component of the maximal dimension in the set
of bundle classes.

Lemma 21. If n = g, k = 1 and d = 0 then codimH(g,C) M′
C(g, 1, 0) � 1.

Proof. In this case dimL(KCD−2g+1) > 0 if and only if CK ∼ D2g−1,
where K is the canonical divisor of the base curve X. But this is impossible,
since

L(CK) ⊃ L(K), dimL(K) = g, dimL(CK) = g,

thus L(CK) = L(K). Consequently, the order of the divisor of poles for any
function from L(CK) is less than or equal to 2g − 2 and therefore the divisor
D2g−1 of degree 2g−1 can not be the divisor of zeros of any of these functions.

Further, we write M(n, k, d, α) = M(n, k, d) ∩ E(n, k, d, α).

§ 4 Conclusions.

Thus, the set of classes of quasi-bundles degree d, height n, index k and
α(E) = α coincides with

E(n, k, d, α)/M(n, k, d, α) = K(n, k, d, α),

and codimK(n,k,d,α)M(n, k, d, α) � 1. The variety K(n, k, d, α) is the base of
family of (n, k, d, α)-quasi-bundles: E(n, k, d, α) � K(n, k, d, α), which is the
universal object in the category of families of (n, k, d, α)-quasi-bundles.

The following lemma distinguishes the component of the maximal dimension
in K(n, d, k, α).

Lemma 22. If n > n′ then

dim E(n, 0, d, 2k) > dim E(n, 1, d, 2k) > dim E(n′, k, d, 2k)

for any k.
Proof. Indeed,

dim E(n, 1, d, 2k) − dim E(n′, k, d, 2k) = 2(n − n′) − (1 − k′) > 0.
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Corollary 8. M(n, k, d) = ∅ if n � [ g−d
2 ].

Therefore the following main theorem is proven.
Theorem 10. The component of maximal dimension of the set of classes

of quasi-bundles of degree d = 0 is the following bundle over (X − D):

P(I3g−4 ⊕ T 3(X)),

where I3g−4 = (X−D)×E3g−4 is the trivial rank 3g−4 bundle with no proper
subvariety.

Remark. For quasi-bundles of degree d = 1 the component of maximal
dimension of the variety of equivalence classes coincides with the component
of maximal dimension of the set of equivalence classes of rank two bundles,
namely, the following theorem holds.

Theorem 11. The component of maximal dimension of the set of equiva-
lence classes of quasi-bundles of degree d = 1 is a 3g−3-dimensional projective
space with no subvariety. Moreover, there are no two quasi-bundles from this
component with equivalent rank 2 bundles. Thus, this component is the com-
ponent of maximal dimension in the set of equivalence classes of rank 2 bundles
of degree d = 1.

The family E(g − 1, 0, 1, 0) � K(g − 1, 0, 1, 0) is the unique candidate to
be the universal object in the category of families of degree d = 1 bundles.

A question arises wether or not it is possible to find a variety of classes
of bundles — not of quasi-bundles — of degree 0, as was done for degree 1
bundles.

This variety can be obtained only in the case g = 2. In this case this
component is a projective space (of dimension 3g−3 = 3) without the Kummer
surface of the curve X as well.

Varieties K(n, k, d, α) are open varieties and because of this the question
arises whether we can glue them together to a joint closed variety, that is the
question about the topology in the union

⋃
n,k,d,α

E(n, k, d, α).

Here the fact that the varieties E(n, k, d, α) are open is extremely impor-
tant. The next proposition shows that for the representability of the canonical
functor, giving the classification of the bundles, restrictions and fixing of some
invariants are necessary.

Proposition 7. Let Var be the category of algebraic varieties and

Var F� Ens

be the functor from Var to the category of sets Ens which associates to each
variety V the set of families of rank 2 algebraic bundles with base V . Then F
is not representable (in the sense of Grothendick).

Indeed, let us suppose that there exists a variety V and a family of bundles
V � V which is a ”universal object”, a solution of the ”universality problem”
in the category of families of algebraic bundles in the sense of Grothendick (see
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[4]). In this case a family of bundles E � E should be induced by a morphism
E

φ� V .
Consider a family H(n, η) π� H(n, η), which is the restriction of the

family
E(n, k, d, 2k) � K(n, k, d, 2k)

onto some H(n, η0) = V0. V0 is a linear space and it is easy to see that there
are entire algebraic curves inside V0 consisting of equivalent bundles. But
there exists a subvariety D ⊂ V0 such that there are no equivalent bundles in
V ∈ V0 − D (since (ηi(E), ηj(E)) = 1; see §2, Chapter 1).

The family H(n, η) should be induced by a morphism φ : V0
� V ,

which is one-to-one on V0 − D and dimφ(D) < dim D. But there is no such a
morphism for a linear space. Therefore, to solve ”the universality problem” in
the category of families of algebraic bundles it is necessary to fix some of the
invariants.

How are the sets K(n, k, d, α) related to each other, or, in other words, what
is the topology of

⋃
n,k,d,α

E(n, k, d, α)? The only thing one can say about it is

that in the topology of E(n, k, d, α) elements of E(n, k + 1, d, α) and E(n −
1, k, d, α) are not separated from decomposable bundles.
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Vector bundles of finite rank over infinite
varieties

This article contains a proof of the conjecture of Schwarzenberger that
vector bundles on infinite-dimensional projective space P∞ split as the
sum of line bundles, and a generalisation to quasi-homogeneous projective
varieties.
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Introduction.

The nonsingular hyperplane section of a projective variety inherits many of
its topological properties, whilst losing many of its geometric ones. The inverse
operation — that of embedding a variety as a hyperplane section of a bigger
one — is called a linear extension, and an infinite tower of extensions gives rise
to an infinite variety — an object which is extremely convenient for checking
some of the main conjectures of algebraic geometry.

The aim of the present article is, whilst leaving aside the infinitesimal or
formal theory of extensions, to use elementary geometric properties of infi-
nite projective varieties to solve a group of problems which have attracted the
attention of algebraic geometers in recent years (see [2] and [3]).

The language of infinite varieties in the proof of Schwarzenberger’s conjec-
ture (Theorem 1, § 3.1) and its generalization (Theorem 2, § 3.1) allows us
to avoid the cumbersome description of a large number of constants of the
finite-dimensional theory, the only point of which is that they be ”sufficiently
big”.

The article is divided into three chapters, each of which falls into two sec-
tions.

Chapter 1 gives a definition of an infinite projective variety (§ 1.1), and
describes its simplest properties. Chapter 2 contains auxiliary results which we
need for the study of vector bundles. Chapter 3 contains a proof of Schwarzen-
berger’s conjecture (§ 3.1), and of its generalization (§ 3.2).
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chapter 1

Infinite variety

§ 1 Linear extensions and infinite variety.

Definition 1.1. Let X1 be a nonsingular complete algebraic variety, and
let X0 be a nonsingular positive divisor on X1 such that X1 − X0 is an affine
variety. 1 The pair (X1 ⊃ X0) is called a Lefschetz pair.

Definition 1.2. A Lefschetz pair (X2 ⊃ X1) is called a linear affine ex-
tension of the pair (X1 ⊃ X0) if the self-intersection class X2

1 of X1 in X2 is
linearly equivalent to X0 (as divisors on X1).

Definition 1.3. A polarized variety (X1, X0) is called absolute if the divisor
class X0 contains a representative X0 such that the Lefschetz pair (X1 ⊃ X0)
admits an infinite extension.

Definition 1.4. An infinite tower of extensions

X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · ·
is called a flag over X0 ⊂ X1.

Definition 1.5. The flag Y0 ⊂ Y1 ⊂ · · · contains X0 ⊂ X1 ⊂ · · · if for
each i we can find j(i) for which

(1.1) Xi ⊂ Yj(i).

If at the same time this embedding is strictly compatible with the filtration,
that is, if

(1.2) Xi ⊂ Yj(i) ⇒ Xi−1 ⊂ Yj(i)−1,

then the flag X0 ⊂ X1 ⊂ · · · is strictly contained in Y0 ⊂ Y1 · · · ; notation:
X

s⊂ Y .
Definition 1.6. Two flags are equivalent if they are both strictly contained

in a third.2

1Translator’s note: It seems reasonable to make the further restriction that the divisor X0

be ample
2Translator’s note: This equivalence is absurdly strong, since it implies that all flags of
complete intersections are equivalent to Pi; in the sequel the author seems to consider two
flags Xi and Yi as equivalent only if they coincide up to renumbering from some point on;
that is, if, for some n and m, Xi = Yi+n for i � m.
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Definition 1.7. An equivalence class of flags is called an infinite variety
denoted X∞.

The simplest example of an infinitive variety is the infinite-dimensional
projective space P∞, defined by a flag over P0 ∈ P1.

Definition 1.8. A variety X∞ is contained in another Y∞ if there exist
flags X0 ⊂ X1 ⊂ · · · and Y0 ⊂ Y1 · · · defining X∞ and Y∞, and the first
flag is contained in the second. If this inclusion is strict, then X∞ is called
a subvariety of Y∞ of finite codimension, or a strictly embedded subvariety;
notation: X∞

s⊂ Y∞.
If the variety X∞ is defined by the flag X0 ⊂ X1 ⊂ · · · , then the embedding

(1.3)

X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · ·
∪ ∪ ∪
X0 ⊂ · · · ⊂ Xn−1 ⊂ Xn ⊂ · · ·

and the shift of the filtration by 1 defines a strict embedding X∞
s⊂ X∞ of X∞

into itself as a divisor.
Definition 1.9. Let X∞ be defined by the flag X0 ⊂ X1 ⊂ · · · . A system

{Ei} of vector bundles Ei on the Xi satisfying Ei|Xi−1 = Ei−1 defines a vector
bundle E on X∞.

Definition 1.10. Pic X∞ will denote the group of isomorphism classes of
line bundles on X∞.

As we have seen (1.3), every representation of X∞ by a flag X0⊂X1⊂· · ·
defines an effective divisor on X∞; that is, a positive element of Pic X∞. Thus,
the choice of a flag defining the variety gives us a choice of polarization on X∞;
that is, of an effective positive line bundle h on X∞.

Thus a polarized variety (X1, L) is absolute if we have an embedding X1 ⊂
X∞ of X1 into an infinite variety, such that L = h|X1 , with h the effective
polarization of X∞.

Definition 1.11. The vector bundle E on an absolute variety X1 is said
to be absolute if E is the restriction of a vector bundle on X∞.

The Lefschetz theorem allows us to speak of the cohomology of infinite
varieties since for a flag X0 ⊂ X1 ⊂ · · · , for every integer i there is some
integer j(i) such that res : Hi(Xj) � Hi(Xj−1) is an isomorphism for
j > j(i). There is a similar assertion for sheaf (coherent) cohomology.

The simplest class of infinite varieties is the class of subvarieties of P∞ of
finite codimension.

Definition 1.12. An infinite variety X∞ is called projective if X∞
s⊂ P∞.

Definition 1.13. An absolute variety (X1, L) is called projective if (X1, L) ⊂
(X∞, h)

s⊂ P∞.
As an example of absolute projective variety we can take any complete

intersection in Pn.
The following is a weak corollary of the results of Barth and Larsen [1].
Proposition 1.1. For a projective infinite variety X∞

s⊂ P∞:
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1) Pic X∞ = Z and Pic X∞ is generated by O(1);

2) Hi(X∞) = Hi(P∞), the isomorphism being given by restriction.

These results also follow from the Lefschetz theorem if we take into account
the following.

Proposition 1.2. An absolute projective variety Xn ⊂ Pn is a complete
intersection.

This assertion was first announced by Hartshorne [3]. We will however not
make any use of it, since the arguments we present are simpler, and Proposition
1.2 can itself be deduced from them.

There exist a fair number of simple examples of absolute varieties which
are not projective. For example, a double space X∞

ϕ� P∞ can be defined
by a system of double coverings Xi

ϕi� Pi, ramified in some flag Wi ⊂ Pi of
hypersurfaces of even degree; X∞ can be polarized by ϕ∗(O(1)).

Proposition 1.3. For the double space ϕ : X∞ � P∞ we have Pic X∞ =
Z, a generator being given by ϕ∗(O(1)).

Indeed, for the ramification divisor W∞ we have W∞
s⊂X∞ and W∞

s⊂P∞,
and both X∞ − W∞ and P∞ − W∞ are affine varieties; so by the Lefschetz
theorem, Pic X∞ = PicW∞ = Pic P∞.

It follows from this that the infinite double space X∞ is not a projective
variety.

Proposition 1.4. If X∞
s⊂ P∞, then for every d ∈ Z we have

Hi(X∞, I(d)) = 0 for i > 0.
Proof. It follows from Proposition 1.1 that for every i we have

Hi(X∞, I) = 0. It follows from the short exact sequence that Hi(X∞, I(d)) = 0
for every i and d � 0. Let X0 ⊂ X1 ⊂ · · · be a flag defining X∞. Then for every
d there is an Nd such that Hi(X∞, I(d)) � Hi(XN , I(d)) is an isomorphism
for N � Nd.

Since Pic X∞ = Z, the canonical class is given by KXi = I(ki), and by
the adjunction formula one has ki+1 = ki − 1. Hence we can find some N0

such that kN < 0 for all N � N0. Hence, using Serre duality, hi(XN , I(d)) =
hN−i(XN , I(kN − d)) = 0 for N � 0, since kN − d < 0. Q.e.d.

In the sequel we will not insist on the nonsingularity of our infinite varieties,
making special mention if nonsingularity is necessary.

For infinite varieties the two following extremely simple assertions work just
as well as the maximum principle for complete varieties.

Connectedness Principle. If X∞
s⊂ P∞

s⊃ Y∞ are two projective infi-
nite varieties, then they intersect in some subvariety of finite codimension.

Thus any reducible variety X∞
s⊂ P∞ (having a finite number of compo-

nents) is connected.

Rigidity Principle. A morphism of an infinite projective variety X∞
s⊂

P∞ into any finite-dimensional variety Z is constant.
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Indeed, if ϕ : X∞ � Z, then for any two points z1 and z2 of Z the
fibers ϕ−1(z1) and ϕ−1(z2) are varieties of finite codimension in P∞, and hence
intersect.

We can include varieties such as the double space of Proposition 1.3 into
our theory provided that we go over to weighted projective space (see [4]). Let
w = (d0, d1, · · · , dn) be a collection of integers, and let Pw be the weighted
projective space3 of index w. Then the pair Pw ⊂ P(w,1) is a Lefschetz pair in
a certain sense. Let us partially order the set of indices by w1 ⊂ w2 ⇔ w2 =
(w1, 1) and consider the infinite sequence w1 ⊂ w2 ⊂ · · · ⊂ wn ⊂ · · · = w∞.
This defines a flag Pw1 ⊂ Pw2 ⊂ · · · ⊂ Pwn

⊂ · · · = Pw∞ , which can naturally
be called infinite weighted projective space.

Definition 1.12’. An infinite variety X∞ is called a weighted projective
variety if X∞

s⊂ Pw∞ .
The weighted projective space Pw has a standard covering by the standard

projective space:

(1.4) ϕw : P[w]
� Pw,

where [w] = n is the dimension of Pw (see § 1 of [4]), which is a Galois covering

with Abelian group
n∏

i=0

μdi .

We get a diagram of coverings:

Pw1 ⊂ Pw2 ⊂ · · · ⊂ Pwn
⊂ · · · = Pw∞

P[w1]

ϕw1
�

⊂ P[w2]

ϕw2
�

⊂ · · · ⊂ P[wn]

ϕwn

�

⊂ · · · = Pw∞

ϕw∞
�

It follows that any weighted projective variety defines a projective variety
X̃∞:

(1.5)

X∞
s⊂ Pw∞

X̃∞

ϕw∞
�

s⊂ Pw∞ .

ϕw∞
�

This finite covering allows us to carry over to the weighted projective case
any assertion about nonsingular infinite projective varieties.

We note two simple properties of the covering (1.4):

ϕ∗w∞ : PicXw∞
∼� Pic X̃∞ is an isomorphism;(1.6)

R0ϕwO eX =
N⊕

i=1
OX(mi) , with mi � 0(1.7)

3
Definition. Pw = Proj k[x0, · · · , xn], where the weighting of the ring k[x0, · · · , xn] is

defined by w(xi) = di.
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From these facts one deduces at once the analogs of Proposition 1.1 and 1.4
and the Rigidity and Connectedness Principles for infinite weighted projective
varieties.

We take special note only of the analog of Proposition 1.2, which identifies
the class of absolute weighted projective varieties with the class of generalised
complete intersections considered by Mori (see [4]).

Proposition 1.2’. A nonsingular absolute weighted projective variety X ⊂
Pw is a generalised complete intersection.

This follows easily from the fact that X̃ is a complete intersection in P[w].
Finally, the following seems to be very plausible:
Conjecture (M. Reid). Any absolute X is a weighted complete intersec-

tion.

§ 2 The linear connectivity of an infinite projective variety.

We have seen that infinite projective varieties X∞
s⊂ P∞ are similar in

their topological properties to projective space. In this section we note a few
geometrical properties of such varieties X∞ which are similar to the properties
of quadrics.

Lemma 1.1. Through every point P ∈ X∞
s⊂ P∞ there passes an infinite-

dimensional linear space P∞, that is, X∞ is swept out by infinite-dimensional
linear spaces.

Remark. If we use Hartshornes result (Proposition 1.2), then the lemma
follows from results of Predonzan [5].

Proof. A projective variety X∞
s⊂ P∞ has two invariants n = codimP∞X∞

and d = deg X∞; both of these are integer invariants of a projective variety
which are preserved under extension. Let

X0 ⊂ X1 ⊂ · · · ⊂ Xi ⊂ Xi+1 ⊂ · · ·
∩ ∩ ∩ ∩
Pn ⊂ Pn+1 ⊂ · · · ⊂ Pn+i ⊂ Pn+i+1 ⊂ · · ·

be the inclusion of flags which defines the projective variety X∞
s⊂ P∞. Let

x be any point on X∞ and x ∈ Xi ⊂ Pn+i. Then the projectivised tangent
spaces to Xj at x give a flag (PTXi)x ⊂ (PTXi+1)x ⊂ · · · which defines the
infinite projective space (PTX∞)x. Each point of (PTXi)x can be interpreted
as a projective line l ⊂ Pn+i passing through x and tangent there to Xi; that
is, the local intersection number (Xi, l)x of l with Xi at x is at least 2:

(PTXi)x = {l ⊂ Pn+i; (Xi, l)x � 2}.

Consider the variety (V k
i )x = {l ⊂ Pn+i | (Xi, l)x � k + 1} , that is, the

variety of lines of Pn+i having local intersection number at least k + 1 with Xi
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at the point x. Then (V k
i )x ⊂ (V k−1

i )x ; (V 1
i )x = (PTXi)x ; and (V d

i )x is
the variety of lines of Pn+i passing through x and contained entirely in Xi.

Lemma 1.2. codim(V k−1
i )x

(V k
i )x � n and V k

i = V k
i+1 ∩ (PTXi)x.

Proof. We can find n forms f1, · · · , fn in Pn+i such that Xi is given in
a neighborhood of x as the locus of common zeros of the fj ; consider affine
coordinates centered on x and write out each of the forms fm as a sum of
homogeneous forms of ascending degree:

fm = f1
m + f2

m + · · · with deg fr
m = r .

The components f i
m can be considered as forms on the projective space (PTPn+i)x.

It is then clear that

n⋂
m=1

{f1
m = 0} = (PTXi)x , and

n⋂
m=1

(k+1⋂
l=1

{f l
m = 0}

)
= V k

i .

The first part of the lemma follows from this. The second assertion is obvious,
and the lemma is proved.

Corollary 1.1. The flag (V k
i )x ⊂ (V k

i+1)x ⊂ · · · defines an infinite variety
(V k
∞)x.
Corollary 1.2. We have the following series of inclusions, each of codi-

mension � n

(V d
∞)x

s⊂ (V d−1
∞ )x

s⊂ · · · s⊂ (V 1
∞)x = (PTX∞)x = P∞.

In particular, each of the infinite varieties (V k
∞)x is a projective variety.

Corollary 1.3. Any infinite projective variety X∞
s⊂ P∞ is swept out by

lines.
The variety V d

x of lines lying on X∞ and passing through x is an infinite
projective variety V d

x

s⊂ P∞ = (PTX∞)x.
Lemma 1.3. For any Pn ⊂ X∞

s⊂ P∞, there is a Pn+1 such that Pn ⊂
Pn+1 ⊂ X∞

s⊂ P∞.
Proof. We prove this by induction on n. For n = 0 the assertion has

already been proved. Suppose that we know it to hold for n − 1. Consider
a Pn ⊂ X∞, and a point x ∈ Pn. Then Pn defines a Pn−1 on V d

x

s⊂ P∞ =
(PTX∞)x. By the induction hypothesis there exists a Pn such that

Pn−1 ⊂ Pn ⊂ V d
x

s⊂ (PTX∞)x.

But if we take the cone over this Pn with vertex x we get a Pn+1 with Pn ⊂
Pn+1 ⊂ X∞, since Pn ⊂ V d

x .
This corollary implies Lemma 1.1, the proof of which is now complete.
Note however, that the inclusion P∞ ⊂ X∞ is not strict, since P∞ will have

infinite codimension in X∞.
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Thus any infinite projective variety is swept out by lines. However, the
only variety in which every pair of points can be joined by a line is of course
projective space. On an infinite projective variety, any pair of points can be
joined by a broken line.

Definition 1.14. A connected, reducible curve C =
N⋃

i=1

Ci is called a

broken line if the components Ci are lines in projective space and Ci · Cj = ∅

if |j− i| > 1. The number of components is called the length of the broken line.

Lemma 1.4. On an infinite projective variety X∞
s⊂ P∞ any pair of points

x1, x2 can be joined by a broken line of length 2.
Proof. Indeed, consider the point x ∈ X∞

s⊂ P∞. The tangent linear
space (TX∞)x can be considered as the cone over (PTX∞)x with vertex x:

(TX∞)x = 〈x, (PTX∞)x〉;

this subspace contains the cone C(V d
x ) = 〈x, (V d

x )〉. This cone is the variety
swept out by the lines of X∞ through x. Hence

codimP∞C(V d
x ) � codimP∞(TX∞)x + codim(PTX∞)x

V d
x � n + d + 1.

Hence C(V d
x ) is a subvariety of finite codimension in P∞, as is C(V d

x2
); but any

two such subvarieties intersect according to the Connectedness Principle (see §
1.1).

Corollary 1.4. If two points x1, x2 ∈ X∞
s⊂ P∞ cannot be joined by

a line of X∞, then the broken lines of length 2 joining them on X∞ form a
projective infinite variety.

Indeed, if x1 and x2 cannot be joined by a line, each of the broken line of
length 2 joining them is uniquely determined by the vertex at which the two
lines meet. But the variety formed by these vertices is just the intersection
C(V d

x1
) ∩ C(V d

x2
)

s⊂ P∞.

Definition 1.15. A connected reducible surface S =
N⋃

i=1

Si is called a

broken plane if its components Si are projective planes, and each Si

⋂
Si+1 = l

is a line. The number of components is called the length of the broken line.
Lemma 1.5. Let l1 and l2 be any intersecting pair of lines on X∞

s⊂ P∞.
Then these lines can be joined by a broken plane of length 2.

Proof. Let x be the point of intersection of l1 and l2. In V d
x

s⊂ (PTX∞)x

the pair of points corresponding to the line l1 and l2 can be joined by a broken
line of length 2. This broken line of V d

x defines a broken plane of length 2 in
X∞, joining l1 and l2, q.e.d.

Lemma 1.6. Let l1 and l2 be two lines on X∞
s⊂ P∞ which do not in-

tersection. Then X∞ contains two planes π1 and π2 such that πi ⊃ li and
π1

⋂
π2 �= ∅.
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Proof. Let x ∈ l ⊂ X∞
s⊂ P∞. The line l defines a point l ∈ V d

x

s⊂
(PTX∞)x. Consider the variety V d!

l

s⊂ (PTV d
x )l of lines of V d

x passing through
l. Let

C(V d!
l ) = 〈l, V d!

l 〉
be the cone, swept out by the lines of V d

x passing through the point l. Let

C(C(V d!
l ))x = 〈x,C(V d!

l )〉

be the cone swept out by the lines passing through x and lying in C(V d!
l ). Then

the variety C2(l) = C(C(V d!
l ))x

s⊂ X∞ (that is, the variety swept out by the
planes passing through l) is independent of the point x ∈ l. It is a subvariety
of X∞ or of P∞ of finite codimension.

Now if l1, l2 is a pair of lines, the subvarieties C2(l1) and C2(l2) intersect
according the Connectedness Principle; this proves the lemma.

Corollary 1.5. Any pair l1, l2 of lines on X∞
s⊂ P∞ can be joined by a

broken surface of length 4.
Indeed, according to Lemma 1.6, we can find a pair of planes π1 and π2

with πi ⊃ li and π1

⋂
π2 �= ∅. Let x ∈ π1

⋂
π2 and choose any lines l′1 and l′2

through x with l′i ⊂ πi. If we apply Lemma 1.5 to this pair, we get a broken
plane S1

⋃
S2 joining l′1 and l′2; the broken plane π1

⋃
S1

⋃
S2

⋃
π2 then joins

l1 and l2.



chapter 2

The simplest families of vector bundles over P1

A vector bundle E over an infinite projective variety defines a family of
vector bundles over P1, consisting of the restriction of E to the lines of the
infinite variety. This family contains elementary subfamilies, and it is the
purpose of this auxiliary chapter to describe the simplest properties of these
elementary families.

§ 1 Vector bundles on F1.

In this section we will study the simplest families of vector bundles on a
pencil of lines.

Let σ : F1
� P2 be the blowing-up of the point P ∈ P2. Then p :

F1
� P1 is a fibration with fiber l ∼= P1, and σ−1(P ) = S is a section of this

fibration with S2 = −1.
We will be considering n-dimensional vector bundles E on F1 whose restric-

tion to S is E|S = In(δ), with δ an integer (In denotes the sum of n copies of
the structure sheaf; that is, the trivial rank n bundle). Restricting E to the
fibre lP (for P ∈ P1) we get

EP = E|lP =
m⊕

i=1
Iki(P )(di(EP )), d1(EP ) > d2(EP ) > · · · > dm(EP ).

For each points P ∈ P1 apart from a finite number, the invariants di(EP ),
ki(EP ) and m(P ) of the vector bundle EP are constants, di, ki and m.

The constants which we will need are d1, dm, k1 and δ. The difference
d1 − dm = D is always nonnegative.

Lemma 2.1. h0(F1, E) � n
2 d1(d1 + 1) + (d1 + 1)(δ + 1).

Proof. For any k we have an exact sequence

(2.1) 0 � E(−(k + 1)S) � E(−kS) � E(−kS)|S � 0.

Hence, since E(−kS)|S = In(k + δ), we get the inequality

h0(F1, E(−kS)) − h0(F1, E(−(k + 1)S)) � n(δ + k + 1).

109
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Summing this inequality from k down to 0, we get

h0(F1, E) − h0(F1, E(−(k + 1)S)) � n

(
δ(k + 1) +

k(k + 1)
2

+ k + 1
)

.

But, for k = d1, we have H0(F1, E(−(k + 1)S)) = 0; this gives us the required
inequality.

Remark. The same short exact sequence (2.1) also shows that

(2.2) χ(E(−kS) = χ(E) − n

(
k(k + 1)

2
+ kδ

)
.

Lemma 2.2. Let E be a vector bundle on F1 such that d1 < 0. Then for
every P ∈ P1 we have d1(EP ) � h1(F1, E).

Proof. The adjunction exact sequence for the fiber over P gives the co-
homology sequence

0 � H0(F1, E) � H0(F1, E(lP )) � H0(F1, EP ) � H1(F1, E);

but H0(F1, E) = H0(F1, E(lP )) = 0, so that

h0(P1, EP ) � h1(F1, E).

But one sees easily that d1(EP ) � h0(P1, EP ) − 1, which gives the required
inequality.

Lemma 2.3. Let E be a vector bundle over F1 for which d1 = −1; then
for any P ∈ P1

(2.3) d1(EP ) − d1 �
n

2
D(D − 1) − nδ(D − 1) − χ(E).

Proof. h1(F1, E) = h0(F1, E)+h0(F1, E
∗⊗KF1)−χ(E); but H0(F1, E) =

0 and KF1 = −2S − 3l, so that d1(E∗ ⊗ KF1) = D − 1, and δ(E∗ ⊗ KF1) =
−(δ + 1). Applying the estimate of Lemma 2.1 to E∗ ⊗KF1 gives the required
inequality.

Now for any vector bundle E on F1, the bundle E(−(d1 +1)S) satisfies the
hypothesis of Lemma 2.3; that is,

d1(E(−(d1 + 1)S)) = −1, and δ(E(−(d1 + 1)S)) = δ + d1 + 1

and, by (2.2),

χ(E(−(d1 + 1)S)) = χ(E) − n

2
(d1 + 1)(d1 + 2) − δ(d1 + 1).

Now note that for any line bundle L on F1 we have

(2.4)
d1((E ⊗ L)P ) − d1(E ⊗ L) = d1(EP ) − d1(E),

D(E∗) = D(E) = D(E ⊗ L).
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Hence

d1(EP ) − d1 �

� n

2
D(D−1)−n(δ+d1 +1)(D−1)−χ(E)+

n

2
(d1 +1)(d1 +2)+nδ(d1 +1).

From now on we will be considering vector bundles having δ = 0; that is,
bundles on F1 of the form E = σ∗(E′) for some E′ over P2. For these bundles
we have the inequality

(2.5) d1(EP )−d1 �
n

2
D(D−1)−n(d1+1)(D−1)+

n

2
(d1+1)(d1+2)−χ(E) .

for every P ∈ P1. The constant D is nonnegative, and from now on we will
usually consider the case d1 � 1. The function on the right-hand side of this
inequality is not monotonic, and is therefore not convenient for iteration; throw-
ing away a term which is clearly negative, we arrive at the coarser inequality

(2.6) d1(EP ) − d1 �
n

2
D(D − 1) +

n

2
(d1 + 1)(d1 + 4) − χ(E) .

The function D(EP ) = d1(EP )+d1(E∗P ) is lower semicontinuous, since both
of its components are. We estimate the amount it can jump by

Lemma 2.4. Let E be a vector bundle over F1 with δ(E) = 0 and d1 > 0.
Then for every point P ∈ P1

(2.7) D(EP ) − D � nD(D − 1) + n(d1 + 1)(d1 + 4)+

+
n

2
D(D − 2d1 + 3) − n(D − d1 − 2)(D − 1) − 2 χ(E) .

Proof. D(EP ) = d1(EP ) + d1(E∗P ). Let us apply (2.6) to d1(EP ), and
(2.5) to

d1(EP ) − d1(E) = d1((E∗ ⊗ KF1)P ) − d1(E∗ ⊗ KF1) ,

by (2.4). One sees easily that d1(E∗(KF1 − S)) = D(E)− d1(E)− 3, and that
δ = 0. Then, (2.5) gives

(∗) d1(E∗P ) − d1(E∗) �
n

2
D(D − 1) − n(D − d1 − 2)(D − 1)+

+
n(D − d1 − 2)(D − d1 − 1)

2
− χ(E) ,

since χ(E) = χ(E∗⊗KF1) = χ(E∗(KF1 −S)). Adding (∗) to (2.6) and adding
n(d1 + 1), a term which is clearly positive, gives us the required inequality.

The inequality that we have obtained allows us to estimate the jump in the
degree of the maximal subbundle of the restriction of E to a fiber.

Lemma 2.5. There exists a polynomial F (X1, X2, X3) in 3 variables, hav-
ing the property that for any vector bundle E on P3, whose restriction down
to a general line has the constants d1 = d1(E|lgen) > 0 and D = D(E|lgen) and
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whose restriction to some plane π ⊂ P3 has χ(E|π) = χ2, and for l1 ⊂ P3 an
arbitrary line, we have

d1(E|l) � F (d1, D, χ2).

Proof. We put

f1(X1, X2, X3) =
n

2
X2(X2 − 1) +

n

2
(X1 + 1)(X1 + 4) + X1 − X3 ,

f2(X1, X2, X3) = n X2(X2 − 1) + n (X1 + 1)(X1 + 4)−
− n (X2 − X1 − 2)(X2 − 1)+

+
n

2
X2(X2 − 2X1 + 3) − 2 X3 + X2

and set F (X1, X2, X3) = f1(f1, f2, X3); let us show that this polynomial has
the desired property.

Let l0 be some line such that d1(E|l0) = d1 and D(E|l0) = D; let l1 ⊂ P3

be an arbitrary line. Let l be a line meeting li at Pi (for i = 0, 1), and let
πi = (l, li) be the plane spanned by l and li. Let σi : F1

� πi be the blowing
up of Pi ∈ πi and let pi : F1

� P1 be the ruling of F1. On F1 consider
the vector bundle σ∗0(E|π0). One sees easily that χ(E|π) = χ(σ∗0(E|π)). Then,
using the estimates (2.6) and (2.7), we have

d1(E |l) � f1(d1, D, χ2), and D(E |l) � f2(d1, D, χ2).

Now consider the bundle σ∗1(E|π1). Then we have nonnegative constants d′1
and D′ such that

d1(E|l1) � f1(d′1, D
′, χ2) .

These are constants of the vector bundle (E|lgen), with lgen the general line
of π1 passing through P1. Now note that if a1 � a′1 and a2 � a′2 (and the a′i
are positive), then f1(a1, a2, χ2 � f1(a′1, a

′
2, χ2). Hence

d1(E|l1) � f1 (d1(E|l) , D(E|l) , χ2) �
� f1 (f1(d1, D, χ2) , f2(d1, D, χ2) , χ2) = F (d1, D, χ2) .

q.e.d.
Corollary 2.1. A vector bundle E on P∞ has an integer invariant

d(E) = max
l⊂P∞

d1(E|l).
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§ 2 Vector bundles over ruled varieties.

Let P
π� B be a locally trivial fibration over B with fiber P1, and let

s : B � P be a fixed section of π, so that s(B) = S is a divisor in P .
Let E be a vector bundle of rank n over P . We can view E as a family

{Eb = E|π−1(b)}b∈B of vector bundles over P1. Let

Ebgen =
m⊕

i=1
Iki

(di), with d1 > d2 > · · · > dm.

Lemma 2.6. Let E be a vector bundle over P such that for every b ∈ B

Eb = Ik1(d1) ⊕
(mb⊕

i=2
Iki(b)

(
di(b)

))
.

Then the following assertions are true:

1) R0πE(−d1S) is a locally free sheaf on B (and we use the same symbol to
denote the corresponding vector bundle).

2) rkR0πE(−d1S) = k1.

3) The standard map γ : π∗R0πE(−d1S) � E(−d1S) is everywhere non-
degenerate.

Proof. 1) and 2) follow immediately from the base change theorem. For
3) note that γ cannot vanish on an entire fiber of π, since

R0πE(−d1S)
R0γ� R0πE(−d1S)

is an isomorphism; by the base change theorem once more the fiber of
R1πE(−d1S) at b is

H0(π−1b, Eb(−d1)) ,

and the restriction of γ to the fiber over b is the standard map

γb : H0(P1, Eb(−d1)) ⊗ OP
� Eb(−d1) .

Since by hypothesis Eb(−d1) has no factors of positive degree, its sections are
nowhere vanishing, so that the restriction γb is everywhere nondegenerate. This
proves 3).

Lemma 2.7. Let E be a vector bundle of rank n on P such that, for every
b ∈ B, H1(P1, Eb) = 0. Let b0 ∈ B be a point such that Eb0 contains as a
factor a line bundle of degree D � 0. Let BD � b0 be the subvariety defined in
a neighborhood of b0 as the locus of points b such that Eb contains a line bundle
of degree � D. Then

codimBBD � D(n − 1).

Proof. By hypothesis R0πE is a locally free sheaf on B whose fibers can
be identified with H0(P1, Eb). We can assume that the base B is affine. Let s0
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be a section of Eb0 having D transversal zeros, s0 defining a subbundle of degree
D. Then we can find a section s of E over P such that s0 = s|π−1(b0). Let Δs

be the subvariety of zeros of s. Then codimP Δs � n, and Δs meets π−1(b0)
transversally in D points P1, · · · , PD. We consider an analytic neighborhood U0

of b0 in B. Let ΔPi be the branch of the subvariety Δs at Pi in π−1(U0). Then

for sufficiently small (U0) the fiber over any point b ∈
D⋂

i=1

π(ΔPi
) intersects Δ

in D points, and hence

BD ⊇
N⋂

i=1

π(ΔPi
).

Hence, the lemma follows.

Let E be a vector bundle of rank n over P
π� B. We put

d′(E) = max
b∈B

d1(E∗b ), d(E) = max
b∈B

d1(Eb), and D(E) = d(E) + d′(E) .

Lemma 2.8. Let Bd = {b ∈ B, d1(Eb) = d(E)}. Then

codimBBD � (n − 1)D(E),

provided that BD is nonempty.
Proof. E(d′(E)S) satisfies the conditions of the previous lemma; setting

D = D(E), we get the required assertion.
Lemma 2.9. Let E be such that d1(Eb) = d(E) is constant. Let

Bm = {b ∈ B, k1(Eb) = k = max
b∈B

k1(Eb)}. Then

codimBBm � k1(n − 1)D(E).

Proof. Again we can suppose that d′(E) = 0. Let b ∈ Bm. Then there
exist k linearly independent sections s1, · · · , sk of Eb0 each of which has D(E)
zeros. Each of them extends to a section s̄i of E over π−1(U)for some neigh-
borhood U of b0. For U sufficiently small the restrictions of the s̄i to the fiber
over b ∈ U are still linearly independent. Let P

j
i be the zeros of the section s̄j ,

and let Δ
P

j
i

be the branch of the variety of zeros of the s̄j around P
j
i . Then

Bm ⊇
N⋂

i=1

k1⋂
j=1

π(Δ
P

j
i
),

which gives the required assertion.
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Vector bundles of finite rank over infinite varieties

In this chapter we will prove several theorems on the structure of vector
bundles of finite rank over infinite projective and quasi-projective varieties.

Theorem 1. Any rank n bundle over P∞ is a direct sum of line bundles.
The equivalent ”finite” assertion is
Theorem 1’. An absolute vector bundle of rank n over Pk is a direct sum

of line bundles.
Theorem 2. Let X∞

s⊂ P∞ be a nonsingular infinite projective variety,
and let E be a vector bundle on X∞ of rank n. Then E is a direct sum of line
bundles.

The equivalent ”finite” assertion is
Theorem 2’. An absolute rank n bundle E on an absolute projective variety

is a direct sum of line bundles.
Theorem 3. Let X∞

s⊂ Pw∞ be nonsingular, and let E be a vector bundle
on X∞ of rank n. Then E is a direct sum of line bundles.

The proof is based on the old result of Grothendieck’s that every vector
bundle on P1 is absolute, and is a direct sum of line bundles, and on a series
of standard arguments of van de Ven and Barth ([2], [7]).

§ 1 Vector bundles on P∞.

We have seen that any infinite variety X∞
s⊂ P∞ is swept out by its lines.

Definition 3.1. A vector bundle E on X∞
s⊂ P∞ is said to be linearly

trivial if when restricted down to any line l ⊂ X∞ it becomes trivial: E|l = In.
Proposition 3.1 (van de Ven [7]). A linearly trivial bundle on Pn is

trivial.
Proof. Let us blow up some point P0 ∈ Pn: P̃n

σ� Pn . Then P̃n can
be fibered in lines P̃n

p� Pn−1 = (PTPn)P0 and σ−1(P0) = Pn−1 is a section
of p. Consider the natural map associated to p:

p∗(R0p(σ∗E))
γ� σ∗(E) .

Restrict this isomorphism onto the section σ−1(P0); this gives us an isomor-
phism

γ|σ−1(P0) : R0p(σ∗(E))
∼� In ,
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and hence an isomorphism In
γ� σ∗E. Taking the image of this isomorphism

under the direct image functor , we get a morphism In
R0γ� E which can only

degenerate at P0. But then it must be an isomorphism everywhere.
Corollary. A linearly trivial vector bundle on P∞ is trivial.
Definition 3.2. A vector bundle E on X∞

s⊂ P∞ is sad to be level if for
any two lines l1 and l2 of X∞ we have E|l1 ∼= E|l2 .

Proposition 3.2. A level vector bundle on P∞ is a direct sum of line
bundles.

Suppose that for l ⊂ P∞ we have

E|l =
m⊕

i=1
Iki

(di), with d1 > d2 > · · · > dm.

We have to establish such a decomposition on the whole of P∞. We first
construct a subbundle E1 ⊂ E such that

E1|l = Ik1(d1) and (E/E1)|l =
m⊕

i=1
Iki

(di);

that is, we will separate off inside E a subbundle which will be the maximal
subbundle of each restriction to a line.

To construct a rank k1 subbundle of E is the same thing as to construct a
section of the Grassmanisation4 Gk1(E), that is, to assign to each point P ∈ P∞
a k1-dimensional linear subspace of the fiber EP . Let l be a line passing through
P . Then from the pair (l, P ) we can construct the subspace Iki

(di)P ⊂ (E|l)P

— the fiber of the maximal subbundle of E|l. This subspace is independent of
the particular line l; indeed, the regular map P∞ = (PTP∞)P

ϕ� G(k1, n) =
Gk(E)P is constant (by the Rigidity Principle of § 1.1).

This gives us the construction of a subbundle E1 ⊂ E, with E1(−d1) linearly
trivial. Thus (by Proposition 3.1) E1 = Ik1(d1) over P∞.

By induction on n we can assume that E|E1 is a direct sum of line bundles,
and the required assertion then follows from the fact that any short exact
sequence of bundles over P∞ of the form

0 � I(d) � E � I(d′) � 0 ,

is split, which follows since H1(P∞, I(d − d′)) = 0. This same proposition was
proved by van de Ven for rank 2 vector bundles [7].

For the proof of Theorem 1 in the general case the construction is the
same, but instead of all the lines of P∞, the construction uses only a certain
(sufficiently large) part of them.

Proof of Theorem 1. Let E a rank n vector bundle on P∞. According
to Corollary 2.1, there exist constants

d = max
l∈P∞

d1(E|l), D = max
l⊂P∞

d1(E|l) + max
l⊂P∞

d1(E∗|l), k = max
l⊂P∞

d1(F |l)=d

k1(F |l) .

4for the definition, see [6]
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Definition 3.3. l ⊂ P∞ is said to be exceptional for E if

d1(E|l) = d, k1(F |l) = k.

Let (PTP∞)P be the set of lines of P∞ through P , and let DP be the
subvariety of lines through P and exceptional for E.

Lemma 3.1. DP

s⊂ P∞ = (PTP∞)P is an infinite projective variety, and

codimP∞DP � n(n − 1)D.

Proof. P lies in some PN for sufficiently large N . Let G(1, N) be the
Grassmannian of lines of PN . We can assume that PN already contains some
line l for which d1(E|l) = d and k1(F |l) = k. Let Gd,k(1, N) be the subvariety
of lines satisfying this property. Then Lemmas 2.8 and 2.9 give the inequality

codimG(1,N)Gd,k(1, N) � n(n − 1)D.

It follows that for N large enough the intersection of Gd,k with the PN−1

parameterising the lines through P is nonempty. The lemma follows.
We now carry through a general construction. Let l be a line through P

exceptional for E. Then to the pair (l, P ) we we can associate the subspace
Ik(d)P ⊂ (E|l)P , the fiber at P of the maximal subbundle of

E|l = Ik(d)⊕
(

m⊕
i=2

Iki
(di)
)

with d > d2 > · · · > dm. This subspace is independent of l. Indeed, the regular
map

DP
ψ� G(k1, n) = Gk(E)P

is constant according to the Rigidity Principle and Lemma 3.1. Thus we have
constructed a section of the Grassmannisation Gk(E); that is, a subbundle
E1 ⊂ E. Carrying out an induction on the rank of E, we get a proof of
Theorem 1.
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§ 2 Vector bundles on infinite projective varieties.

Proof of Theorem 2. We carry out an induction on rkE = n.
Lemma 3.2. Any vector bundle on X∞

s⊂ P∞ is level (see Definition 3.2.).
Proof. Let π be an arbitrary plane lying on X∞

s⊂ P∞. Then E|π =
m⊕

i=1
Iki

(di), since π ⊂ P∞ ⊂ X∞ (by Lemma 1.3), and, according to Theorem

1, E|P∞ =
m⊕

i=1
Iki

(di) (with di > di+1). Obviously, if S =
N⋃

i=1

Si is a broken

plane, then the restriction of E onto each component is the same. Hence the
restriction of E onto all lines which lie on a broken plane is the same. But
according to Corollary 1.5 each pair of lines can be joined by a broken plane
in X∞. This proves the lemma.

Lemma 3.3. Let E be a rank n vector bundle on X∞
s⊂ P∞, and suppose

that E|l =
m⊕

i=1
Iki

(di), with d1 > · · · > dm. Then there exists a subbundle E1 ⊂
E such that E1|l = Iki

(di) and E/E1 =
m⊕

i=2
Iki

(di) for every line l ⊂ X∞
s⊂ P∞.

Proof. We again apply our standard construction. Let x ∈ X∞, and
let l be a line of X∞ through x. To the pair (x, l) we associate the fiber
(Ik1(d1))x ⊂ (E|l)x. For a fixed x this subspace is independent of l, since
the regular map of the infinite projective variety V d

x into the Grassmannian
G(k1, n) is constant by the Rigidity Principle; q.e.d.

Thus any vector bundle E on X∞
s⊂ P∞ can be represented as an extension

of linearly trivial bundles twisted by line bundles.
Proposition 1.4 reduces the general case to that of linearly trivial bundles.
Lemma 3.4. Let E be a rank n bundle on a nonsingular X∞

s⊂ P∞, and
suppose that E|l = In. Then E is the trivial vector bundle.

Proof. The proof is analogous to the proof of Proposition 3.1, with the
only difference that instead of considering the line joining x0 to x we will
consider broken lines of length 2.

Consider a point x0 ∈ X∞
s⊂ P∞ at which the variety V d

x0
is nonsingular.

One sees easily that such points do exist. Blow up this point on X∞, giving
σ : X̃∞ � X∞, with σ everywhere an isomorphism except for x0 ∈ X∞, and
σ−1(x0) = P∞ = (PTX∞)x0 ⊂ X̃∞. Then the inverse image C̃(V d

x0
) ⊂ X̃∞ is

a nonsingular subvariety. It is a ruled variety p : C̃(V d
x0

) � V d
x0

, with fibers
lines p−1(l) = P1. Consider the inverse image σ∗(E) = Ẽ on X̃∞ under the
map σ : X̃∞ � X∞, and its restriction on C̃(V d

x0
).

Lemma 3.5. Ẽ| eC(V d
x0

) is trivial.

Proof. For every fiber p−1(l) we have σ∗(E)|p−1(l) = E|l = In. Hence the
standard map

γ : p∗R0pẼ| eC � Ẽ| eC
is an isomorphism (we have written C̃ = C̃(V d

x0
)). The fibration p has the
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section s : V d
x0

� C̃(V d
x0

) given by the intersection of C̃(V d
x0

) and σ−1(x0) in
X̃. Restrict γ to this section:

γ|s(V d
x0

) : R0pẼ| eC � Ẽ|s(V d
x0

);

but the restriction σ∗(E)|s(V d
x0

) is trivial. Hence R0pẼ| eC is trivial, and so Ẽ| eC
also; q.e.d.

Consider now the following diagram of varieties and maps:

PV

X̃∞
�

σ

V
p

�

‖
X̃∞ ⊃C̃(V d

x0
)

p1�

the fiber p−1(v) = P1

the fiber p−1
1 (c) = V d

c

where

(1) V is the variety of pairs (l, c), with l a line meeting C(V d
x0

) and c the
point of intersection. The map p1 projects the pair (l, c) to c ∈ C̃(V d

x0
).

The fiber p−1
1 (c) = V d

c is the variety V d
c of lines of X∞ through c.

(2) PV is the variety of pairs {x, l � c}, l � c being a point of V, and x a
point on the line l. p is the projection onto l � c. This has a section
s : V � PV consisting of pairs {c, l � c}, for which x = c. The map σ
is the projection to the point x.

Over a point x, the fiber of σ is the variety of broken lines of length 2 joining
x and x0. If x /∈ C(V d

x0
) , then, as we have already seen (Corollary 1.4), the

fiber σ−1(x) = C(V d
x0

)
⋂

C(V d
x ) is an infinite projective variety, and is therefore

connected by the Connectedness Principle. Hence to prove the triviality of Ẽ it
is enough to show the triviality of σ∗(Ẽ), since R0σ(σ∗(Ẽ)) = Ẽ, and the fact
that Ẽ is trivial is enough to give the triviality of E on X∞ (see the conclusion
of the proof of Proposition 3.1).

Since σ∗(Ẽ)|p−1
1 (l
c) = E|l = In, the standard map p∗R0pσ∗(Ẽ)

γ� σ∗(Ẽ)
is everywhere an isomorphism. Restrict this isomorphism onto the section s(V):

γ|s(V ) : R0pσ∗(Ẽ) � σ∗(Ẽ)|s(V),

but the restriction of σ∗(Ẽ) to s(V) is nothing other than the inverse image
under p1 of the restriction of Ẽ onto C̃(V d

x0
) = C̃, i.e. σ∗(Ẽ)|s(V) = p∗1(Ẽ| eC).

According to lemma 3.5, this vector bundle is trivial. Hence σ∗(Ẽ)|s(V) = In,
and the isomorphism γ|s(V) trivializes R0pσ∗(Ẽ); but then the isomorphism γ

trivializes σ∗(Ẽ).
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This proves the lemma, and hence also Theorem 2.
Proof of Theorem 3. Let X∞

s⊂ P∞, and let E be a vector bundle on
X∞ of rank n. Let us return to the covering (1.5). Then ϕ∗ω∞E is a direct sum
of line bundles. E is contained as a direct summand in the vector bundle

R0ϕω∞(ϕ∗ω∞E) =
n⊕

i=1
O(di)R0ϕωOX[ω] =

( n⊕
i=1

O(di)
)
⊗
( n⊕

i=1
O(mi)

)
according (1.6) and (1.7). Using the uniqueness of the decomposition of a
vector bundle into a direct sum, we get that E is a direct sum of line bundles,
q.e.d.

Modulo Reid’s conjecture we get a complete description of vector bundles
of finite rank on an arbitrary infinite variety.
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Introduction.

The subject and the title of this paper illustrate Arnold’s paraphrase of Plutarch:

. . . just as every skylark must display its crest, so every area of mathe-
matics will ultimately become symplecticized

([1], final paragraph of Chapter 14)

I dedicate this paper to Vladimir Igorevich Arnold on the occasion of his fiftieth
birthday.

In algebraic geometry, the notion of a symplectic structure on a smooth
algebraic variety has to be carefully defined, unless we want to restrict ourselves
to a rather special, although very interesting, class of varieties similar to K3
surfaces.

Definition 0.1. By an algebraic symplectic structure on a smooth alge-
braic variety B we understand any nonzero skew-symmetric homomorphism

(0.1) TB
ω� T ∗B = ΩB : ω∗ = −ω ,

of the tangent sheaf into the cotangent sheaf. An algebraic symplectic struc-
ture is called nondegenerate, if ω is an isomorphism at the generic point, and
everywhere nondegenerate, if ω is an isomorphism.

Any holomorphic 2-form on a regular algebraic surface defines a nondegen-
erate symplectic structure, and if it is everywhere nondegenerate the surface is
K3.

Definition 0.2. By a Poisson structure on B we understand any nonzero
skew-symmetric homomorphism

(0.1′) α : T ∗B � TB = ΩB, α∗ = −α,

with the same non-degeneracy specifications as in Definition 0.1.
The existence of a Poisson structure on a regular algebraic surface implies

the rationality and ”almost” minimality of the surface.
For a smooth B, one can describe the geometry of a sheaf F in a simple

way analogous to the construction of the Jacobian of a curve: every sheaf has

122
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1) discrete invariants: the class of the sheaf in a lattice,

2) continuous invariants: the component M(F ) of the variety of moduli,
containing F , and

3) operations F � F ′ inducing the equality M(F ) = M(F ′).

1. The discrete invariants of the sheaf. These are analogues of
the degree of a divisor on a curve: Rm, which is a class in the big lattice
{F}m ∈ VZ(B), and the Mukai vector in the Mukai lattice v(F ) ∈ M(B) are
described in§ 1 and § 2 of Chapter 1.

2. The component M(F ) of the variety of moduli. This is an ana-
logue of the Jacobian of a curve. The existence problem for M(F ) is nontrivial
(see § 1 of Chapter 1). ”The theory of periods” describes connections between
the Hodge structures of the base B and M(F ). In the compact modular case
(see Definition 1.1.4, 3), the period matrix is replaced by the lattices of tran-
scendental cycles T (B) and T (M(F )) and the Mukai structure (see Definition
1.2.1, 2). The Mukai correspondence (1.2.28), (1.2.29) gives rise to a homomor-
phism of the Mukai structures (1.2.30). In particular, we have a homomorphism
τ : H2,0(B) � H2,0(M(F )) which assigns to each symplectic structure on
B a symplectic structure on M(F ).

In§ 3 of Chapter 1, for a regular surfaces S we give geometric constructions
of a symplectic structure on M(F ) based on a symplectic structure on S (The-
orem 1.3.1), and a Poisson structure on M(F ) based on a Poisson structure on
S (Theorem 1.3.1’). We also construct the local invariant of the sheaf F on S
(Definition 1.3.1), which has no analogue for curves.

3. Modular operations. These are analogues of tensoring by an in-
vertible sheaf and passing to the conjugate. In the curve case they establish
isomorphisms between all the components of the Picard scheme. In the case of
a regular surface the set of those operations is much richer, and we devote all
of Chapter 2 to their description.

In§ 1 of that chapter we describe special sheaves on S with moduli varieties
isomorphic to symmetric powers of S and relative Picard schemes of linear sys-
tems of curves on S. In § 2 we define and investigate the universal extension
operation. With the aid of this operation we construct an infinite series of
varieties of moduli of bundles on S, which are birationally equivalent to sym-
metric powers of S if ρ(S) � 2 (Theorem 2.2.2 and (2.2.25)). In particular, we
obtain an infinite series of varieties of moduli of bundles birationally equivalent
to S itself (see the remark after (2.2.25)). In§ 3 of Chapter 2 we investigate the
universal division operation.

In Chapter 3 we discuss the principal difference between classification the-
ories of vector bundles on surfaces with symplectic and Poisson structures.

Notational conventions. In our terminology:
Schemes are algebraic schemes over algebraically closed field k (k = C

for clarity). Varieties are reduced and irreducible schemes. Points are closed
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points. Bundles are locally free sheaves. The symbol KS denotes both the
canonical class of divisors (in the additive notation) and the corresponding
invertible sheaf (in the multiplicative notation).

B is the base variety in the general case, S in the surface case, and C in
the curve case.

〈E| denotes the functor Ext0OB
(E, ∗) ;

|E〉 denotes the functor Ext0OB
(∗, E) , i

〈
E
∣∣F〉 denotes Exti

OB
(E,F ) .

The diagrams

i
〈
E
∣∣F〉 �........� i

〈
E′
∣∣F〉(0.2)

i
〈
E
∣∣F〉 ........�� i

〈
E
∣∣F ′〉(0.2’)

denote, respectively, the ”solid” homomorphisms

Exti
OB

(E,F ) � Exti
OB

(E′, F )

Exti
OB

(E,F ) � Exti
OB

(E,F ′)

induced by a ”broken” homomorphisms E′ ........� E and F ........� F ′.

The symbols =====
(1.2.3)

and ====
sd

mean ”equals by virtue of formula
(1.2.3)” and ”by virtue of the Serre duality”.

I am very grateful to all participants of the seminar ”Vector bundles on
surfaces” at Moscow State University, and especially to A. N. Rudakov, who
conducted the seminar, A. I. Bondal, and A. L. Gorodentsev, for stimulating
discussions of all of the constructs of this paper.



chapter 1

Symplectic structure

§ 1 The big lattice and hierarchy of moduli.

Let B be an irreducible, smooth and complete algebraic variety of dimension
b. Our first attempt to describe the topology of the set of coherent sheaves on
B is based on the following definition.

Definition 1.1.1. Two sheaves F1 and F2 on B are called close to each
other if there exist irreducible smooth scheme M , a coherent sheaf F on B×M ,
flat over M , and points m1, m2 ∈ M such that

(1.1.1) F|(mi×B) = Fi.

The sheaf F on B × M is called a flat family with base M .
The chains of close sheaves generate an equivalence relation R. The class

of F in this relation is denoted by {F}. Since the set of extensions

0 � F1
� F � F2

� 0

can be endowed with the structure of a flat family with base 1
〈
E
∣∣F〉, we have

(1.1.2) {F} = {F1 ⊕ F2}.

The set F (B) of classes {F} of coherent sheaves on B is a semigroup with
respect to the operation

(1.1.3) {F1} ⊕ {F2} = {F1 ⊕ F2},

and F (B) generates a Z-module K0
alg. This definition is justified because, by

virtue of (1.1.2), one can define an epimorphism

(1.1.4) K0(B)
r� K0

alg(B)

125
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of Z-modules, where K0(B) is the Grothendieck group of B, and the Chern
character gives rise commutative diagram

(1.1.5)

K0(B)
r� K0

alg(B)

R̃(B)
�

r � Ã(B)
�

‖ ‖
b⊕

ı=0
Rı(B)

b⊕
ı=0

Aı(B)

where Rı(B) [Aı(B)] is the group of codimension ı cycles on B modulo rational
[algebraic] equivalence. On the Z-module K0

alg(B) one can define an integral
bilinear form

(1.1.6) −χ(F1, F2) =
b∑

ı=0

(−1)ı+1 rk i
〈
F2

∣∣F1

〉
.

The group Pic B acts on K0
alg(B): if L ∈ Pic B, then

(1.1.7) TL({F}) = {F ⊗ L},

and, since i
〈
F1

∣∣F2

〉
= i
〈
F1 ⊗ L

∣∣F2 ⊗ L
〉
, the operator TL preserves the bilinear

form −χ(1.1.6). Furthermore the operators (Id − TL) are nilpotent:

(1.1.8) (Id − TL)N = 0

(see [9], 8.7).
Since for a smooth B the Grothendieck group K0(B) is generated by bun-

dles, one can define the ”star” operator on K0
alg(B): if E is a bundle, then

(1.1.9) {E}∗ = {E∗},

where E∗ = Hom(E,OB).
A subtler equivalence between sheaves is given by the following
Definition 1.1.2. Two sheaves F1 and F2 on B are called modularly close

if there exist an irreducible smooth scheme M , a flat family of sheaves F on
B×M , and two points m1,m2 ∈ M such that (1.1.1) holds, and for both points
m1 and m2 the Kodaira–Spencer homomorphism

(1.1.10) TMmı

k� 1
〈
Fı

∣∣Fı

〉
is a monomorphism.

The chains of modularly close sheaves generate an equivalence relation Rm.
The Rm-equivalence class of F will be denoted by {F}m.
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It is easy to see that

F1
Rm∼ F2, F ′1

Rm∼ F ′2 ⇒ F1 ⊕ F ′1
Rm∼ F2 ⊕ F ′2.

Therefore the set Fm(B) of the Rm-equivalence classes of sheaves on B is a
semigroup with respect to the operation of direct sum, and Fm(B) generates a
Z-module VZ(B), related to K0

alg(B) via the epimorphism

(1.1.11) VZ(B)
rm� K0

alg(B).

This epimorphism induces a form −χ (1.1.6) on VZ(B), which is denoted by
the old symbol.

Definition 1.1.3. The Z-module VZ(B) with the integral bilinear form
−χ (1.1.6) will be called the big lattice of the variety B.

The group Pic B acts on the big lattice VZ(B) by −χ-isometries (1.1.7).
According to their variational properties, the sheaves on a complete smooth

variety B form a complicated hierarchy, from which we select only three levels.
Definition 1.1.4.

1) A sheaf F on B is called simple if

0
〈
F
∣∣F〉 = C.

2) F is called modular if there exist a smooth scheme M , a point m ∈ M ,
and a flat family F on B × M such that

a)

(1.1.12) F = F|B×m;

b) the Kodaira– Spencer homomorphism

(1.1.13) TMm
k� 1

〈
F
∣∣F〉

is an isomorphism.

3) F is called compact modular if there exist a complete smooth variety M ,
a point m ∈ M , and a flat family F on B × M such that (1.1.12) holds,
for any points m ∈ M the homomorphism (1.1.13) is an isomorphism,
and for any two points m1,m2 ∈ M

(1.1.14) F|B×m1 �= F|B×m2 .

For simple sheaves one has
Theorem (Altman and Kleiman [2]). For any simple sheaf F on a com-

plete smooth B there exists a coarse moduli scheme Spl(F0) of simple sheaves.
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If [F ] ∈ Spl(F0) is the point corresponding to the sheaf F , then the Zariski
tangent space at this point is of the form

(1.1.15) TZSpl(F0)[F ] = 1
〈
F
∣∣F〉.

Examples show that the scheme Spl(F0) need not be separated or reduced.
However if F is a simple modular sheaf, then for the family from Definition
1.1.4, 2), the classifying morphism

(1.1.16) M
f� Spl(F )

identifies an analytic neighborhood of m ∈ M with an analytic neighborhood
of [F ] in Spl(F ) for each point [F ′] of which

TM[F ′] ======
(1.1.13) 1

〈
F ′
∣∣F ′〉 ======

(1.1.15)
TZSpl(F )[F ′].

Thus if Spl(F0) contains a point [F ] corresponding to a simple modular sheaf,
then Spl(F0) is reduced.

Definition 1.1.5. If the scheme Spl(F0) is of dimension s and reduced,
we set

(1.1.17)
Sing Spl(F0) = {[F ] ∈ Spl(F0)|rk 1

〈
F
∣∣F〉 > s},

Spl0(F0) = Spl(F0) − Sing Spl(F0).

Thus, for every simple modular sheaf F on B, [F ] ∈ Spl0(F ).
At present we have only one criterion of modularity in terms of the coho-

mology of the sheaf itself.
The Mukai–Artamkin Criterion. If F is a simple sheaf on a complete

smooth B and the natural homomorphism

(1.1.18) jF : H0(KB) � 0
〈
F
∣∣F ⊗ KB

〉
is an epimorphism, then F is modular.

This criterion was proved by Mukai for surfaces [11], and by Artamkin for
an arbitrary smooth base [3].

Serre duality along with this criterion shows that on abelian, Del Pezzo,
and K3 surfaces any simple sheaf is modular.

Proposition 1.1.1. If the scheme Spl(F0) is reduced, then the sheaf F
corresponding to the point [F ] ∈ Spl0(F0), is modular.

Proof. For any smooth point [F ] ∈ Spl0(F0)the Kodaira–Spencer map
(1.1.13) is an embedding and, therefore, an isomorphism. This means that for
any vector e ∈ 1

〈
F
∣∣F〉 the first obstruction e ◦ e ∈ 2

〈
F
∣∣F〉, where

(1.1.19) 1
〈
F
∣∣F〉 ◦ 1

〈
F
∣∣F〉 � 2

〈
F
∣∣F〉

is the Yoneda pairing, and all other obstruction vanish (see [1],§ 1). Similarly
to [11], § 1, or [3], this implies the existence of a formal germ of the scheme M
at the point m and a modular family F . This germ algebraises and coincides
with a neighborhood of [F ] in Spl0(F0). �
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Definition 1.1.6. Suppose that a flat morphism f : X � M makes a
scheme X into an M -scheme. An OM -flat sheaf F is called M -simple if the
natural homomorphism

(1.1.20) OM
� Ext0

OM
(F ,F)

is a isomorphism.
It was proved in [2] that for any scheme Spl0(F0) there exist a family of

schemes {Uα} and sheaves Fα on B × Uα such that

1) Fα is universal and Uα is a simple sheaf on B × Uα, and

2) the family of classifying morphisms

(1.1.21)
{

Uα
fα� Spl0(F0)

}
is an etale covering of the scheme Spl0(F0):

(1.1.22)
∐

fα :
∐

Uα
� Spl0(F0).

In general the sheaves Fα cannot be glued into a sheaf on Spl0(F0) (see, for
example, [10]). However, we have the following

Proposition 1.1.2.

1) For any simple bundle E on B the sheaves Ext ı
Uα

(Fα,Fα ⊗ π∗BE) glue
into a coherent OSpl0(F0)-sheaf, which we denote by

Ext ı
Spl0(F0)(F ,F ⊗ π∗BE).

2) In particular, we have the isomorphisms

(1.1.23)

OSpl0(F0)
∼� Ext0

Spl0(F0)(F ,F)

TSpl0(F0)
∼� Ext1

Spl0(F0)(F ,F)

T ∗Spl0(F0)
∼� Extb−1

Spl0(F0)
(F ,F ⊗ π∗BKB)

and the stalkwise duality between these sheaves is given by the relative
Serre duality .

3) The sheaves (1.1.23) are universal in the natural sense.

Proof. The right-hand sides of (1.1.23) coincide with the sheaves W ı
T,F

from [11], § 2, Definition 2.1. Therefore the desired results follow from Propo-
sitions 2.2, 2.5, 2.6, and Corollary 2.7 of the same paper. �

Thus, for any simple modular sheaf F on B the moduli scheme Spl0(F ) � [F ]
is reduced and smooth, but possibly nonseparated. This does not stop us from
correctly defining
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1) tensor structures on moduli (for example, an algebraic symplectic struc-
ture, which is of interest to us), and

2) the birational type of the moduli variety

(1.1.24) M(F ) bir∼ Spl0(F ).

More precisely, by M(F ) we will understand any Zariski-dense subvariety of
Spl0(F ) containing [F ].

It is easy to see that, for a compact modular sheaf (see Definition 1.1.4, 3)),
M is a fine moduli variety and F is a universal family. In this case M has all
the properties of the base B, F can be viewed as a family of sheaves on M ,
and B is often the variety of moduli of sheaves on M .

Since compact modular sheaves are simpler to work with, we will use them
to illustrate basic principles.

The most important class of sheaves is given by the following
Definition 1.1.7. A simple sheaf F on B is called exceptional if

(1.1.25) 1
〈
F
∣∣F〉 = 0.

By Definition 1.1.2, an exceptional sheaf F is unique in its class

{F}m ∈ Fm(B) ⊂ VZ(B)

(but not in the class {F} ∈ F (B) ⊂ K0
alg(B)).

We denote the set of exceptional sheaves by

(1.1.26) R(B) ⊂ Fm(B) ⊂ VZ(B).

Clearly

(1.1.27) h1,0(B) �= 0 ⇒ R(B) = ∅, h1,0(B) = 0 ⇒ Pic B ⊂ R(B).

In Mukai’s interpretation, the big lattice (VZ(B),−χ) is an analogue of the
Picard lattice, Fm(B) is an analogue of the semicone of effective divisors and
R(B) is an analogue of the set of exceptional divisors. We shall clarify this
analogy in the next section when we investigate the integral bilinear form −χ.
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§ 2 The Mukai lattice and structure.

Associated with a complete smooth algebraic variety B of dimension b there
are two graded rings

(1.2.1) H̃(B, Z) =
b⊕

i=0
H2i(B, Z), Ã(B) =

b⊕
i=0

Ai(B)

of even-dimensional cohomology and cycles modulo algebraic equivalence, which
are connected via a standard homomorphism h : Ã(B) � H̃(B, Z). Let

(1.2.2) H̃a(B) = h(Ã(B)) ⊂ H̃(B, Z)

be its image.
The involution ∗ acts componentwise:

(1.2.3)
∗|H4i(B,Z) = Id, ∗|H4i+2(B,Z) = −Id,

∗|A2i(B) = Id, ∗|A2i+1(B) = −Id.

The components H0(B, Z) = A0(B) and H2b(B, Z) = Ab(B) can be naturally
identified with Z.

For any u ∈ H̃(B, Z) we denote the ith component of this element by [u]i.
Let Kb denote the canonical class of B. On the Z-module H̃(B, Z) one can
define two bilinear forms

(1.2.4)
(u, v) = −[u∗ · v]2b = (−1)b[v∗ · u]2b,

((u, v)) = −1
2
KB [u∗ · v]2b−2.

The former is symmetric if b ≡ 0 (mod 2) and skew-symmetric otherwise. The
latter has inverse symmetry.

The Chern character composes the epimorphisms rm (1.1.11) and h ⊗ Q

into the chain

(1.2.5) VZ(B)
rm� K0

alg(B)
ch� Ã(B) ⊗ Q

h� H̃(B, Q).

By Riemann–Roch (see, for example, [5]), the bilinear form (1.1.6) is defined
by

(1.2.6) χ(F1, F2) = [chF2 · ch F ∗1 · tdB ]b,

where tdB ∈ Ã(B) ⊗ Q is the Todd class. This form decomposes into the sum
of the symmetric and skew-symmetric parts:

(1.2.7) χ(F1, F2) = χ+(F1, F2) + χ−(F1, F2), χ±(F2, F1) = ±χ(F1, F2).

A direct calculation shows that

(1.2.8) td∗B = tdB · ch KB = tdB · eKB .
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Set 2 td±B = tdB ± td∗B =====
(1.2.8)

tdB

(
1 ± eKB

)
. Then

χ±(F1, F2) =
[
ch F ∗2 · ch F1 · td±B

]
b

, b ≡ 0 (mod 2)

χ±(F1, F2) =
[
ch F ∗2 · ch F1 · td±B

]
b

, b ≡ 1 (mod 2).

The conditions

(1.2.9) σ2
B = td+

B , [σB ]0 = 1, ξ2
B = tdB

eKB − 1
KB

, [ξB ]0 = 1

uniquely determine two elements σB , ξB ∈ Ã(B) ⊗ Q. Both elements are
∗ -symmetric: σ∗B = σB , ξ∗B = ξB and for B = B1 × B2

(1.2.10) σB1×B2 = π∗1σB1 · π∗2σB2 , ξB1×B2 = π∗1ξB1 · π∗2ξB2 .

These elements define two lattice homomorphisms

(1.2.11)

VZ(B)
rm� K0

alg(B)
w�
v
� Ã(B) ⊗ Q

h� algH̃(B, Q)

v(F ) = chF · σB

w(F ) = chF · ξB

and the ±-components (1.2.7) of the bilinear form (1.1.6) are as follows:

(1.2.12)

χ+(F1, F2) = (v(F1), v(F2))
χ−(F1, F2) = ((w(F1), w(F2) ))

when b ≡ 0 (mod 2)

χ+(F1, F2) = ((w(F1), w(F2) ))
χ−(F1, F2) = (v(F1), v(F2))

when b ≡ 1 (mod 2)

where ( ∗ , ∗ ) and (( ∗ , ∗ )) are the forms (1.2.4).
The Hodge decomposition

H2i(B, C) = ⊕
p+q=2i

Hp,q(B, C)

gives rise to a mixed Hodge structure on

(1.2.13) H̃(B, C) = H̃(B, Z) ⊗ C = ⊕
p+q≡0 (mod 2)

Hp,q(B).

Definition 1.2.1. Let b ≡ 0 (mod 2).

1) The Mukai lattice (M(B), ( ∗ , ∗ )M ) is the minimal sublattice of H̃(B, Q)
containing H̃(B, Z) and v(VZ(B)) with integral inner product ( ∗ , ∗ )M ,
induced by ( ∗ , ∗ ).



Chapter 1. § 2 The Mukai lattice and structure 133

2) The orthogonal complement of v(VZ(B)) with respect to ( ∗ , ∗ )M :

(1.2.14) T (B) = v(VZ(B))⊥ ⊂ M(B),

is called the lattice of transcendental cycles.

3) The Hodge decomposition (1.2.13) induces a mixed Hodge structure on
T (B) ⊗ C, which we will call the Mukai structure.

It is easy to see that, for B = B1 ⊗ B2

M(B1 ⊗ B2) = M(B1) ⊗ M(B2).

One has similar constructions in the case b ≡ 1 (mod 2).
Examples. In concrete calculations it is convenient to use the standard

polynomials in the Chern classes (c1, · · · , cb) of a sheaf F on B:

(1.2.15) pk(F ) = det

⎛⎜⎜⎜⎝
c1(F ) 1 0 . . . 0
2c2(F ) c1(F ) 1 . . . 0

...
...

...
...

kck(F ) (k − 1)Ck−1 0 . . . 1

⎞⎟⎟⎟⎠
Then ch (F ) =

∑ pk(F )
k!

. In particular,

(1.2.16) p0(F ) = 1, p1 = c1, p2 = c2
1 − 2c2, p3 = c3

1 − 3c1c2 + 3c3, · · ·

(see, for example, [5], 15.1.2).
1) Let B = S be a smooth algebraic surface (b = 2) with invariants

(1.2.17) χ = χ(OS) = pg − q + 1, e = eS = χ(S, Z)

where e is the Euler–Poincaré characteristic. Then

(1.2.18)

H̃(S, Z) = Z ⊕ H2(S, Z) ⊕ Z

σS =
(
1 , 0 ,

χ

2

)
, ξS =

(
1 , 0 ,

e

24

)
v(F ) =

(
rkF , c1(F ) ,

1
2

p2(F ) +
1
2

rkF · χ
)

w(F ) =
(

rkF , c1(F ) ,
1
2

p2(F ) +
1
24

rkF · e
)

χ+(F1, F2) =

=
1
2

(
rkF1 · p2(F2) + 2 c1(F1) · c1(F2) + rkF2 · p2(F1)

)
− rkF1 · rkF2 · χ

χ−(F1, F2) = −1
2

KB · det
(

rkF1 rkF2

c1(F1) c1(F2)

)
.
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If the intersection form on Pic S is even and χ is an even number, then the
Mukai lattice M(S) coincides with H̃(S, Z) endowed with inner product ( ∗ , ∗ )
from (1.2.4). In particular, if S is a K3 surface, then
(1.2.19)

χ(F1, F2) = χ+(F1, F2)
σS = ξS = (1, 0, 1)

v(F ) = (rkF , c1(F ) , g(c1(F )) − 1 − c2(F ) + rkF ) ∈ H̃(S, Z) = Z24

−χ(F1, F2) = rk1
〈
F2

∣∣F1

〉− rk0
〈
F2

∣∣F1

〉− rk0
〈
F1

∣∣F2

〉
.

In the general case,

(1.2.20) M(S) ⊂ Z ⊕ H2(S, Z) ⊕ 1
2

Z

with form 2 ( ∗ , ∗ ) (1.2.4), and for a pair of sheaves F1 and F2 on S

(1.2.21)
−χ(F1, F2) = (v(F1), v(F2)) + ((v(F1), v(F2))),

v2(F ) = rk1〈F2, F1〉 − rk0〈F2, F1〉 − rk2〈F2, F1〉.
For any sheaf with Mukai vector v(F ) = (r, c1, s)

(1.2.22) χ(F ) = h0(F ) − h1(F ) + h2(F ) = s − 1
2
c1(F )KB + rχ/2.

2) Let B be a solid (b = 3). Set

(1.2.23) K = −c1(B), k = c2(B).

Then
H̃(B, Z) = Z⊕H2(B, Z)⊕ H4(B, Z) ⊕Z,

‖
H2(B, Z)∗

(1.2.24)

σB =
(

1, 0,
K2 + k

2
, 0
)

, ξB =
(

1, 0,
k

24
, 0
)

,

v(F ) =
(

rkF, c1(F ),
1
2
p2(F ) + r

K2 + k

24
,
c1(K2 + k)

24
+

1
6
p3(F )

)
,

w(F ) =
(

rkF, c1(F ),
1
2
p2(F ) + r

k

24
,
c1k

24
+

1
6
p3(F )

)
,

−χ+(F1, F2) =
K

2

[
c1(F1)c2(F2) − 1

2
rk(F2) · p2(F1)−

−1
2
rk(F1) · p2(F2) − rk(F1) · rk(F2) · k

12

]
,

−χ−(F1, F2) =
1
6

det
(

rkF1 rkF2

p3(F1) p3(F2)

)
.
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Remark. If B is a Fano variety and S ∈ | − KB | is a smooth K3 surface,
then k|S = eS = K2

S + eS . Therefore, for bundles F1 and F2 on B, (1.2.18) and
(1.2.24) give rise to the convenient equality

(1.2.25) χ+(F1, F2) =
1
2
χ(F1|S , F2|S).

Now let us come back to the general even-dimensional case. Let B =
B1 × B2, dimBi = bi ≡ 0 (mod 2), and let π1 and π2 be the projections onto
the direct summands:

(1.2.26) B1
�π1

B = B1 × B2
π2� B2.

Any vector bundle E on B1 × B2 gives rise to the Mukai vector

(1.2.27) v(E∗) ∈ M(B1 × B2) = M(B1) ⊗ M(B2)

and the homomorphism

(1.2.28)

fE∗ : M(B1) � M(B2)

∪ ∪
m1

� (π2)∗(v(E∗)m1)

Similarly, the Mukai vector v(E) gives rise to the homomorphism

(1.2.29)

fE : M(B2) � M(B1)

∪ ∪
m2

� (π1)∗(v(E∗)m2)

Proposition 1.2.1. (m1, fE(m2))M = (fE∗(m1),m2)M .
Proof. Repetitively applying the projection formula, we have

(m1, fE(m2)) =====
(1.2.4)

[m∗
1(π1)∗(v(E) · π∗2(m2))]b1 =

= [(π1)∗(π∗1(m∗
1) · π2(m2)(v(E))]b1 = [π∗1(m∗

1) · π∗2(m2)(v(E)]b1+b2
.

Similarly,

(m2, fE∗(m1)) =====
(1.2.4)

[m∗
2(π2)∗(v(E∗) · π∗1(m1))]b2 =

= [π∗2(m∗
2) · π∗1(m1) · v(E∗)]b1+b2

.

But on the even-dimensional variety B1 × B2 the component
[ · ]

b1+b2
is

∗-invariant (see (1.2.3)). This implies the desired equality. �
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Clearly, for any point b ∈ B2 the Mukai vector of the bundle E|B1×b = E1

does not depend on b ∈ B2.
Proposition 1.2.2. For any m ∈ M(B1)[

fE∗(m)
]
0

= (m, v(E∗1 ))M .

Proof. By the definition of fE∗ and (1.2.10),

fE∗(m) = (π2)∗(π∗1(m) · π∗1σB1︸ ︷︷ ︸
π∗1 (m·σB1 )

·ch E∗ · π∗2σB2).

By the projection formula,[
fE∗(m)

]
0

=
[
m · ch E∗1 · σB1

]
b1

= (m, v(E∗1 )).

�
Since v(E∗) ∈ H̃a(B1 × B2) (see (1.2.2)), the homomorphism fE∗ induces

a homomorphism of the lattices of transcendental cycles (1.2.14):

(1.2.30) fτ
E∗ : T (B1) � T (B2)

as well as the homomorphism fτ
E∗ ⊗ C of the Hodge structures. In particular,

the (2, 0)-component

(1.2.31) (fτ
E∗ ⊗ C)2,0 : H2,0(B1) � H2,0(B2)

of this homomorphism relates the symplectic structures on B1 and B2. This
will be the main construction in the next chapter for the technically simplest
case, when B1 = S is a smooth regular surface with pg > 0, B2 = M is a
component of the moduli variety, and E is a universal family.

§ 3 Symplectic structure and the local invariant.

Henceforth the base B = S will be a smooth regular surface.
For any modular sheaf F on S we want to find an extension of the homo-

morphism

1
〈
F
∣∣E〉 ........

Id⊗s
�

fs

� 1
〈
F
∣∣E ⊗ KS

〉
induced by homomorphism Id⊗s, where s ∈ H0(Ks), to an algebraic symplectic
structure

(1.3.1)
TSpl0(F )

ωs� T ∗Spl0(F ) ,

ω∗s = −ωs , ωs|[F ] = fs,
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and investigate the corresponding map

(1.3.2) H0(Λ2T ∗S)
τ� H0(Λ2T ∗Spl0(F )) .

To simplify the notation we set Spl0(F ) = M , and denote the system of locally
universal sheaves {Fα} in (1.1.21) and (1.1.22) by F , keeping in mind that this
symbol should only appear in the expressions of type (1.1.23) of Proposition
1.1.2. In particular,

(1.3.3) TM = Ext1
OM

(F ,F), ΩM = T ∗M = Ext1
OM

(F ,F ⊗ π∗SKS),

where KS is the canonical class of the surfaces S and πS is the projection onto
the direct summand.

Consider the OM -sheaf Ext1
OM

(F ,F ⊗ π∗sKs). The contraction map (i.e.,
the Yoneda pairing) gives rise to a homomorphism of OM -sheaves

Ext1
OM

(F ,F)⊗Ext0
OM

(F ,F ⊗ π∗SKS)
ϕ̄� Ext1

OM
(F ,F ⊗ π∗SKS)

TM

(1.3.3)

�����
T ∗M

(1.3.3)

����
Since the OM -sheaf Ext1

OM
(F ,F) = TM is locally free, the homomorphism ϕ̄

can be interpreted as a homomorphism

ϕ : Ext0
OM

(F ,F ⊗ π∗SKS) −→ Hom(TM,T ∗M) = ΩM⊗2

of OM -sheaves, which induces a homomorphism of sections

(1.3.4) ϕ0 : H0(M, Ext0
OM

(F ,F ⊗ π∗SKS)) −→ H0(ΩM⊗2).

On the other hand, the homomorphism

(1.3.5)

H0(KS) ⊗ OM
jF� Ext0

OM
(F ,F ⊗ π∗SKS)

H0(Λ2T ∗S)

����
coincides stalkwise with the homomorphism

(1.3.6) H0(KS)
jF� 0

〈
F
∣∣E〉, jF (s) = Id ⊗ s,

which is just (1.1.18).
Finally, composing (1.3.5) and (1.3.4), we obtain a homomorphism

(1.3.7) τF : H0(Λ2ΩS) � H0(ΩM⊗2) = H0(Λ2T ∗M) ⊕ H0(S2T ∗M).

Theorem 1.3.1. τF (H0(Λ2ΩS)) ⊂ H0(Λ2ΩM), i.e. we have a homomor-
phism

τF : H0(Λ2ΩS) � H0(Λ2ΩM).



138 Symplectic structures on on the varieties of moduli. . .

Proof. Any section f ∈ H0(Ext0
OM

(F ,F ⊗ π∗SKS)), i.e. homomorphism

F f� F ⊗ π∗SKS ,

induces a homomorphism

Ext1
OM

(F ,F) ........
f
�
f̄
� Ext1

OM
(F ,F ⊗ π∗SKS)

Since the stalkwise duality of the bundles TM and T ∗M is given by the relative
Serre duality, the inclusion f̄ ∈ H0(Λ2T ∗M) is equivalent to the following
condition: for any points m ∈ M and vector e ∈ 1〈Fm|Fm〉 the contraction

(1.3.9) e ◦ (f̄ |m(e)) ∈ 2〈Fm|Fm ⊗ KS〉
where Fm = F|S×m, equals zero. If f = fs ∈ jF (s), where s ∈ 0〈OS ,KS〉 (see
(1.3.5)), then the homomorphism

1
〈
Fm

∣∣Fm

〉 ..............
fs=Id⊗s

�
f̄m

� 1
〈
Fm

∣∣Fm ⊗ KS

〉
is induced by Id ⊗ s and the element from 2

〈
Fm

∣∣Fm ⊗ KS

〉
in (1.3.9) can be

represented as a composition of contractions

e ◦ f̄ |m(e) = e ◦ e ◦ (Id ⊗ s
)
.

But e ◦ e ∈ 2
〈
Fm

∣∣Fm

〉
, being the obstruction to the modularity of Fm, equals

zero (see (1.1.7)), i.e., e ◦ f̄m(e) = 0 (1.3.9) and τ(jF (s)) ∈ H0(Λ2ΩM). �
Similarly one can define a homomorphism of Poisson structures on S and

M . For any modular sheaf F on S, the homomorphism

1
〈
F
∣∣F〉 .........

Id⊗s′
��

f̄ ′s

1
〈
F
∣∣F ⊗ KS

〉
= 1
〈
F ⊗ K∗

S

∣∣F〉
induced by Id ⊗ s′, where s′ ∈ H0(K∗

s ) = H0(ΛTS), can be extended to the
Poisson structure

(1.3.1′) TSpl0(F ) �αs
T ∗Spl0(F ) : α∗s = −αs , αs|[F ] = f̄ ′s .

Indeed, for a modular family F on S ×M the contraction map gives rise to
a homomorphism

Ext1
OM

(F⊗π∗SK∗
S ,F)⊗Ext0

OM
(F ,F⊗π∗SK∗

S)
ϕ̄′� Ext1

OM
(F⊗πSK∗

S ,F⊗π∗SK∗
S)

Ext1
OM

(F ,F⊗π∗SKS)

����
Ext1

OM
(F ,F)

����

T ∗M

����
TM

�����
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of OM -sheaves, which induces a homomorphism

(1.3.4′) ϕ′0 : H0(M, Ext0
OM

(F ,F ⊗ π∗SK∗
S)) � H0(TM⊗2).

On the other hand, we have the homomorphism

(1.3.5′) H0(K∗
S) ⊗OM

j′F� Ext0
OM

(F ,F ⊗ π∗SK∗
S),

which coincides stalkwise with

(1.3.6′) H0(KS)
0� 〈F |F ⊗ K∗

S〉, j′F (s′) = Id ⊗ s′.

The composition of (1.3.5’) and (1.3.4’) yields a homomorphism

(1.3.7′) τ ′F : H0(Λ2TS) � H0(TM⊗2).

Theorem 1.3.1’. τ ′F (H0(Λ2TS)) ⊂ H0(Λ2TM).
The construction of homomorphisms τF and τ ′F is a globalisation of the

constructions of the local invariant of a fixed sheaf F on S: the vector space
homomorphisms

(1.3.11)

1
〈
F
∣∣F〉⊗ H0(KS)

τF � 1
〈
F
∣∣F〉∗

TF

�����
T ∗F

����

1
〈
F
∣∣F〉
�����

� τ ′F 1
〈
F
∣∣F〉∗ ⊗ H0(K∗

S)

����
can be interpreted as skew-symmetric homomorphisms of sheaves on the pro-
jective spaces |KS | or | − KS |:

(1.3.12)
TF ⊗O|KS |

τF� T ∗F ⊗O|KS |(1), τ∗F = −τF (1),

T ∗F ⊗O|−KS |
τ ′F� TF ⊗O|−KS |(1), τ ′∗F = −τ ′F (1),

i.e., as hypernets of skew-correlations of the vector space TF (or T ∗F ).
Definition 1.3.1. The class τF (mod GL)(TF ) (or τ ′F (mod GL)(TF )) of

hypernets (1.3.12) is called the local invariant of the sheaf F on S.
Geometric equivalents of the local invariant are sufficiently informative only

if the complete linear series |Ks| or | −Ks| is sufficiently ample. The construc-
tive analogy between local invariants of symplectic and Poisson structures is
obvious. However their geometric meanings are different in principle. We will
illustrate this in the case when F is a simple bundle. Then
(1.3.13)

TF = H1(adF ), T ∗F = H1(adF ⊗ KS), F ⊗ F ∗ = EndF = OS ⊕ adF.



140 Symplectic structures on on the varieties of moduli. . .

If C is a curve from the complete linear series |Ks| or | − Ks| then we have
exact triples

(1.3.14)
0 � adF � adF ⊗ Ks

� ad F |C ⊗OC(KS) � 0
0 � adF ⊗ KS

� ad F � ad F |C � 0

and their cohomology sequences
(1.3.15)

H0(adF |C ⊗OC(KS)) � TF
τF (C)� T ∗F � H1(adF |C ⊗OC(KS)),

H0(adF |C) � T ∗F
τ ′F (C)� TF

� H1(adF |C).

The lower sequence shows that skew-symmetric form τ ′F (C) has a kernel if and
only if F |C no longer simple.

The interpretation of the kernel of the skew-symmetric form τF (C) is more
complicated. First of all, on C we have the theta-characteristic θ = OC(KC),
since by the adjunction formula

(1.3.16) ωC = OC(2KS) = θ2.

A necessary (and sufficient, if F satisfies the Mukai–Artamkin criterion) con-
dition for the degeneration of τF (C) is the vanishing of the analogue of the
θ-constant for the bundle adF |C (see [14], (3.2.7)).
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Modular operations

§ 1 Special modular families.

The homomorphism τF is especially simple when S is a K3 surface, i.e.,
when the algebraic symplectic structure on S is everywhere nondegenerate.

The Mukai Theorem [11]. If S is a K3 surface, then for any locally
modular family F on S ×M the homomorphism τF is an isomorphism and the
algebraic symplectic structure τF (ω) is everywhere nondegenerate.

Any coherent sheaf F on an arbitrary smooth surface S gives rise to an
exact quadruple

(2.1.1) 0 � T (F )
i� F

can� F ∗∗
j� C(F ) � 0,

where T (F ) is the torsion subsheaf, can is the canonical homomorphism from a
sheaf to its OS-double dual, and C(F ) is a sheaf with zero-dimensional support.

Let us recall the terminology of [13].
Definition 2.1.1. A zero-dimensional subscheme ξ ⊂ S of length d is

called a thin cycle of degree d.
Any thin cycle ξ can be given by its structure OS-sheaf Oξ or by its ideal

sheaf Jξ ⊂ OS , which are related by the standard exact sequence

(2.1.2) 0 � Jξ
i� OS

res� Oξ
� 0

The variety S̃(d) of all thin cycles of degree d is called the Douady space. It is
a smooth irreducible variety of dimension 2d. The formula

(2.1.3) ξ �
∑

nipi, suppξ =
⋃

pi,
∑

ni = d,

assigns a cycle to each thin cycle. In the ideal theoretic language this corre-
sponds to assigning to an ideal J ⊂ mpi

of the local ring Opi
an mpi

-graded
ideal. This correspondence gives rise to a birational morphism

(2.1.4) S̃(d) � S(d),

141
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where S(d) is the dth symmetric power of S, which is biregular outside Sing S(d).
Therefore the morphism (2.1.4) resolves the singularities of S(d) and establishes
a birational isomorphism

(2.1.5) S̃(d) bir� S(d).

Lemma 2.1.1. If F is a rank 1 torsion-free sheaf, then

1) F is simple,

2) the components of the vector v(F ) = (1, D, s) (1.2.18) are related by the
formula

(2.1.6) s − 1
2
D2 − χ

2
= d

where χ is defined by (1.2.17) and d is a positive integer, and

3) F is compact modular and Spl0(F ) = S̃(d).

Proof. Since T (F ) = 0, the quadruple (2.1.1) becomes a triple

(2.1.7)

0 � F
can� F ∗∗ � C(F ) � 0

‖ ‖ ‖
0 � Jξ(D) � OS(D) � Oξ

� 0.

Since F ∗∗ is reflexive and, therefore, locally free (dimS = 2), F ∗∗ = OS(D),

D = c1(F ) ∈ Pic S. Hence v(F ) = (1, D,
1
2
D2 + χ/2 − d), where d = deg ξ,

and and assertion 2) follows .
The cohomology sequence of the lower triple of (2.1.7) yields an isomorphism

(2.1.8) H2(Jξ(D)) = H2(OS(D)).

The simplicity of Jξ(D) is equivalent to that of Jξ, but

0
〈
Jξ

∣∣ Jξ

〉 ⊂ 0
〈
Jξ

∣∣OS

〉
====

sd 2
〈OS

∣∣ Jξ ⊗ KS

〉∗ =

= H2(Jξ ⊗ KS)∗ =====
(2.1.8)

H2(KS)∗ ====
sd

H0(OS) = C,

and assertion 1) is proved.
The modularity of Jξ(D) is also equivalent to that of Jξ. To check the latter

we use the Mukai–Artamkin criterion:

0
〈
Jξ

∣∣ Jξ ⊗ KS

〉 ⊂ 0
〈
Jξ

∣∣KS

〉
====

sd 2
〈OS

∣∣ Jξ

〉∗ =

= H2(Jξ)∗ =====
(2.1.8)

H2(OS)∗ ====
sd

H0(KS) .
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Therefore, the homomorphism jJξ
(1.1.18) is an isomorphism. The modular

family F on S × S̃(d) is part of the canonical triple

(2.1.9) 0 �
F︷ ︸︸ ︷

JZ ⊗ π∗SOS(D) � π∗SOS(D) � OZ ⊗ π∗S(D) � 0,

where Z ⊂ S × S̃(d) is the universal Douady subscheme

(2.1.10) Z · (S × ξ) = ξ.

Assertion 3) follows. �
Remark. For the OS×S̃(d)-sheaf F in (2.1.9) we have

(2.1.11) Z = c2(F),

where c2 is the second Chern class.
Lemma 2.1.2. For the modular family JZ = F (2.1.9)

1) the homomorphism (1.3.7) (resp., (1.3.7’))

τJZ
: H0(Λ2T ∗S) � H0(Λ2T ∗S̃(d))

is an isomorphism, and

2) each nonzero algebraic symplectic structure on S̃(d) (resp., Poisson struc-
ture) is nondegenerate.

Proof. For the family (2.1.9) we have

Ext0
S̃(d)(JZ , JZ ⊗ π∗SKS) ⊂ Ext0

S̃(d)(JZ , π∗SKS) =

= Ext0
S̃(d)(JZ ,OS×S̃(d)) ⊗ H0(KS) = H0(KS) ⊗OS̃(d) .

For any thin cycle ξ1 ∈ S̃(d−1) of degree of d − 1 one can define a regular
embedding

(2.1.12) i : S � S̃(d), Ji(p) = Jξ1 ⊗ Jp.

It is easy to see that for any ω ∈ H0(Λ2T ∗S)

(2.1.13) i∗(τJZ
(ω)) = ω.

Indeed, JZ |S×i(S) = JΔ, where Δ is the diagonal in S×S, and TS =Ext i
OS

(JΔ, JΔ).
The homomorphism

(2.1.14) i∗τS̃(d) : TS � T ∗S = TS ⊗ KS

is given by the multiplication by a section s ∈ H0(KS). From this we get
the assertion for symplectic structures. The argument for Poisson structures is
similar. �
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If ξ =
∑

pi, pi �= pj , is a cycle without multiple points, then identifying
the tangent spaces we have

TS
(d)
ξ = TJξ

=
d⊕

i=1
TSpi ;

hypernet of correlations of the local invariant (1.3.12) is the direct sum of
hypernets of the form

TSp ⊗O|KS |
u⊗Spi� T ∗Spi

⊗O|KS |(1),

where u is a nondegenerate skew-symmetric isomorphism and Spi
∈H0(O|KS |(1)),

(Spi
)0 = |KS − pi|. Thus the local invariant τJξ

is the set of d hyperplanes⋃ |KS − pi| in |KS |. The cycle ξ can be recovered from this set.
Let |D| be a complete linear series on S such that

(2.1.15) |D|0 = {C ∈ |D| |C reduced and irreducible}

is nonempty. For any curve C ∈ |D|0 one can define a generalised Picard
variety

(2.1.16) Pic d C = {rank 1 torsionfree OC-sheaves of degree d}.

When the curve C varies in |C|0 the generalized Picard varieties sweep a variety

(2.1.17) Pic d |D|0 =
⋃

C∈|D|0
Pic d C

(see [2]). One can canonically make it into bundle

(2.1.18) Pic d |D|0 π� |D|0
with fiber (2.1.16).

Lemma 2.1.3. If C is a curve from |D|0 and the rank 1 torsion free OC-
sheaf OC(ξ) of degree d is viewed as an OS-sheaf then

1) OC(ξ) is simple,

2) the components of the vector v(OC(ξ)) = (0, D, s) are related by the for-
mula

(2.1.19) s − 1
2
D2 = d

where d is an integer, and

3) OC(ξ) is modular if h1(OS(D)) = 0 and Spl0(OC(ξ)) ⊃ Pic d |D|0 as a
Zariski dense subset.
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Proof. Assume for simplicity that C is smooth. Then OC(ξ) is invertible
as an OC-sheaf, and 0

〈OC(ξ)
∣∣OC(ξ)

〉
= Ext0OC

(OC(ξ),OC(ξ)) = C , i.e., the
OS-sheaf OC(ξ) is simple. Moreover, 0

〈OC(ξ)
∣∣OC(ξ) ⊗ KS

〉
= H0(OC(KS)) .

The exact triple

0 � OS(KS − D) � KS
� OC(KS) � 0

yields

(2.1.20) 0 � H0(OS(KS − D)) � H0(KS) � H0(OC(KS)) �

� H1(OS(KS − D)) ====
sd

H1(OS(D))∗ .

Hence OC(ξ) viewed as an OS-sheaf satisfies the Mukai–Artamkin criterion if
and only if h1(OS(D)) = 0. Furthermore, we have the exact triple

(2.1.21)

0 � H1(OC) � TOC(ξ)
� H0(OC(D)) � 0

TPic dCξ

�����
T |D|C

�����
whence assertion 3). Assertion 2) can be checked directly: d = deg ξ. �

Lemma 2.1.4. Let pg(S) > 0, KS �= 0, C ∈ |D|0 and

1) dim |D| � 2 , 2) h1(OS(D)) = h2(OS(D)) = 0 .

Then for the family Spl0(OC(ξ)) (see Lemma 2.1.3) each symplectic structure
from τ(H0(Λ2T ∗S)) is degenerate and the local invariant of OC(ξ) depends
only on curve C ∈ |D|.

Proof. For any s ∈ H0(KS) the homomorphism τ(s)|OC(ξ) can be ex-
tended to a homomorphism

(2.1.22)

0

0 � H1(OC) � TOC(ξ)
� H0(OC(D))

�
� 0

0 � H1(OC(KS))

⊗s
�

� T ∗OC(ξ)

τ(s)
�

� H0(OC(KS + D))

⊗s
�

� 0

H0(OC(D))∗

sd

����
H1(OC)∗

sd

����

0
�
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of exact triples. Under conditions 1) and 2), KS · D > 0, and the vertical
homomorphism on the left-hand side has a kernel. The local invariant is given
by a hypernet of contraction homomorphisms

(2.1.23) H0(KS) ⊗ H0(OC(D))
μ� H0(KC)

modulo GL(H0(OC(D))) × GL(H0(KC)) and does not depend on the sheaf
OC(ξ) ∈ Pic dC. �

Corollary. If C is a smooth rigid curve, i.e. H0(OC(C)) = 0, then any
invertible sheaf OC(ξ) is compact modular:

Spl0(OC(ξ)) = Pic dC,

and the homomorphism τ (2.1.7) for this the family vanishes.
Thus the symplectic structures induced on the components of the variety

of moduli of sheaves exhaust all the possibilities of Definition 0.1.
In our examples the sheaves Jξ(D) were torsion-free but not locally free,

and the sheaves OC(ξ) were of cohomological dimension 1. We will see in
this chapter that modular operations make them into bundles and preserve all
modular properties and local invariants.

§ 2 The universal extension operation.

Operations on bundles preserving properties of their moduli can be found
in one form or another in almost all papers on bundles. They have natural
descriptions in the derived category of sheaves (A. Gorodentsev [7]), in the
category of quadratic algebras (A. Bondal), in the category of representations
of quivers (A. Bondal), etc. In this respect one can recall the concluding remark
from [1] about ”the unexplained manifestation of the mysterious unity of all
phenomena”. However we will not need this generality. We will only split the
Mukai ”reflection” operation (see [12] (2.22) and (2.24)) into the operations of
universal extension and universal division, and also define a composite variant
of these operations.

Remark. The composite division operation was cleverly used by Mestrano
(see [10]) to disprove the existence of the fine varieties of moduli. Because of
this we call it the Mestrano operation (see the next section).

Definition 2.2.1.

1) If E is a sheaf on S, then

(2.2.1) E′ = E ⊗ K∗
S

is called the derived sheaf of E.
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2) A pair of sheaves F1 and F2 is called a regular pair if

(2.2.2) 1
〈
F1

∣∣F2

〉
= 1
〈
F2

∣∣F1

〉
= 0

3) A regular pair of sheaves is called independent if

0
〈
F1

∣∣F2

〉
= 0
〈
F2

∣∣F1

〉
.

For a pair of sheaves E and F , the extensions of the form

(2.2.3) 0 � 1
〈
E′
∣∣F〉⊗ E � εE(F ) � F � 0

are given by the vectors of the space

1
〈
F
∣∣ 1〈E′ ∣∣F〉〉⊗ E = 1

〈
E′
∣∣F〉⊗ 1

〈
F
∣∣E〉 = End 1

〈
E′
∣∣F〉

sd‖
1
〈
E′
∣∣F〉∗ ,(2.2.4)

i.e., by the endomorphisms of the space 1
〈
E′
∣∣F〉.

Applying the functor 〈E′| to the exact triple (2.2.3), we obtain the long
exact sequence

(2.2.5) 1
〈
E′
∣∣F〉⊗ 1

〈
E′
∣∣E〉 � 1

〈
E′
∣∣ εE(F )

〉 � 1
〈
E′
∣∣F〉 δ�

δ� 1
〈
E′
∣∣F〉⊗2

〈
E′
∣∣E〉 � 2

〈
E′
∣∣ εE(F )

〉 � 2
〈
E′
∣∣F〉

0
〈
E
∣∣E〉∗

sd

����
� tr∗ ⊃ C ,

where 0
〈
E
∣∣E〉 tr�� C is the trace homomorphism. It is not difficult to see

that the cocycle corresponding to the extensions (2.2.3) is proportional to the
endomorphism

(2.2.6) 1
〈
E′
∣∣F〉 δ� 1

〈
E′
∣∣F〉⊗ tr∗(1).

Definition 2.2.3. The sheaf εE(F ) in (2.2.3), given by the cocycle δ (2.2.6)
which is an isomorphism, is called the universal extension of the sheaf F by the
sheaf E.

Clearly the OS-sheaf εE(F ) does not depend on the choice of an automor-
phism of 1

〈
E′
∣∣F〉.

Let E be an exceptional sheaf (see Definition 1.1.7) and

(2.2.7) R(S) ⊂ Fm(S) ⊂ VZ(S)

the set of exceptional sheaves in the big lattice (1.1.26).
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Lemma 2.2.1. If E ∈ R(S), then

(2.2.8)
1
〈
E′
∣∣ εE(F )

〉
= 0 ,

2
〈
E′
∣∣ εE(F )

〉
= 2
〈
E′
∣∣F〉 .

Proof. By 1
〈
E
∣∣E〉 ====

sd
1
〈
E′
∣∣E〉 the first term in (2.2.5) vanishes, and

by 0
〈
E
∣∣E〉 = C the coboundary homomorphism δ is an isomorphism. �

Lemma 2.2.2. If E ∈ R(S) and 0
〈
E
∣∣F〉 = 0, then there is an exact

sequence

(2.2.9) 0 � 0
〈
F ′
∣∣E〉⊗ 1

〈
E′
∣∣F〉 � 0

〈
εE(F )

∣∣ εE(F )
〉 � 0

〈
F
∣∣F〉.

Proof. The equality 0
〈
E
∣∣F〉 = 0 means that each endomorphism of εE(F )

preserves the exact triple (2.2.3). Hence

0 � 0
〈
εE(F )

∣∣E〉 ⊗ 1
〈
E′
∣∣F〉 � 0

〈
εE(F )

∣∣ εE(F )
〉 � 0

〈
F
∣∣F〉

2
〈
E′
∣∣ εE(F )

〉∗sd

����
=====
(2.1.8) 2

〈
E
∣∣F〉∗ =========

sd 0
〈
F
∣∣E〉.

�
Corollary. If E ∈ R(S), F is simple and

(2.2.10) 0
〈
E
∣∣F〉 = 0

〈
F
∣∣E〉 = 0,

then εE(F ) is simple.
Lemma 2.2.3. If equalities (2.2.10) hold and 1〈E|εE(F ) = 0, i.e., (E, εE(F ))

is a regular pair (see (2.2.2)), then there is a canonical isomorphism

(2.2.11) 1
〈
εE(F )

∣∣ εE(F )
〉︸ ︷︷ ︸

‖
TεE(F )

= 1
〈
F
∣∣F〉︸ ︷︷ ︸
‖

TF

and the local invariants (1.3.12) of F and εE(F ) coincide.
Proof. Applying 〈E| to the triple (2.2.3), we have

0 � 1
〈
E′
∣∣F〉⊗ 0

〈
E
∣∣E〉 � 0

〈
E
∣∣ εE(F )

〉 � 0
〈
E
∣∣F〉

‖
C

Therefore 0
〈
E
∣∣F〉 = 0 implies

(2.2.12) 0
〈
E
∣∣ εE(F )

〉
= 1
〈
E′
∣∣F〉.

Applying |εE(F )〉 to (2.2.3) we have

End1
〈
E′
∣∣F〉

0
〈
εE(F )

∣∣ εE(F )
〉 � 1

〈
E′
∣∣F〉∗ ⊗ 0

〈
E
∣∣ εE(F )

〉(2.2.12)

����
� 1
〈
E
∣∣ εE(F )

〉 �
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� 1
〈
εE(F )

∣∣ εE(F )
〉 � 1

〈
E′
∣∣F〉∗⊗1

〈
E
∣∣ εE(F )

〉

0

�����
and hence an exact triple

(2.2.13) 0 � ad 1
〈
E′
∣∣F〉 � 1

〈
F
∣∣ εE(F )

〉 � 1
〈
εE(F )

∣∣ εE(F )
〉 � 0.

On the other hand, applying 〈F | to (2.2.3), we have

End1
〈
E′
∣∣F〉

0 � 0
〈
F
∣∣F〉 � 1

〈
E′
∣∣F〉⊗ 0

〈
F
∣∣E〉

sd (2.2.12)

����
� 1
〈
F
∣∣ εE(F )

〉 �

� 1
〈
F
∣∣F〉 � 1

〈
E′
∣∣F〉 ⊗ 2

〈
F
∣∣E〉

0
〈
E′
∣∣F〉∗
sd

����
and hence an exact triple

(2.2.13′) 0 � ad 1
〈
E′
∣∣F〉 � 1

〈
F
∣∣ εE(F )

〉 � 1
〈
F
∣∣F〉 � 0.

The monomorphisms of (2.2.13) and (2.2.13’) coincide, and, therefore, their
terms on the right coincide too. This yields (2.2.11). Shifting these construc-
tions by KS we prove the equality of the local invariants.

Theorem 2.2.1. Let E ∈ R(S) be an exceptional bundle and F a simple
modular sheaf. If

(2.2.14) 0
〈
E
∣∣F〉 = 0

〈
F
∣∣E〉 = 0

〈
E′
∣∣F〉 = 0, 1

〈
E
∣∣ εE(F )

〉
= 0,

then

1) εE(F ) is a simple modular sheaf,

2) Spl0(F ) is birationally isomorphic to Spl0(εE(F )), and

3) in K0
alg(S) (see (1.1.3))

(2.2.15) {εE(F )} = {F} − χ(F,E) · {E},

where −χ is the form ( 1.1.6).
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Proof. By (2.2.14)

(2.2.16) rk 1
〈
E′
∣∣F〉 = −χ(E′, F ) D.S.== −χ(F,E),

and we obtain (2.2.15).
Let {Uα} be an etale covering of Spl0(F ) (1.1.22) and {Fα} a family of

universal sheaves on {S × Uα}. For any [F ] ∈ Uα consider the OUα -sheaf
Ext1

Uα
(π∗SE′,Fα) and the extension

(2.2.17) 0 � π∗Uα
Ext1

Uα
(π∗SE′,Fα) ⊗ π∗SE � εE(Fα) � Fα

� 0

of sheaves on S × Uα given by the identity isomorphism

Id : Ext1
Uα

(Fα, π∗SE) � Ext1
Uα

(Fα, π∗SE)

(in the stalkwise sense (2.2.4)). By Lemma 2.2.2 and its corollary, εE(Fα) is
OUα

-simple in a Zariski neighborhood U ′α of the sheaf [εE(Fα)]. By (2.2.11),
we only have to check that in some Zariski neighborhood U

′′
α any sheaf F1 can

be recovered from εE(F1). To this end define U
′′
α ⊂ U ′α by

U
′′
α = {[F1] ∈ U ′α|0

〈
E
∣∣F1

〉
= 0}.

Then for the canonical homomorphism

(2.2.18) 0
〈
E
∣∣ εE(F1)

〉⊗ E
can� εE(F1)

we have

(2.2.19) F = coker can

Thus {U ′′
α} is an etale covering of Spl0(εE(F )) � εE(F ) and {εE(Fα)} is the

family of universal sheaves (1.1.22). �

Example. Let S be a K3 surface. Then E′ = E, 1
〈
E
∣∣F〉 ====

sd
1
〈
F
∣∣E〉∗,

the form −χ(F1, F2) (1.1.6) is symmetric, and

(2.2.20) R(S) = {F | 0
〈
F
∣∣F〉 = C , −χ(F, F ) = −2 }

(see, for example, [12],§ 3).
Conditions (2.2.14) of Theorem 2.2.1 have the form

(2.2.14′) 0
〈
E
∣∣F〉 = 2

〈
E
∣∣F〉 = 0,

and the equality 1
〈
E
∣∣ εE(F )

〉
= 0 is automatically satisfied. Therefore, trans-

formation (2.2.15) is the involution of the lattice with respect to a root vector.
Furthermore for the sheaves E = OS(C) ∈ R(S) and F = Jξ, ξ ∈ S̃(d) (see
(2.1.4) and (2.1.5)) conditions (2.2.14’) of Theorem 2.2.1 have the form

h0(Jξ(−C)) = h2(Jξ(−C)) =====
(2.1.8)

h2(OS(−C)) ====
sd

h2(OS(C)) = 0.
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Therefore, if h0(OS(C)) = 0, then for a general ξ∈ S̃(d) with d � h0(OS(−C))+
1 we have

Spl0(εOS(C)(Jξ))
bir∼ S(d).

It is proved in [13] that for a general ξ the sheaf εOS(C)(Jξ) is simple and locally
free, i.e., εOS(C)(Jξ) is a bundle.

It is not easy to check conditions (2.2.14) of Theorem 2.2.1 for an arbitrary
regular surface S. Any reflexive sheaf on the surface is locally free. Thus to save
space we will express the local freeness of a sheaf F by the equality F ∗∗ = F .

Lemma 2.2.4. If E ∈ R(S), E∗∗ = E, εE(F )∗∗ = εE(F ), and for of a
curve C ∈ |KS |

(2.2.21) 0
〈
E′
∣∣

C , F |C
〉

= 0,

then 1
〈
E
∣∣ εE(F )

〉
= 0.

Proof. Restricting the triple (2.2.3) to C ∈ |KS |, we have

0 � 1
〈
E′
∣∣F〉⊗ E|C � εE(F )|C � F |C � 0.

By (2.2.11),

(2.2.22) 0
〈
E′
∣∣

C |εE(F )|C
〉

= 0〈E′|C |1
〈
E′
∣∣F〉⊗ E|C〉.

The cohomology sequence of the exact triple

0 � E∗ ⊗ E � E
′∗ ⊗ E res� (E

′∗ ⊗ E)|C � 0

shows, that 0
〈
E′
∣∣E〉 res� 0

〈
E′
∣∣

C |E|C
〉

is an epimorphism (1
〈
E
∣∣E〉 = 0) and,

therefore, the restriction homomorphism

(2.2.23)

0
〈
E′
∣∣ εE(F )

〉 res � 0
〈
E′
∣∣

C , εE(F )|C
〉

‖(2.2.22)

1
〈
E′
∣∣F〉⊗ 0

〈
E′
∣∣

C |E|C
〉
.

is also an epimorphism. But the cohomology sequence of the triple

0 � E′ ⊗ εE(F ) � E
′∗ ⊗ εE(F ) � (E

′∗ ⊗ εE(F ))|C � 0

is of the form

0 � 0
〈
E
∣∣ εE(F )

〉 � 0
〈
E′
∣∣ εE(F )

〉 res� 0
〈
E′
∣∣

C |εE(F )|C
〉 �

� 1
〈
E
∣∣ εE(F )

〉 � 1
〈
E′
∣∣ εE(F )

〉
=====
(2.1.8)

0.

Now the surjectivity of (2.2.23) implies 1
〈
E
∣∣ εE(F )

〉
= 0. �
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We can now apply the construction from [13],§ 4, to a surface S of general
type.

Theorem 2.2.2. Suppose that |KS | contains an irreducible curve C. Then
for any divisor class C ∈ Pic S with

(2.2.24) h0(OS(C)) = 0, C · KS > K2
S ,

and any integer d > h0(OS(KS − C))

1) the sheaf εOS(C)(Jξ) is locally free and simple for a general ξ ∈ S̃(d), and

2) Spl0(εOS(C)(Jξ))
bir∼ S̃(d) .

Proof. Let us check that the pair OS(C), Jξ satisfies conditions (2.2.14)
of Theorem 2.2.1:

h0(Jξ(−C)) = 0, 0〈Jξ,OS(C)〉 ====
sd

h2(Jξ(KS − C))∗ =

=====
(2.1.8)

h2(OS(KS − C))∗ ====
sd

h0(OS(C)) = 0.

Under these conditions, for a general ξ

d > h0(OS(KS − C)) ⇒ h0(Jξ(KS − C)) = 0

and, according to Lemma 1.2 of [13],

εO(C)(Jξ)∗∗ = εO(C)(Jξ).

For an irreducible curve K ∈ |KS | and a general ξ we have Jξ ⊗OK = OK and
condition (2.2.21) of Lemma 2.2.4 is equivalent to h0(OK(KS − C)) = 0. But
for an irreducible curve K

KS(KS − C) < 0 ⇒ h0(OK(KS − C)) = 0

and condition (2.2.21) is satisfied. Then, by Lemma 2.2.4,
1
〈OS(C)

∣∣ εO(C)(Jξ)
〉

= 0 and the last condition (2.2.14) of Theorem 2.2.1 is
satisfied. �

Clearly PicS = Z ·KS and the class of OS(C) satisfying conditions (2.2.24)
is empty. However if the Picard number ρ(S) > 1 then the half-space

EK = {C ∈ PicS|C · KS > const = K2
S}

in the lattice PicS cannot be contained in the convex semicone of effective
divisors

C+ = {C ∈ Pic S|h0(OS(C)) > 0},
and therefore any class

(2.2.25) C ∈ EK − EK

⋂
C+

satisfies conditions (2.2.24).
Moreover, for any such class with h0(OS(KS − C)) = 0 and any d and

ξ ∈ S̃(d)
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1) εO(C)(Jξ) is a compact modular bundle, and

2) Spl0(εO(C)(Jξ)) = S̃(d).

Remark. In particular, if d = 1 we obtain an infinite family of moduli
varieties of bundles, isomorphic to S itself.

It is very important that we obtained precisely these bundles, since if they
are stable one can define a Hermite–Einstein metric on them and, integrating
it, obtain a Weil–Petersson metric on their moduli varieties, i.e., on S itself. A
method of Itô allows us to calculate the curvature of this metric.

Unlike the case of a K3 surface (see the example), for a surface of general
type the form −χ (1.1.6) is not symmetric and the transformation (2.2.15) of
the lattice K0

alg(S) is not −χ-orthogonal.
Lemma 2.2.5. If |KS | contains an irreducible curve C, K2

S > 0, and
C ∈ Pic S satisfies conditions (2.2.24), then the Z-linear transformation

1) εO(C) : K0
alg(S) � K0

alg(S),

(2.2.26) εO(C)(f) = f − χ(f, {OS(C)}){OS(C)},

does not preserve the form −χ (1.1.6), and

2) if d > h0(OS(KS − C)), then

(2.2.27)
−χ(Jξ, Jξ) + χ(εO(C)(Jξ), εO(C)(Jξ)) =

= rkh0(ad εO(C)(Jξ) ⊗ KS) � r2(pg − 1) + K2
Sr,

where r + 1 = rk εO(S(Jξ).

Proof. Returning to§ 2 of Chapter 1 (1.2.17)–(1.2.22) we have

v(Jξ) = (1, 0, χ/2 − d) , v(OS(C)) =
(
1, C, 1

2C2 + χ/2
)
,

−χ(Jξ,OS(C)) ======
(1.2.21)

(v(Jξ), v(OS(C)))︸ ︷︷ ︸
‖

d− 1
2 C2−χ

+ (v(Jξ), v(OS(C)))︸ ︷︷ ︸
‖

1
2 KS ·C

=

= d − 1
2C2 − χ + 1

2KS · C = r � 1,
−χ(OS(C), Jξ) = d − 1

2C(C − KS) − χ,
v(εO(C)(Jξ)) =

(
r + 1, rC, r

2C2 − d + (r + 1)χ
2

)
,

v2(εO(C)(Jξ)) = r2C2 − r(r + 1)C2 + 2d(r + 1) − (r + 1)2χ =

= 2d − χ︸ ︷︷ ︸
‖

v2(Jξ)

+2r (d − 1
2
C2 − χ︸ ︷︷ ︸
‖

r− 1
2 C·KS

−r χ
2 ) = v2(Jξ) − r2(pg − 1) − r

2C · KS .

On the other hand, i〈Jξ|Jξ〉 =i 〈εO(C)(Jξ)|εO(C)(Jξ)〉 when i = 0, 1. This
gives us assertion 2). �
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Remark. Thus εO(C)(Jξ) is a simple modular bundle which does not satisfy
the Mukai–Artamkin modularity criterion.

That is why the concept of modularity is needed: modular operations pre-
serve properties of moduli but invalidated the usual sufficient conditions like
the Mukai–Artamkin criterion or stability.

Let us return to the beginning of the section. Any subspace V ⊂ 1
〈
E′
∣∣F〉

gives rise to an extension

(2.2.3′) 0 � (1
〈
E′
∣∣F〉/V ) ⊗ E � εV

E(F ) � F � 0,

given by a cocycle-epimorphism

(2.2.6′) 1
〈
E′
∣∣F〉 δ� (1

〈
E′
∣∣F〉/V ) ⊗ tr∗(1), ker δ = V.

Let F =
d⊗

i=1

Fi and rk 1
〈
E′
∣∣Fi

〉
= n. Then

1
〈
E′
∣∣F〉 =

d⊗
i=1

1
〈
E′
∣∣Fi

〉
, rk1

〈
E′
∣∣F〉 = dn

and the subgroup GL(1
〈
E′
∣∣F1

〉
)×· · ·×GL(1

〈
E′
∣∣Fd

〉
) ⊂ GL(1

〈
E′
∣∣F〉) acts on

the Grassmannian Gr(n, 1
〈
E′
∣∣F〉), where it has an open orbit U0. It is easy to

see that the sheaf εV
E(F ) does not depend on the choice of V ∈ U0. We denote

it by ε0
E

(
d⊕

i=1
Fi

)
.

Definition 2.2.3. The sheaf ε0
E

(
d⊕

i=1
Fi

)
will be called the composite uni-

versal extension.
The proof of the next theorem is completely analogous to that of Theorem

2.2.1.
Theorem 2.2.3. Let E be an exceptional bundle and (F1, . . . , Fd) a set of

modular bundles such that

1) ∀i Spl0(F1) = Spl0(Fi),

2) ∀i �= j (Fi, Fj) is an independent pair (Definition (2.2.1, 3)), and

3) ∀i0
〈
E
∣∣Fi

〉
= 0
〈
Fi

∣∣E〉 = 0, 1

〈
E|ε0

E

(
d⊕

i=1
Fi

)〉
= 0.

Then

1) ε0
E

(
d⊕

i=1
Fi

)
is a simple modular bundle,

2) Spl0

(
ε0

E

(
d⊕

i=1
Fi

))
bir∼ (Spl0(F1))(d) where (d) is the dth symplectic power,
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3) T
ε0

E

„
d⊕

i=1
Fi

« =
d⊕

i=1
TFi ,

4) and for the hypernet of the local invariant (1.3.12)we have

τ
ε0

E

„
d⊕

i=1
Fi

« =
d⊕

i=1
τFi .

§ 3 The universal division operation.

An ordered pair (E,F ) of sheaves on a smooth variety gives rise to a pair
of canonical homomorphisms

(2.3.1) 0
〈
E
∣∣F〉⊗ E

can� F, E
canT

� 0
〈
E
∣∣F〉∗ ⊗ F,

which can be to extended to exact quadruples:
(2.3.2)

C(E,F ) : 0 � αE(F ) � 0
〈
E
∣∣F〉⊗ E

can� F � γE(F ) � 0

CT (E,F ) : 0 � αT
E(F ) � E

canT

� 0
〈
E
∣∣F〉∗⊗F � γT

E(F ) � 0

If all the sheaves in these sequences are locally free, then

(2.3.3) CT (E,F ) = C(F ∗, E∗)∗.

Lemma 2.3.1. If E ∈ R(B), then 0
〈
E
∣∣αE(F )

〉
= 1
〈
E
∣∣αE(F )

〉
= 0.

Proof. Let im can = βE(F ) ⊂ F . Then 0
〈
E
∣∣F〉 = 0

〈
E
∣∣βE(F )

〉
. Apply-

ing the functor 〈E| to the exact triple

(2.3.4) 0 � αE(F ) � 0
〈
E
∣∣F〉⊗ E

can� βE(F ) � 0

we obtain

0 � 0
〈
E
∣∣αE(F )

〉 � 0
〈
E
∣∣F〉⊗ 0

〈
E
∣∣E〉 ∼� 0

〈
E
∣∣βE(F )

〉 �

‖ ‖
C 0

〈
E
∣∣F〉

� 0
〈
E
∣∣αE(F )

〉 � 0
〈
E
∣∣F〉⊗ 1

〈
E
∣∣E〉 = 0.

The lemma follows. �
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Lemma 2.3.2. If E is an exceptional bundle and (E,F ) is a regular pair
of bundles (see (2.2.2)) with γE(F ) = 0, then there exists an isomorphism

(2.3.5) 0
〈
E
∣∣F〉∗ = 0

〈
E∗
∣∣αE(F )∗

〉
,

with respect to which

(2.3.6) C(E,F )∗ = C(E∗, αE(F )∗),

i.e.,

(2.3.7) αE∗(αE(F )∗) = F ∗.

Proof. Applying 0〈E∗| to the triple C(E,F )∗, we have

0 � 0
〈
E∗
∣∣F ∗〉 � 0

〈
E
∣∣F〉∗⊗0

〈
E∗
∣∣E∗〉 � 0

〈
E∗
∣∣αE(F )∗

〉 � 1
〈
E∗
∣∣F ∗〉

C

�����
1
〈
E
∣∣F〉=0.

����
We obtain the isomorphism (2.3.5) and prove (2.3.6) and (2.3.7) if we show
that 0

〈
E∗
∣∣F ∗〉 = 0

〈
F
∣∣E〉. But if 0

〈
F
∣∣E〉 �= 0 then, because γE(F ) = 0, we

can find a nontrivial endomorphism E � E, since either rk 0
〈
E
∣∣F〉 > 1 or

rkE > rkF , which contradicts the simplicity of E. �
Lemma 2.3.3. If (E,F ) is a regular pair of bundles and αT

E(F ) = 0, then

(2.3.8) αF∗(E∗) = γT
E(F )∗, αF (γT

E(F )) = E.

Proof. If (E,F ) is a regular pair then (F ∗, E∗) is also a regular pair, and
(2.3.3) together with (2.3.4) implies (2.3.8). �

Lemma 2.3.4. If (E,F ) is a regular pair of bundles and γE(F ) = 0 then

(2.3.9) 0
〈
E
∣∣F〉 = 0

〈
αE(F )

∣∣αE(F )
〉
.

In particular, if F is simple then αE(F ) is also simple.
Proof. Applying 〈αE(F )| to C(E,F ) and 〈F ∗| to C(E∗, αE(F )∗), we have

(2.3.10)
0 � 0

〈
αE(F )

∣∣αE(F )
〉 � 0

〈
E
∣∣F〉 ⊗0

〈
αE(F )

∣∣E〉 σ1� 0
〈
αE(F )

∣∣E〉

0 � 0
〈
F ∗
∣∣F ∗〉 � 0

〈
E∗
∣∣αE(F )∗

〉===
===

===

⊗ 0
〈
F ∗
∣∣E∗〉 σ2�

=========
0
〈
F ∗
∣∣αE(F )∗

〉
����

It is easy to see that σi’s are the standard contraction homomorphisms
(Yoneda’s pairing), and under the above identification σ1 = σ2 = σ. Hence

0
〈
E
∣∣F〉 = ker σ = 0

〈
αE(F )

∣∣αE(F )
〉
.
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Continuing the sequences (2.3.10), we obtain
(2.3.11)

1
〈
αE(F )

∣∣αE(F )
〉 � 0

〈
E
∣∣F〉⊗ 1

〈
αE(F )

∣∣E〉

0 � coker σ

�

= �
1
〈
F ∗
∣∣F ∗〉 � 0

〈
E∗
∣∣αE(F )∗

〉⊗1 〈F ∗|E∗〉 = 0

and the beginning of the upper sequence of (2.3.11) gives rise to a monomor-
phism

(2.3.12)
dαE : 1

〈
F
∣∣F〉 � 1

〈
αE(F )

∣∣αE(F )
〉
.

‖ ‖
TF TαE(F )

If, in addition, the pair (E,αE(F )) is regular, then dαE is an isomorphism.
It is not difficult to check that if B = S is a regular surface then dαE gives

rise to a homomorphism of hypernets (1.3.12) of the local invariants of F and
αE(F ), which is an equivalence of the invariants if dαE is an isomorphism.

Theorem 2.3.1. Let E be an exceptional bundle, F a simple modular
bundle, (E,F ) a regular pair, γE(F ) = 0, and (E,αE(F )) a regular pair. Then

1) αE(F ) is a simple modular bundle,

2) Spl0(F ) is birationally isomorphic to Spl0(αE(F )), and

3) if i
〈
E
∣∣F〉 = 0 when i > 0, then in K0

alg (see (1.1.3))

(2.3.13) {αE(F )} = −{F} + χ(E,F ){E}.
Proof. For a Uα � [F ] from the covering (1.1.22) and the universal sheaf

Fα on B × Uα the canonical homomorphism

π∗U : Ext0
Uα

(π∗BE,Fα) ⊗ π∗BE
can� Fα

is an epimorphism on B×U ′α, where U ′α is a Zariski neighborhood of the point
[F ]. Moreover we can find a neighborhood U ′′α ⊂ Uα such that αE(Fα) =
ker can|B×Uα is a Uα-simple flat sheaf. Formula (2.3.8) recovers the sheaf F1,
[F1] ∈ U ′′α , from α, and, therefore, αE(Fα) is a modular family. Assertions 1)
and 2) now follow, and C(E,F ) yields assertion 3). �

Example. Let us return to the example of the previous section: B = S is
a K3 surface. Then the conditions of Theorem 2.3.1 are as follows: 1

〈
E
∣∣F〉 =

0. By (2.2.20) the transformation αE (2.3.13) of the Z-module K0
alg(S) is a

reflection in the lattice with respect to the base vector {E}.
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To obtain a sufficient criterion of the regularity of the pair (E,αE(F )) we
restrict ourselves to the case when B = S is a regular surface.

Remark. The assertion ”the complete linear series |C| on S is base points
free” will take the form γO(OS(C)) = 0 in the notation (2.3.2).

Lemma 2.3.5. If E ∈ R(S), E∗∗ = E, γE(F ) = 0 and the contraction
homomorphism

(2.3.14) σ′ : 0
〈
E′
∣∣E〉⊗ 0

〈
E
∣∣F〉 � 0

〈
E′
∣∣F〉

is surjective, then the pair (E,αE(F )) is regular.

Proof.
1
〈
αE(F )

∣∣E〉 ====
sd

1
〈
E′
∣∣αE(F )

〉
. Applying 0〈E′| to C(E,F ) we

have

0 � 0
〈
E′
∣∣αE(F )

〉 � 0
〈
E
∣∣F〉⊗ 0

〈
E′
∣∣E〉 σ′� 0

〈
E′
∣∣F〉 �

� 1
〈
E′
∣∣αE(F )

〉 � 0
〈
E
∣∣F〉⊗ 1

〈
E′
∣∣E〉

‖sd

1
〈
E
∣∣E〉 = 0.

The surjectivity of σ′ implies 1
〈
E′
∣∣αE(F )

〉
. �

Theorem 2.3.2. Suppose that γO(KS) = 0, OS(1) ∈ Pic S is ample,
E ∈ R(S), and E∗∗ = E. Then for any sheaf F we can find a number d0 such
that for any d � d0

1) the pair (E(−d), F ) is regular and 1
〈
E(−d)

∣∣F〉 = 0,

2) γE(−d)(F ) = 0,

3) pair (E,αE(F )) is regular.

Proof. By the theorem of Serre we can choose a d′0 such that for d � d′0
condition 1) holds. Let us choose a d′′0 � d′0 such that γO(E∗ ⊗ F (d)) = 0 if
d � d′′0 . Tensoring the epimorphism

H0(E∗ ⊗ F (d)) ⊗OS
can� E∗ ⊗ F (d) � 0

by E(−d), we have

0
〈
E(−d)

∣∣F〉⊗ E(−d) � EndE ⊗ F � 0

F
�

can

�

0
�

.
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Assertion 2) now follows.
Now choose a d0 � d′′0 so that h1(αO(KS) ⊗ E∗ ⊗ F (d)) = 0. Then the

cohomology sequence of the triple C(OS ,KS) tensored by E∗⊗F (d) yields an
epimorphism

H0(KS) ⊗ 0
〈
E(−d)

∣∣F〉 � 0
〈
E′(−d)

∣∣F〉 � 0.

But H0(KS) is a direct summand of 0
〈
E′(−d)

∣∣E(−d)
〉
, and the surjectivity on

this summand implies the surjectivity of all of σ′ (2.3.14). Assertion 3) follows
from Lemma 2.3.5. �

Definition 2.3.1. The passage to the sheaf αE(F ) from the sheaf F is
called the operation of universal division (by E).

Consider the modular family (2.1.17).
Theorem 2.3.3. Suppose that γO(KS) = 0 and OS(1) is ample. Then

there exists a number N0 such that, if N > N0, then

1) for a general OC(ξ) ∈ Picd|D|0 (2.1.17) the sheaf αO(−N)(OC(ξ)) is lo-
cally free and simple,

2) Spl0(αO(−N)(OC(ξ))) bir∼ Picd|D|0, and

3) the local invariants of OC(ξ) and αO(−N)(OC(ξ)) coincide.

Proof. If C ∈ |D|0 is smooth then the stalks of OC(ξ) have homological di-
mension 1 at all points. By the syzygy theorem, if γO(−N)(OC(ξ)) = 0, then the
local freeness of 0

〈OS(−N)
∣∣OC(ξ)

〉⊗OS(−N) in the triple C(OS(−N),OC(ξ))
implies the local freeness of αOS(−N)(OC(ξ)). It is not difficult to check that the
argument in the proof of Theorem 2.3.2 is also valid for F = OC(ξ). We only
need to replace (2.3.8) by the process of recovering OC(ξ) from αO(−N)(OC(ξ)).
To this end, using

(2.3.15) Ext1
OS

(OC(ξ),OS) = OC(C2 − ξ),

we invert the triple C(OS(−N),OC(ξ)):

0 � 0
〈OS(−N)

∣∣OC(ξ)
〉∗ ⊗OS(N) � αO(−N)(OC(ξ))∗ �

(2.3.16) � OC(C2 − ξ) � 0.

Choosing an N0 such that 0
〈OS(N)

∣∣OC(C2 − ξ)
〉

= 0 if N � N0 and applying
〈OS(N)| to the triple (2.3.16), we obtain

(2.3.17)
0
〈OS(−N)

∣∣OC(ξ)
〉∗ = 0〈OS(N)|αO(−N)(OC(ξ))∗〉,

OC(C2 − ξ) = γO(N)(αO(−N)(OC(ξ))∗).

Thus, we obtain an infinite set of modular families with birationally equiv-
alent moduli varieties. It is easy to see that in this case the map (2.3.13) is
also not −χ-orthogonal for a general S.
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Let us go back to the beginning of this section. For any vector subspace
V ⊂ 0

〈
E
∣∣F〉 we can consider the restriction of the homomorphism can of

(2.3.1) to V ⊗ E ⊂ 0
〈
E
∣∣F〉⊗ E and obtain the exact quadruple

(2.3.18) C(E,F )V : 0 � αV
E(F ) � V ⊗ E

canV� F � γV
E (F ) � 0.

Let F =
d⊕

i=1
Fi and rk 0

〈
E
∣∣Fi

〉
= n. Then 0

〈
E
∣∣F〉 =

d⊕
i=1

0
〈
E
∣∣Fi

〉
, rk 0

〈
E
∣∣F〉 =

dn, and the subgroup

GL(0
〈
E
∣∣F1

〉
) × · · · × GL(0

〈
E
∣∣Fd

〉
) ⊂ GL(0

〈
E
∣∣F〉),

acting on the Grassmannian Gr(n, 0
〈
E
∣∣F〉), has an open orbit U . It is easy

to check that the sheaves αV
E(F ) and γV

E (F ) in (2.3.18) do not depend on the
choice of point V ∈ U . We denote them by the symbols

(2.3.19) α0
E

(
d⊕

i=1
Fi

)
, γ0

E

(
d⊕

i=1
Fi

)
.

The proof of the next theorem breaks into a sequence of lemmas, and is similar
to that of Theorem 2.3.1.

Theorem 2.3.4. Let E be an exceptional bundle and (F1, · · · , Fd) a set of
bundles such that

1) each Fi is simple modular, and ∀i Spl0(F1) = Spl0(Fi),

2) ∀i 	=j (Fi, Fj) is independent (Definition 2.2.1, 3)),

3) ∀i (E,Fi) and
(

E,α0
E

(
d⊕

i=1
Fi

))
is regular pairs, and

4) γ0
E

(
d⊕

i=1
Fi

)
= 0.

Then:

1) α0
E

(
d⊕

i=1
Fi

)
is simple modular,

2) Spl0

(
α0

E

(
d⊕

i=1
Fi

))
bir∼ (Spl0(F1))(d) where (d) signifies the dth symmet-

ric power,

3) Tα0
E

(
d⊕

i=1
Fi

)
=

d⊕
i=1

TFi
,

4) and for the hypernet of the local invariant (1.3.12) we have
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τα0
E

(
d⊕

i=1
Fi

)
=

d⊕
i=1

τFi
.

Definition 2.3.2. The passage from the set (F1, · · · , Fd) satisfying condi-

tions 1)– 4) of Theorem 2.3.4 to the sheaf α0
E

(
d⊕

i=1
Fi

)
is called the Mestrano

operation.
We now mention two known examples and a new one when this construction

yields new modular the families.
Example 1. Let p1, · · · , pd ∈ S be distinct points on the surfaces S.

Setting Fi = Opi
and E = OS , we have

(2.3.20) α0
O

(
d⊕

i=1
Opi

)
= Jξ,

where ξ =
∑

pi is the cycle constructed from the points pi.
Example 2. (Mestrano [10]). Let S

π� P1 be a bundle with genus g
curves as fiber, i.e., a pencil of curves |D| = P1 without base points. Then in
the family of sheaves OC(ξ) (2.1.17) with base

Picg+1|D| π� |D| = P1

the sheaves (OC1(ξ1),OC2(ξ2)) are independent if C1 �= C2, where Ci = π−1(pi)
and pi ∈ P1. Moreover α0

O(OC1(ξ1) ⊕ OC2(ξ2)) is a two-dimensional modular
(and even stable) bundle. Its moduli variety is a bundle over P2 = (P1)(2):

Spl0(α0
O(OC1(ξ1) ⊕OC2(ξ2)))

π� P2 = (P1)(2),
π−1(p1 + p2) = Jg+1(C1) ⊕ Jg+1(C2).

Example 3. Let S be a K3 surface with polarization OS(1), F a simple
OS(1)-stable bundle with v(E) = (r, C, s) (see (1.2.18)), and v2 = 0. Then,
by [12], § 4, the variety of moduli MO(1)(v) of the bundle F is birationally
equivalent to a K3 surface S′ isogeneous to S. We also have

Theorem 2.3.5. For any distinct points ([F1], · · · , [Fd]) on S′ and excep-
tional bundle E there exists a number N0 such that for N � N0

1) the set of bundles (F1, · · · , Fd) satisfies conditions 1) – 4) of Theorem
2.3.4,

2) α0
E(−N)

(
d⊕

i=1
Fi

)
is simple modular, and

3) Spl0

(
α0

E(−N)

(
d⊕

i=1
Fi

))
bir∼ (S′)(d).

Assertions 1) follows directly from calculations in § 4 of [12].



chapter 3

Universality

§ 1 Constructive equivalence.

Coming back to §1 of Chapter I, we have the big lattice VZ(S) of a smooth
regular surface S, the Z-semicone Fm(S) ⊂ VZ(S) consisting of the classes of
modularly close sheaves on S, the set R(S) of exceptional sheaves on S (see
(1.1.26)), and the diagram of Z-modules

(3.1.1)

R(S) ⊂Fm(S)⊂ VZ(S)

rm(R(S))

rm
�

⊂ F (S)

rm
�

⊂ K0
alg(S)

rm (1.1.11)
�

The group Pic S acts equivariantly on this diagram via χ-isometries (see
(1.1.7).

Definition 3.1.1. Simple modular sheaves F1 and F2 will be called con-
structively close if for any i �= j Fi can be obtained from Fj by the universal
extensions or universal division, under which TFi

is identified with TFj
, or, in

other words, Fi = Lij ⊗ Fj , where Lij ∈ Pic S.
Remark. The conditions in Theorems 2.2.1 and 2.3.1 give criteria for

constructive closeness but, as examples show, they are far from being necessary.
Chains of the relations of constructive closeness and modular closeness Rm

(see Definition 1.1.2) generate an equivalence relation RK . We denote the
equivalence class of F by {F}K . Thus, R(S) is the union of the RK-equivalence
classes

(3.1.2) R(S) =
⋃

{Fi}K .

Similarly, for the semicone Fm(S):

(3.1.3) Fm(S) =
⋃

{Fj}K .

162
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It is easy to see (see the proofs of Theorems 2.2.1 and 2.3.1), that modular
sheaves from the same constructive class have birationally equivalent moduli
variety:

(3.1.4) F1
RK∼ F2 ⇒ Spl0(F1)

bir∼ Spl0(F2).

The number of classes (3.1.2) is an interesting invariant of the surface S.
Direct calculations show (see, for example, [12]) that if F1 and F2 are simples
sheaves on a Del Pezzo or K3 surface, then

(3.1.5) F1
RK∼ F2 ⇒ v2(F1) = v2(F2).

In particular,

(3.1.6) F ∈ R(S) ⇒ v2(F ) =

{
−1, S Del Pezzo
−2, S K3.

Not much is known about the structure of R(S) or the partition (3.1.2).
The Drezet–Le Potier Theorem [4].

(3.1.7) R(P2) = {OP2}K .

Recently Rudakov proved the ”uniclassness” of the quadric

R(P1 × P1) = {OP1×P1}K .

For a surface S of general type we can only show that the classes {F}K contain
infinitely many elements modulo the action of PicS.

Lemma 3.1.1. Let γO(KS) = 0 and OS(1) be ample. Then for any pair
E1, E2 ∈ R(S) such that E∗∗i = Ei there exists a d0 such that

1) for any d � d0

αE1(E2(d)) ∈ R(S),

2) for any d1, d2 � d0

αE1(E2(d1)) �= αE1(E2(d2)).

Proof. Assertion 1) follows from Lemma 2.3.2. Now recall formulas
(1.2.18) – (1.2.21) from§ 2 of Chapter 1. Let OS(1) = OS(H), v(E1) =
(r1, C1, s1), and v(E2) = (r2, C2, s2). Then

v(E2(d)) =
(
r2, C2 + r2dH,

r2

2
H2d2 + HC2d + s2

)
,

−χ(E1, E2(d)) = r1r2
H2

2
d2 + r1r2H

(
C2

r2
− C1

r1
+ KS

)
d+

+r1r2

(
s1

r1
+

s2

r2
− C1C2

r1r2
− C1 · KS

2r1
− C2 · KS

2r2

)
.
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The exact triple C(E1, E2(d)) (2.3.2) shows that

rkαE1(E2(d)) = Ad2 + Bd + C,

where A, B and C are constants (depending on E1 and E2). From this assertion
2) follows. �

Corollary. For every class {Fi}K ⊂ R(S) (3.1.2)

#({Fi}K/PicS) = ∞.

Similar arguments prove
Lemma 3.1.2. Under the conditions of Lemma 3.1.1 for any E ∈ R(S)

such that E∗∗ = E, and any simple modular sheaf F , there exists a number d0

such that

1) for any d � d0

αE(F (d)) ∈ {F}K ,

2) for any d1, d2 � d0

rkαE(F (d1)) �= rkαE(F (d2))

Corollary.For each class {Fj}K ⊂ Fm(S) (3.1.3)

#({Fj}K/Pic S) = ∞.

The next result illustrates the extreme importance of the structure of the
”root” subset R(B) ⊂ VZ(B) of the big lattice.

Theorem 3.1.1. Let M be a smooth irreducible variety with

h0(TM) = h0(ΩM) = 0 ,

F a compact modular simple sheaf on a regular surface S, M = Spl0(F ), and
F a universal sheaf on S × M ( a Poincaré family). Then

1) F is an exceptional sheaf on S × M

(3.1.8) F ∈ R(S × M),

2) rk 2
〈F ∣∣F〉 � rk imτF , where τF is homomorphism (1.3.7)=(1.2.31).

Proof. The relative variant of the spectral sequence 7.3 from Chapter II
of [6] yields an exact sequence

0 � H1(M, Ext0
M (F ,F)︸ ︷︷ ︸
‖(1.1.23)
OM

) � 1
〈F ∣∣F〉 � H0(M, Ext1

M (F ,F)︸ ︷︷ ︸
‖(1.1.23)

TM

) �

� H2(M, Ext0
M (F ,F)) � 2

〈F ∣∣F〉.
The end terms of the initial triple vanish, and F is an infinitesimally rigid

sheaf. Since F is OM -simple, i.e., OM = Ext0
M (F ,F), F is simple. The

monomorphism between the last two terms yields inequality 2). �
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Since

(3.1.9) π∗S(R(S)) ⊂ R(S × M),

the restriction to S × [F ] gives

(3.1.10) {F}K |S×[F ] ⊃ {F}K .

Definition 3.1.2. The class {F}K ⊂ Fm(S) is said to be generated by the
class {F0}K if there exist sheaves F ∈ {F}K and F ∈ {F0} such that F =

α0
E

(
d⊕

i=1
Fi

)
or F = ε0

F

(
d⊕

i=1
Fi

)
, where [Fi] ∈ Spl0(F0), α0

E is the Mestrano

operation (see Definition 2.1.1), and ε0
E is the universal composite extension

operation (Definition 2.2.3).
Example 1. {Jξ}K is generated by the class of the skyscraper sheaf {Op}K ,

p ∈ S.
Conjecture. On a K3 surface, classes (3.1.3) are generated by classes

{Fi}K , where Fi is a simple modular sheaf with isotropy vector v(Fi) : v2(F ) =
0.

The problem of describing the images of classes (3.1.2) and (3.1.3) under
the projection rm (3.1.1) (for example, in the case of a K3 surface) reduces
to the problem of describing the fundamental domain of the group generated
by reflections (2.3.15) and antireflections (2.3.13) in the ultrahyperbolic lattice(
K0

alg(S),−χ
)

with respect to the vector from R(S) (see (3.1.6)) (but not all
the vectors of square −2).

To describe R(S) for Del Pezzo surfaces, Rudakov and Gorodentsev intro-
duced the concept of helixes in R(S) (see [8]). A helix in R(S) is a KS-periodic
set of exceptional bundles, parametrized by integers

(3.1.11)
H = (· · · , Ei, Ei+1, Ei+2, · · · ),

i
〈
Ek

∣∣Ek+m

〉
= 0, i � 1, m � 1, Ei+ρ+2 = Ei ⊗ KS ,

where ρ is the Picard number of S.
If we replace one of the bundles from the pair (Ei, Ei+1) by the bundle

αEi(Ei+1), αT
Ei+1

(Ei) or εEi+1(Ei), we obtain a new helix H ′, and the chains
of such transformations gives rise to the relation RK of constructive equivalence
of helixes. The RK-equivalence class of the helix H will be denoted by {H}K .

Example 2. S = P2 [8]. The geometry of helixes in R(P2) is as follows:

1) R(S) is swept by helixes.

2) Each pair E, E′ ⊂ R(P2) lies in a unique helix.

3) All helixes are constructively equivalent and thus constructively equiva-
lent to the unique helix of invertible sheaves H0 = (· · · ,OP2(i), · · · ).
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Of course, this immediately implies (3.1.7).
Each helix H gives rise to the dual helix H̃ = (· · · , Ẽi, · · · ) (see [8], § 3, for

precise definition). A length ρ(S)+2 segment of the helix (3.1.11) (for example,
(E1, · · · , Eρ+2) is called a coil of H.

A coil of a helix and the corresponding coil (Ẽ1, · · · , Ẽρ+2) of the dual helix
give rise to a resolution of the diagonal Δ ⊂ S × S:
(3.1.12)
0 � Eρ+2 � Ẽρ+2

� · · · � E1 � Ẽ1
� OS×S

� OΔ
� 0,

where E � Ẽ = π∗1E ⊗ π∗2Ẽ and πi is the projection onto the corresponding
direct summand.

This resolution is an analogue of the Beilinson spectral sequence, the exis-
tence of which has the following consequences (well known for S = P2):

1) The classes {Ei}, i = 1, · · · , ρ+2 of the bundles from the coil of the helix
are generators of the lattice (K0

alg(S),−χ).

2) For any sheaf F on S

{F} =
∑

(−1)iri{Ei}, ri = rk 1
〈
Ei

∣∣F〉.
3) Any sheaf F on S is the cohomology of a complex built of direct sums of

bundles Ei.

Later we will see that all these statements are no longer true if pg(S) > 0.

§ 2 Universality.

Given an algebraic symplectic structure ω on a variety B2, any morphism
f : B1

� B2 induces algebraic symplectic structure f∗ω on B1:

(3.2.1)

TB1
df� f∗TB2

ω� f∗ΩB2
df∗� ΩB1

...................................................................
f∗ω

�

�

But an algebraic symplectic structure can also be induced when B1 and B2 are
related to each other in a more complicated way.

Lemma 3.2.1. Let

(3.2.2)

B̃

B1

�

π

B2

f

�
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be a diagram of morphisms between smooth varieties, where π : B̃ � B1 is
a bundle with nondegenerate differential and complete smooth rational fibers.
Then any algebraic symplectic structure ω on B2 induces an algebraic symplec-
tic structure (π, f)∗ω on B1.

Proof. Diagram (3.2.2) induces the following diagram of bundles on B̃:

(3.2.3)

0 � TB̃/π � TB̃
dπ� π∗TM � 0

0 � ΩM
dπ∗� ΩB̃

�
�

�
f
∗ ω

ϕ
1 �

ΩB̃/π

ϕ2�
� 0.

Both the diagonal homomorphism ϕ1 and the vertical homomorphism ϕ2 in
this diagram vanish on each fiber π−1(b), because

(3.2.4) h0(Λ2Ωπ−1(b)) = h0(Ωπ−1(b)) = 0.

This gives rise to the solid diagonal homomorphism f∗ω.
Lemma 3.2.2. The assertion of Lemma 3.2.1 remains true if the map f

in diagram (3.2.2) is a rational map such that for the closed subset Σ of its
indeterminacy points and any point b ∈ B1

(3.2.5) codimπ−1(b)Σ ∩ π−1(b) � 2.

Proof. Although diagram (3.2.3) is defined only on the open set B̃0 =
B̃ − Σ, the restrictions of the broken homomorphism ϕ1 and ϕ2 of (3.2.3) to
the fiber π−1(b)−Σ∩π−1(b) vanish for each point b ∈ B1, because, by Hartogs’
theorem, equalities (3.2.4) hold. Therefore, for any point of B̃0 the image of
the homomorphism f∗ω lies in the subbundle ΩM ⊂ ΩB̃. �

Definition 3.2.1. Diagram (3.2.2) with a rational map f satisfying condi-
tion (3.2.5) of Lemma 3.2.2 is called a rational correspondence and denoted by
(π, f).

Remark. Rational correspondence is not symmetric. The term ”rational”
is related to the map f and the variety π−1(b).

If F is a flat family of torsionfree sheaves on a regular surface S with base
M , then the main construction of [13] gives rise to a rational correspondence
(π, ϕS

F ) of the variety M with the Douady space S̃(d) (see (2.1.4)) such that
the triangle

(3.2.6)

H0(Λ2ΩS)
τF

(1.3.7)
� H0(Λ2ΩM)

H0(Λ2S̃(d))
(π

,ϕ
SF

)
∗�

τ
J
Z(2.1.11)
�

is commutative.
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Let F be a rank r + 1 torsion free sheaf on S. An embedding of sheaves
V ⊗ KS

S� F modulo GL(V ), where V = Cr, which can be extended to an
exact triple

(3.2.7) 0 � V ⊗ KS
S� F � Jξ(S)(c1(F ) − rKS) � 0,

is called a regular K-block of F , and thin cycle ξ(S) ∈ S̃(d), where d = c2(F ′),
is called a degeneration cycle of the K-block S. (See [13], Definition 1.2.2 –
1.2.4 and Lemma 1.2.1]). A sheaf F is called regular if

h1(F ) = 0, h2(F ) = h2(OS(c1(F ) − rKS)).

In this case the second coboundary homomorphism in the exact cohomology
sequence of the triple (3.2.7) yields an isomorphism

V = 1〈OS |Jξ(S)(c1(F ′) + KS)〉
(see Lemma 2.2 of [13]), and thus F becomes the universal extension

(3.2.8) F = εKS
(Jξ(S)(c1(F ′) + KS))

(see Definition 2.2.2 of this paper). By Lemma 2.3 of [13], if F is a simple sheaf
then any regular K-block S is uniquely determined by its thin degeneration
cycle ξ(S). Furthermore, for any regular torsionfree sheaf F the variety of
regular blocks B(F ) either is empty or contains a Zariski open dense subset of
the Grassmannian G(r, H0(F ′)) (see [13],§ 3).

It is not difficult to prove the following generalization of ”Serre’s theorem”:
Proposition 3.2.1. Let OS(1) be an ample invertible sheaf on a smooth

regular surface S. Then the following assertions are true:

1) For any torsionfree sheaf F of rank � 2 and any sufficiently large N

(3.2.9) h1(F (N)) = h2(F (N)) = 0, B(F ) �= ∅;

2) For any flat family F of torsionfree sheaves of rank � 2 on S × M and
any sufficiently large N

a) ∀ m ∈ M , Fm(N) satisfies condition (3.2.9), and

b) R0πM (F ′ ⊗ π∗SOS(N)) is a locally free OM -sheaf.

A family F on S × M such that, for all m ∈ M , Fm satisfies (3.2.9) and
R0πMF ′ = H(F) is locally free is called regular. A regular family F on S ×M
gives rise to the bundle

(3.2.10) G(r,H(F))
π� M, π−1(m) = G(r, H0(F ′m))

which is the Grassmannization of H(F), and the open subset

(3.2.11) B(F) ⊂ B(r,H(F))
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of regular blocks. Assigning to each regular block its degeneration cycle gives
rise to the map ϕS

F of the diagram

(3.2.12)

G(r,H(F))S
B(F)

M
�

π

S̃(d)

ϕ SF
�

d = c2(F ′m) ,

ϕS
Fm

: B(Fm) � S̃(d) ,

ϕS
Fm

(S) = ξ(S)

(see [13],§ 2, (3.2)). The map ϕS
F is regular on B(F) and rational on G(r,H(F)).

Theorem 3.2.1. For any ω ∈ H0(Λ2ΩS)

τF (ω) = (π, ϕS
F )∗(τJZ

(ω)),

i.e., diagram (3.2.1) is commutative.
Proof. Twisting triple (3.2.7) by K∗

S , we get

(3.2.7′) 0 � V ⊗OS
S� F ′m

j� Jξ(D) � 0 ,

where D = c1(F ′m), ξ = ξ(S), d = c2(F ′m). Applying |Jξ(D)〉 to the triple
(3.2.7’), we have

(3.2.13)

0
〈
V ⊗OS

∣∣ Jξ(D)
〉 δ� 1

〈
Jξ(D)

∣∣ Jξ(D)
〉 �....

j
......� 1

〈
F ′m
∣∣ Jξ(D)

〉

V ∗ ⊗ H0(Jξ(D))

����
TJξ = T S̃

(d)
ξ

����
.

Since h1(OS) = 0, triple (3.2.7’) yields another triple:

0 � V � H0(F ′m) � H0(Jξ(D)) � 0.

Hence

V ∗ ⊗ H0(Jξ(D)) = TG(r, H0(F ′m))V = TB(Fm)V = (TB(F)/π)(m,S)

and the coboundary homomorphism δ in (3.2.13) decomposes as follows:

(3.2.14)

V ∗ ⊗ H0(Jξ(D))
δ� 1
〈
Jξ(D)

∣∣ Jξ(D)
〉

(TB(F)/π)(m,S)

�����
i � TB(F)(m,S)

dϕS
F

�

.

On the other hand, applying 〈F ′m| to (3.2.7’), we have

(3.2.15)

1
〈
F ′m
∣∣ Jξ(D)

〉 � 1
〈
F ′m
∣∣F ′m〉 �S 1

〈
F ′m
∣∣V ⊗OS

〉

TMm

�����
�.........................j

V ∗ ⊗ H1(Fm)∗ = 0

Serre
duality

����
.
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Let s ∈ H0(KS) and F
⊗s� F ⊗ KS be the sheaf homomorphism defined by

s. The theorem now follows from the commutativity of the diagram

(3.2.16)

T S̃
(d)
ξ TMm

1
〈
Jξ(D)

∣∣ Jξ(D)
〉

����
� 1
〈
F ′m
∣∣ Jξ(D)

〉 �
�......

....... j
.......

......
�.................j ..................

1
〈
F ′m
∣∣F ′m〉
�����

1
〈
Jξ(D)

∣∣ Jξ(D) ⊗ KS

〉�
⊗S
�

� 1
〈
F ′m
∣∣ Jξ(D) ⊗ KS

〉�
⊗S
�

� 1
〈
F ′m
∣∣F ′m〉�
⊗S
�

ΩS̃
(d)
ξ

����
�........

......... j.....
..........

...

ΩMm

�����
�.............j .............

To illustrate this let us turn to the compact modular case: let M be a
complete smooth variety of moduli of bundles on S and F a universal sheaf on
S × M . Consider the algebraic cohomology class

c2(F) ∈ H4(S × M, Z),

which is the second Chern class of F , and its (2, 2)-component in the Künneth
decomposition

(3.2.17) c2(F)(2,2) ∈ H2(S, Z) ⊗ H2(M, Z).

This component is also an algebraic cycle (H1(S, Z) = H3(S, Z) = 0), and it
defines a homomorphism

Φ′ : H2(S, Z)∗ � H2(M, Z).

The Poincaré duality gives rise to a lattice isomorphism H2(S, Z)∗ = H2(S, Z),
and, therefore, to a homomorphism

(3.2.18) Φ : H2(S, Z) � H2(M, Z).

Since c2(F)(2,2) is a type (2, 2) Hodge cocycle, the map Φ ⊗ C is a homomor-
phism of Hodge structures and, in particular, we have the homomorphism

(3.2.19) (Φ ⊗ C)2,0 : H2,0(S) � H2,0(M).

Lemma 3.2.3. (Φ ⊗ C)2,0 = τF = −(fτ
F∗ ⊗ C)2,0 (1.2.31).

Proof. The homomorphism (3.2.19) does not change when F is twisted
by elements of π∗S(Pic S), and we may assume that F is regular. Then for any
point (Fm, S) ∈ B(F) (3.2.11) the triple (3.2.7’) yields the equality

c2(F ′m) = c2(Jξ(S)(c1(F ′m))) = c2(Jξ) + const.

Thus, by Theorem 3.2.1, it suffices to check the desired equality for the family
JZ (2.1.9) with base S̃(d). But in this case the result follows from (2.1.9),
(2.1.11), and (2.1.13). �



Chapter 3. § 3 The image of the moduli variety in K0(S) 171

§ 3 The image of the moduli variety in K0(S).

If S is a smooth regular surface let, as usual,

(3.3.1) CH2(S) =
the free abelian group of points on S

cycles rationally equivalent to zero

be the Chow group of cycles on S, CH2(S)
deg� Z � 0 the ”degree”

epimorphism, and CH2
0 (S) its kernel, i.e., the group of classes of degree of 0

cycles. Fixing a point p0 ∈ S, we obtain an inductive system of maps {rd}:

(3.3.2) S(d) rd� CH2
0 (S), rd

(∑
pi

)
= class

(
d∑

i=1

pi − dp0

)
,

and therefore, a system of maps

(3.3.3) S̃(d) (2.1.4)� S(d) rd� CH2
0 (S)

between smooth varieties.
The irreducible unirational variety

(3.3.4) S̃(d)
p0

= {ξ ∈ S̃(d)|suppξ = p0}

gives rise to the rational correspondence (π, fn) (see(3.2.2)):

(3.3.5)

S̃(d) × S̃(n)
p0

S̃(d)
�

π

S̃(d+n)

f
n

�

,

Jfn(ξ,η) = Jξ ⊗ Jη.

The inductive system of rational correspondences {(π, fn)} allows us to define
the following things:

(1) The inductive limit topology on CH2
0 (S);

(2) The notion of a morphism ϕ from any smooth variety M into CH2
0 (S)

as a rational correspondence (3.2.2) between M and S̃(d) for some d:

(3.3.6) ϕ : M � CH2
0 (S).

(3) The notion of a type (2, 0) form on CH2
0 (S) (see Lemma 3.2.1) and,

therefore, the space
H2,0(CH2

0 (S))

(the forms are invariant under translations in CH2
0 (S)).
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(4) The isomorphism

(3.3.7) τ : H2,0(S) � H2,0(CH2
0 (S))

and any morphism ϕ : M � CH2
0 (S) induce a homomorphism

(3.3.8) ϕ∗ : H2,0(S) = H2,0(CH2
0 (S)) � H2,0(M)

(Lemma 3.2.1).

Now we can interpret the results of the previous section as follows:

1) For any family F on S × M the rational correspondence of degeneration
blocks (3.2.12) determines uniquely, up to a translation, a morphism

(3.3.9) ϕB : M � CH2
0 (S).

2) The homomorphism (1.3.7)

(3.3.10) τF = ϕ∗B .

It is easy to see that for a smooth regular surface S

K0(S) ⊗ Q = K0
alg(S) ⊗ Q ⊕ CH2

0 (S),

where K0(S) is the Grothendieck group of S. Therefore, we can interpret the
morphism ϕB (3.3.9) as map of the variety into K0(S).

Theorem 3.3.1. Let F be a torsionfree simple modular sheaf on S for which
there exists a section s ∈ H0(KS) such that τF (S) (1.3.11) is nondegenerate,
i.e.,

(3.3.11) τF (S) : 1
〈
F
∣∣F〉 ..............

⊗s
�� 1
〈
F
∣∣F ⊗ KS

〉
is an isomorphism.

Then for any analytic neighborhood U of the point [F ] in Spl0(F ) and any
representation of the block morphism

U
ϕB� CH2

0 (S)

as a composition

(3.3.12)

U
ϕB � CH2

0 (B)

M ′
ϕ
′
�

ψ �

of morphism, where M ′ is a germ of an algebraic variety, we have

(3.3.13) ker dψ[F ] = 0,

i.e., ψ is an immersion of [F ].
Proof. By (3.3.10), kerdψ[F ] ⊂ kerτF (S) (3.3.11). Hence, kerτF (S) = 0

implies (3.3.13). �
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Corollary 1. Under the assumptions of the theorem,

(3.3.14) dim M ′ � dim Spl0(F ) = rk 1〈F |F 〉.
Corollary 2. If S is a K3 surface and F is simple sheaf, then the de-

composition (3.3.12) implies equality (3.3.13).
Indeed, it follows from [11] that F is modular and (3.3.11) is an isomor-

phism.
Theorem 3.3.1 make precise the following intuitive observation: the moduli

variety of bundles on S with nondegenerate induced symplectic structure maps
into K0(S) with no loss in dimension.

Thus, the principles of classification of bundles on a regular surface with
pg > 0 are entirely different from those in the case of a rational surfaces (for
example, P2):

1) A bundle cannot be represented as the cohomologies of a standard monad.

2) There exists no resolution of the diagonal in S × S of the form (3.1.12);

3) The theory of helixes (3.1.11) in R(S) is not applicable, etc.

As a matter of fact, any bundle (and all of its constructive class) is almost
uniquely determined by its second Chern class in CH2(S), and the varieties of
moduli of bundles are maximal finite-dimensional algebraic subvarieties of the
”monster” CH2

0 (S).
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The moduli spaces of vector bundles on
threefolds, surfaces and curves I

Erlangen preprint, 1990.



Introduction.

The aim of this talk1 is to bring together some results and constructions
relating the geometric structure of moduli spaces of stable vector bundles on a
flag of varieties of type:

(0.1) X ⊃ S ⊃ C,

where X is a Fano threefold, S ∈ | − KX | is a K3-surface and C is a curve on
C.

Let MX , MS , MC be the components of the moduli spaces of stable vector
bundles with fixed first Chern class c1 on X, S and C such that

(0.2) E ∈ MX =⇒ E|S ∈ MS =⇒ E|C ∈ MC .

Then the restrictions provide maps

(0.3) MX
resS� MS

resC� MC .

MX being regular means that for any E ∈ MX

(0.4) H2(adE) = 0,

where, as usually, adE⊕OX = EndE = E∨⊗E. Then the long exact sequence
of the short exact sequence

(0.5) 0 � ad E ⊗ KX
� adE � adE|S � 0,

is short, too:

(0.6) 0 � H1(adE)
d res� H1(adE|S) � H2(adE ⊗ KX) � 0,

1This is the extended version of my talk on the Conference ”Complex Abelian Varieties” in
Bayreuth, 2 – 6 April 1990. I would like to express my thanks to K. Hulek, T. Peternell,
M. Schneider and F.-O. Schreyer for the invitation. I would like to express my gratitude
to Mathematisches Institut der Universität Erlangen–Nürnberg and personally to Herbert
Lange for support and hospitality.
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because H1(adE ⊗ KX) = H2(adE) = 0 by Serre-duality on X.
Now, by standard theory variations we can interpret the vector spaces of

(0.6) as the fibres of concrete vector bundles on MX and MS :

(0.7) H1(adE) = (TMX)E

is the tangent space to MX in the point E ∈ MX . Similarly

(0.8) H1(adE|S) = (TMS)E|S ,

and we can interpret the monomorphism from (0.6) as the differential of the
restriction map (0.3).

Remark. In the local setup, the condition (0.4) implies the existence and
smoothness of the local moduli space. Moreover the first part of long exact
sequence (0.5) is

0 � H0(adE ⊗ KX) � H0(adE) � H0(adE|S) � 0.

Hence, the simpleness (h0(adE) = 0) implies the simpleness of the restriction
E|S and from this the existence and smoothness of the local moduli space for
E|S (see [15]).

Now, on MS there is holomorphic symplectic structure, that is skew-symmetric
homomorphism

(0.9) ω : TMS �→ T∨MS , ω∨ = −ω,

which over a point E|S is defined by Serre-duality

(TMS)E|S = H1(adE|S) ∼= H1(adE|S)∨ = (T∨MS)E|S .

The restrictions map resS (0.3) induces a symplectic structure on MX by the
diagram

(0.10)

0 0

TMX

�
res∗Sω� T∨MX

�

TMS

d resS

�
ω� T∨MS ,

d res∨S
�

where the verticals are the beginning of (0.6) and the end of (0.6)∨. But by
Serre-duality

(0.11) H2(adE ⊗ KX) = H1(adE)∨ = T∨MX ,

and we can extend (0.10) to

(0.12)

0 � TMX
d resS� TMS

� T∨MX
� 0

0 � T∨MX

res∗Sω
�

�d res∨S T∨MS

ω
�

� TMX
� 0,
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where the beginning of (0.12) is the dual of (0.10) and the horizontals are (0.6)
and (0.6)∨.

Now, by functoriality of Serre-duality we can see, that

ω(TMX) = TMX =⇒ res∗Sω = 0.

Hence we proved
Proposition 0.1. The image Im(MX) ⊂ MS is a Lagrangian subvariety

of MS and
dim MS = 2 dimMX .

Let us go to the second part of the chain (0.3): in this situation together
with (0.6) we consider also the sequence

(0.13) � adE|S � ad E|S(C) � ad E|C ⊗ KC
� 0,

where ad E|S(C) = adE|S ⊗OS(C) and KC = OS(C)|C is the canonical class
of the curve C.

(0.14) H0(adE|C ⊗ KC) � H1(adE|S) � H1(adE|S(C)) � 0.

A vector of the space H0(adE|C ⊗KC) can be interpreted as a homomorphism

(0.15) φ : E|C � E|C ⊗ KC ,

which is called a Higgs field (on C) and by Serre-duality

(0.16) H0(adE|C ⊗ KC) = H1(adE|C)∨ = T∨MC

is the fibre of the cotangent bundle on MC .
Consider now the homomorphism

(0.17) ω−1 : T∨MS
� TMS

as the Poisson structure on MS (see [18]). The map resC : MS
� MC defines

a Poisson structure on the image resC(MS) ⊂ MC by the diagram:

(0.18)

T∨MC
d res∨C � T∨MS

TMC

res∗Cω−1 �

� d resC
TMS ,

ω−1

�

which can be extended to
(0.19)

0 � H0(adE|S(C)) � T∨MC
d res∨C� T∨MS

� H1(adE|S(C)) � 0

0 � H2(adE|S(−C)) � TMC

res∗Cω−1

�
�d resC

TMS

ω−1

�
� H1(adE(−C)) � 0

H0(adE|S(C))∨

����
H1(adE|S(C))∨

����
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where the lower sequence is induced by the analogue of (0.6) and the upper
sequence is induced by (0.13).

Remark. The left hand zero of the upper sequence is provided by the
simpleness of E|S , and the right hand one is provided by the simpleness of
E|C . In which cases does the stability of E on S provides the stability of E|C?
This very important question will be investigated below in detail.

Now, we give the following
Definition 0.1. The Higgs field (0.15) is called extendible iff it is the

restriction of a homomorphism φ̃ : ES
� ES(C) of vector bundles on S.

There exist two important partial cases of our situation:
I. All Higgs fields on C are unextendible.
II.

(0.20) h1(adE|S(C)) = 0.

In the first case the restriction map resC : MS
� MC is a surjection and

MX
� MC is a Lagrangian projection

(0.21)

MX
resS� MS

MC

resC

��

In the second case resC : MS
� MC is a local embedding. There exists a

regular map

(0.22) f0 : MC
� P2g(C)−1

into the projective space of conformal blocks (see the exact description in § 3
and [11], [4]), which is almost independent of C (see [11]). We provide the
diagram

(0.23)

MX
resS� MS

MC

resC

�
f0�

�

P2g(C)−1

f

�

We would like to prove that f does not depend on the choice of the smooth
curve C in the linear equivalence class of C (see § 3) and we make the first
step to prove this conjecture.

Our aim is to investigate all parts of this diagram in detail and in a general
situation, and to apply the information about the whole construction to the
problem of describing the moduli space of the mathematical instantons on P3.

Below we consider the right hand part of the diagram (0.23) in the second
case (0.20), that is the questions about relations between the moduli spaces of
stable vector bundles on a surface S and on a curve C ⊂ S.
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§ 1 Polarisations. Embedding theorem.

Let S be a smooth complete regular surface over C and H be a divisor class
on S. Let us recall that a divisor class H is called a polarization if H2 > 0 and
HC > 0 for every effective curve C on S.

Then by Serre’s theorem

1. For every divisor class D on S there exists a number d0 such that for
every d � d0

(1.1) D + dH is a polarization.

2. For every coherent sheaf F on S there exists a number d0 such that for
every d � d0

(1.2) Hi(F ⊗OS(dH)) = 0, i �= 0,

and for i = 0 the canonical homomorphism

(1.3) H0(F ⊗OS(dH)) ⊗OS
can� F ⊗OS(dH)

is an epimorphism.

Hence, if we consider the lattice Pic S of divisor classes on S, then the
subset of polarizations is a convex halfcone

(1.4) V +(S) ⊂ Pic S.

Moreover, for every homogenous integer-valued polynomial γ on Pic S the re-
striction

(1.5) γ|V + determines γ on Pic S.

The last technical detail is the semicontinuity of the function

(1.6) h(b) = rkHi(F |b), b ∈ B

on the base B of a flat family of sheaves on S in the Zariski topology.
Let MH(2, c1, c2) be the moduli space of H-stable rk 2 vector bundles on S

with Chern-classes c1 ∈ Pic S and c2 ∈ Z.
Let C ∈ |dH| be a smooth curve and MC(2, {c1}) be the moduli space of

stable rk 2 vector bundles on C with fixed determinant {c1}. Multiplying if
necessary the vector bundles by L ∈ Pic S we may assume that

(1.7) deg{c1} =

{
0, if deg c1 · C is even
−1, if deg C1 · C is odd.
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Theorem 1.1. There exists a number d0(k) such that for a generic smooth
curve C ∈ |dH| and d � d0(k) the restriction map

(1.8) resC : MH(2, c1, k
′) � MC(2, {c1})

is an embedding for all k′ � k.
Proof. First of all, it is easy to see that the set of irreducible components

of the union ⋃
k′�k

MH(2, c1, k
′)

is finite by Bogomolov’s inequality for stable of vector bundles

(1.9) c2
1 � 4k′ � 4k.

Let MH be any component of
⋃

MH(2, c1, k
′), k′ � k.

Consider on MH × MH the function

(1.10) h1(E1, E2, d) = rkH1(E∨1 ⊗ E2 ⊗OS(−dH)).

Let supp h1(E1, E2, d) denote the support of this function. Then there exists a
number d0(MH) such that

(1.11) supph1(E1, E2, d) = ∅, ∀d � d0(MH)

by (1.2) and (1.6) applyied to the family E∨ ⊗ E1 ⊗ KS with base MH × MH

and Serre-duality. Consider

(1.12) dI
0 = max

MH∈∪MH(2,c1,k′)
d0(MH).

Then for every C ∈ |dH|, d � dI
0 and for every pair E1, E2, of vector bundles

of
⋃

MH(2, c1, k
′)

(1.13) E1|C ∼= E2|C =⇒ E1
∼= E2.

Indeed, multiplying by E∨1 ⊗ E2 the short exact the sequence

(1.14) 0 � OS(−dH) � OS
� OC

� 0,

provides the short exact sequence

(1.15) 0 � E∨1 ⊗E2 ⊗OS(−dH) � E∨1 ⊗E2
� E∨1 |C ⊗E2|C � 0.

By (1.11) the long exact sequence of (1.15) provides epimorphism

(1.16)

H0(E∨1 ⊗ E2) � H0(E∨1 |C ⊗ E2|C) � 0

Hom(E1, E2)

�����
Hom(E1|C , E2|C)

�����
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Now an isomorphism E1|C φ� E2|C comes from a homomorphism

E1
φ̃� E2 ,

which is an isomorphism over a general point of S. Hence

Λ2φ̃ : OS(c1) � OS(c1)

is not zero and φ̃ is an isomorphism.
Let us go to the question of stability of E|C . For every vector bundle E on

the curve C consider the number

(1.17) l(E) = max
L1⊂E

deg L1,

where L1 is a line subbundle. Thus, if we normalized deg E as in (1.7), then

(1.18) l(E) � 0 ⇐⇒ E is not stable.

Now consider again the set {MH} of components of
⋃

k′�k

MH(2, c1, k
′), and let

the number

(1.19) m0 = max
MH⊂

S
MH(2,c1,k)

dim MH

be the maximum of dimensions of the components of the union.
For any component MH consider the direct product

(1.20) MH × |dH|0,
where |dH|0 ⊂ PH0(OS(dH)) denotes open set of reduced curves of the com-
plete linear system of curves.

Consider the subvariety of the direct product:

(1.21)
Dd ⊂ MH × |dH|0,

Dd = {(E,C)|l(E|C) � 0},
that is the subset of a pair (E,C), E ∈ MH , C ∈ |dH|0 such that E|C is not
stable.

The projections pr1 and pr2 of the direct product MH × |dH| onto its
components define the projections prM and prC of Dd:

(1.22)

MH × |dH|0⋃
MH

� prM
�

pr 1

Dd prC � |dH|0

pr
2

�
prM = pr1|Dd

prC = pr2|Dd

For every E ∈ MH we define the subvariety of the projective space |dH|:
(1.23) Dd(E) = pr−1

M (E) ⊂ |dH|.
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It is the set of curves in |dH| for which the restriction of E is not stable.
Let us prove that there exists a number dII

0 such that for every d � dII
0

(1.24) dim Dd < dim |dH|.

But

(1.25)
dim Dd = dim MH + dim Dd(Egen)

dim MH � m0 (see (1.19)).

Hence, it suffices to show that there exists a number dII
0 such that for every

E ∈ MH and for every d � dII
0

(1.26) codim|dH|Dd(E) � m0 + 1.

To prove that, let us consider the subvariety of reducible curves in the projective
space:

(1.27) Sd|H| = {C ∈ |dH| | C = c1 ∪ C2 ∪ · · · ∪ Cd, Ci ∈ |H|}.

(We can assume that for OS(H) = F the condition (1.3) is true passing if
necessary to a multiple of H.)

Now, let

(1.28) Dd
red(E) = Dd(E)

⋂
Sd|H|

be the set of the reducible curves of nonstability for E. Then

(1.29) codim|dH|Dd � codimSd|H|Dd
red(E).

At last, let

(1.30) σ : |H|d � Sd|H|

be the standard d!-sheeted covering and

(1.31) D̃d
red(E) = σ−1(Dd

red(E)).

Let us remark that

(1.32) codimSd|H|Dd
red(E) = codim|H|dD̃d

red(E).

Now it suffices to show that for every E ∈ MH there exists a number dII
0 (E)

such that for every d � dII
0 (E)

(1.33) codim|H|dD̃d
red(E) � m0 + 1

(see (1.26), (1.29) and (1.31)).
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But if this assertion were wrong, then there would exist a number N0 such
that for d � N0 we have

(1.34)
D̃d

red(E) = D̃N0
red(E) × |H|d−N0⋂ ⋂ ‖

|H|d = |H|N0 × |H|d−N0 ,

that is

(1.35) l(E|C1∪···∪CN0
) � 0 =⇒ l(E|C1∪···∪CN0∪CN0+1∪...Cd

) � 0

for every collection CN0+1, . . . , Cd of curves of |H|. But this would give a
contradiction.

Indeed, for every pair of curves C and C ′ on S

(1.36) l(E|C∪C′) � l(E|C) + l(E|C′),
because every line subbundle L ⊂ E|C∪C′ defines two line subbundles

(1.37) L1 = L|C ⊂ E|C and L2 = L|C′ ⊂ E|C′

with an equality

(1.38) deg L = deg L1 + deg L2.

Now, if D1(E) �= |H|, then

(1.39) C /∈ D1(E) =⇒ l(E|C) � −1.

Consider the number

(1.40) λ(E) = max
(C1∪···∪CN0 )∈|H|N0

0

l(E|C1∪···∪CN0
)

and a number d such that

(1.41) d − N0 � λ(E) + 1.

Choosing a collection (CN0+1 ∪ · · · ∪ Cd) of curves from |H| such that

(1.42) ∀i CN0+i /∈ D1(E),

we have

(1.43) l(E|C1∪···∪CN0∪CN0+1∪···∪Cd
) � l(E|C1∪···∪CN0︸ ︷︷ ︸

�λ(E)

+
d−N0∑
i=1

(E|CN0+i
)︸ ︷︷ ︸

�−(d−N0)

� −1

by(1.39) – (1.42). This contradicts (1.34) and (1.35).
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So the proof of the existence of the number dII
0 (E) (1.33) is now completed

by observing that we can assume

(1.44) D1(E) �= |H|

(see (1.42)) by the theorem of Mehta–Ramanathan–Flenner (see [13], [7]) pass-
ing if necessary to a multiple of H.

Now, there exists a number

(1.45) dII
0 (MH) = max

E∈MH

dII
0 (E)

by (1.6) and the number

(1.46) dII
0 = max

MH⊂
S

MH(2,c1,k′)
dII
0 (MH).

The number of Theorem 1.1 is

(1.47) d0(k) = max(dI
0, d

II
0 ),

where dI
0 is a number (1.12), and we are done.

Remark. The proof of this theorem for the moduli space MH(r, c1, c2) of
H-stable vector bundles of rank r with Chern classes c1 ∈ Pic S and c2 ∈ Z is
similar except that in the general case the number l(E) in (1.17) is replaced by
the minimal slope of the nonzero torsion free quotient of E.

§ 2 Compactification. Extension of the restriction map.

The moduli space MH(2, c1, k) of H-stable vector bundles on a regular
algebraic surface S may not be complete, but it has a natural compactification
MH(2, c1, k) constructed by Gieseker [9]. The geometric points of the corona
(boundary of the closure)

(2.1) G(MH(2, c1, k)) = MH(2, c1, k) − MH(2, c1, k)

represent classes of torsion-free sheaves semistable in the sense of Giezeker (see
[9]).

Let us recall this construction. First of all, replacing E by E ⊗ OS(dH),
we can pass from our family of vector bundles to a family of vector bundles
such that for all E ∈ MH(2, c1, k) we have the conditions (1.2) and (1.3), that
is Hi(E) = 0, i > 0, and E is generated by its global sections. Hence

(2.2) rkH0(E) = χ(E)

does not depend on E ∈ MH(2, c1, k).
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Let V be a vector space with rk V = rkH0(E). Choose a linear isomorphism

(2.3) f : H0(E) � V.

Let

(2.4) H0(OS(c1)) = W

be the space of global sections of

(2.5) det E = Λ2E = OS(c1).

Now, consider the homomorphism

(2.6)
t(E,f) : Λ2V = Λ2H0(E) � H0(detE) = W

t(E,f)(s1, s2) = s1 ∧ s2.

Thus, we can consider t(E,f) as a tensor from Λ2V ∗ ⊗ W and up to C∗ as a
point of the projective space PΛ2V ∗ ⊗ W .

The group SL(V ) acts on PΛ2V ∗ ⊗ W . According to geometric invariant
theory the semistable orbits of this action fill a subvariety

(2.7) Pss ⊂ PΛ2V ∗ ⊗ W

and the algebraic variety

(2.8)
P(n, n′) = Pss/SL(V )
n = rkV, n′ = rkW

is complete. This variety can be embedded into a projective space by homoge-
neous invariant forms of sufficiently large degree:

(2.9) P(n, n′)
i� PN

and this embedding induces the linear vector bundle on P

(2.10) i∗OPN (1) ∈ Pic P(n, n′).

The orbit of the tensor Pt(E,f) is independent of f and depends on the vector
bundle E only. Then we have a map

(2.11) MH(2, c1, c2)
G� P(n, n′),

which provides a line bundle

(2.12) L = G∗ · i∗OPN (1).

In the paper [9] Gieseker proved that
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1) G is an embedding. He gives the exact construction for recovering E from
the tensor t(E,f) (2.6).

2) This construction leads to the interpretation of semi-stable tensors of
PV ∗⊗W which are contained in the closure of G(MH(2, c1, c2)) as semi-
stable torsion-free sheaves on S.

The variety MH(2, c1, c2) can be singular and it is natural to consider the
group of formal divisor classes over Q:

Pic QMH(2, c1, c2) = Pic MH(2, c1, c2) ⊗ Q.

Now, if our surface S is simply connected and the intersection form qS on
H2(S, Z) is even, then there exists a line bundle K

1
2
S onS such that

(2.13) (K
1
2
S )⊗2 = KS ∈ Pic S,

where KS is the canonical vector bundle on S. If intersection form qS is odd,
then we consider a virtual vector bundle

(2.13′) K
1
2
S ∈ Pic S ⊗ Q, (K

1
2
S )⊗2 = KS ∈ Pic S.

Now, we can construct a special line bundle LH ∈ Pic QMH(2, c1, c2) by de-
scribing each fibre over E ∈ MH(2, c1, c2) as line
(2.14)

(LH)E =
2⊗

i=0

(ΛmaxHi(E ⊗K
1
2
S ⊗H)(−1)i

)⊗ (ΛmaxHi(E∨⊗K
1
2
S ⊗H∨)(−1)i+1

).

It is not hard to see that there exists a rational number α(c1, c2) such that in
Pic QMH(2, c1, c2)

(2.15) L = L
α(c1,c2)
H

where L is the line bundle (2.12).

Indeed, if E ⊗ K
1
2
S ⊗ H satisfies the conditions (1.2) – (1.3), then

Hi(E ⊗ K
1
2
S ⊗ H) = 0, i �= 0

Hi(E∨ ⊗ K
1
2
S ⊗ H∨) = 0, i �= 2,

and the space H0(E⊗K
1
2
S ⊗H) is dual to H2(E∨⊗K

1
2
S ⊗H∨) by Serre-duality.

Hence in that case

(2.16) (LH)E = (ΛmaxH0(E ⊗ K
1
2
S ⊗ H))2,

but by the invariant theory the homogenous invariant forms defining (2.9) are

forms from det V = det H0(E ⊗ K
1
2
S ⊗ H) and we have (2.15), where L is the

line bundle(2.12).
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In analogy with these constructions we have the construction of the com-
pactification of the moduli space of stable vector bundles with fixed determinant
on the curve C.

There are two classes (1.7):

1) If {c1} = −1, the MC(2,−1) is a complete, smooth, rational variety of
dimension 3(g(C) − 1), where g(C) is a genus of the curve C.

2) If {c1} = 0, the dimension is the same, we may assume that
OC({c1}) = OC , and MC(2, 0) may be compactified by the family of
2-vector bundles of type

(2.17)
E = L ⊕ L∨

L ∈ J(C), degL = 0,

where J(C) is an Jacobian of C. Hence

(2.18) G(MC(2, 0)) = MC(2, 0) − MC(2, 0) = K = J(C)/{±id}
is the Kummer variety of the Jacobian J(C). If g(C) > 2, then K is a
singular set

(2.19) K = Sing MC(2, 0).

If g(2) = 2, then

(2.20) MC(2, 0) = P3.

Remark. Let us remark that in this case MH(2, 0) as an algebraic variety
does not depend on the moduli of curve C.

We will assume from now to the end of this paragraph that C ∈ |dH| is
even, that is OS(d

2H) ∈ Pic S. In that case, the expression OS( 1
2C) makes

sense. Let us return to the restrictions map (1.8)

(2.21)

MH(2, c1, k)
resC � MC(2, 0)⋂ ⋂

MH(2, c1, k) MC(2, 0).

Theorem 2.1.

(1) The restriction map (2.21) extends to a map

(2.22) resC : MH(2, c1, k) � MC(2, 0).

(2) For every F ∈ G(MH(2, c1, k))

(2.23) resC(F ) = F∨∨|C ,

where F∨∨ is the reflexive envelope of F .
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We would like to sketch the proof at the end of the paragraph.
Let us recall the notion of a reflexive envelope. Consider for a sheaf F on S

the dual sheaf F∨ = HomOS
(F,OS). Then the sheaf F∨∨ is called the reflexive

envelope of F , because there exists the canonical homomorphism F
can� F∨∨

which can be completed to an exact sequence

(2.24) 0 � T (F ) � F
can� F∨∨ � C(F ) � 0,

where T (F ) is a torsion of F , and if F is torsion-free, then T (F ) = 0 and F is
subsheaf F∨∨.

The sheaf C(F ) is called the cotorsion sheaf of F . If C(F ) = 0, then a
torsion-free sheaf is called a reflexive sheaf. It is easy to see that F∨∨ is a
reflexive sheaf and for any smooth surface

(2.25) F = F∨∨ ⇐⇒ F is locally free.

The cotorsion sheaf C(F ) is an Artinian sheaf, that is a sheaf with 0-dimensional
support. Moreover,

(1) F is H-stable ⇐⇒ F∨∨ is H-stable;

(2)

(2.26) c1(F ) = c1(F∨∨);

(3) c2(F ) = c2(F∨∨) + rkH0(C(F )).

For the investigation of the extension of the restriction map it is very useful to
divide the geometrical points of the corona (2.1) into two parts:

(2.27)

Gs(MH(2, c1, k)) = {F ∈ G(MH(2, c1, k)) | F is H-stable} ,

Gss(MH(2, c1, k)) =
= {F ∈ G(MH(2, c1, k)) | F is H-semistable but not stable} ,

Gs(MH(2, c1, k)) ∪ Gss(MH(2, c1, k)) = G(MH(2, c1, k)) .

We have two simple corollaries of Theorem 2.1:
Proposition 2.1.

resC(Gs(MH(2, c1, k))) ⊂
⋃

k′<k

resC(MH(2, c1, k
′)) ⊂ MC(2, 0).

We can see that the boundary of the image of the stable part of the corona
is stratified by the subset of resC(MH(2, c1, k

′)), k′ < k, and by Theorem 1.1
the restriction map is an embedding for such MH(2, c1, k

′).
Proposition 2.2. resC(Gss(MH(2, c1, k))) is a finite subset of the Kummer

variety (2.18).
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Proof. By (2.27) we have

F ∈ Gss(MH(2, c1, k)) ⇐⇒ F∨∨ ∈ Gss(MH(2, c1, c2(F∨∨))).

Furthermore, let OS(D) ⊂ F∨∨ be a line subbundle with intersection number
D · H = 0. Then we have the exact sequence

0 � OS(D) � F∨∨ � Jξ ⊗OS(c1 −D) � 0,

where Jξ is an ideal sheaf of the 0-dimensional subscheme ξ of S. From this

k′ = c2(F∨∨) = deg ξ + c1 · D − D2.

Hence
k � k′ � c1 · D − D2.

Now, D ⊂ H⊥ ⊂ Pic S , where H⊥ is the orthogonal sublattice to H of Pic S.
By the Hodge index theorem the intersection form on H⊥ is negative definite.
From this it is easy to see that there exists a finite number such of such divisor
classes. Now, by Theorem 2.1 (2.23)

(2.28) resC(F ) = OC(D.C) ⊕OS(−D.C),

and we are done. �
Furthermore, we can see that resC is not an embedding on the corona,

because one forgets the cotorsion sheaf and the canonical epimorphism of its
reflexive envelope to the cotorsion sheaf.

Let us return to Proposition 2.1. In MC(2, {c1}) consider the configuration

(2.29) MC⊂S(2, c1, k) =
⋃

k′<k

resCMH(2, c1, k
′) ⊂ MC(2, {c1}).

This is a complete subvariety, perhaps apart from a set of points. Consider the
numbers

(2.30) μC⊂S(2, c1, k) = number of irreducible components ofMC⊂S(2, c1, k).

This number and the whole configuration are very interesting invariants of the
pair C ⊂ S.

Now, let

(2.31)

M irr
C⊂S(2, c1, k) be

{
irreducible components of MC⊂S(2, c1, k)

containing res(MH(2, c1, k))

}

M con
C⊂S(2, c1, k) be

{
connected components of MC⊂S(2, c1, k)

containing res(MH(2, c1, k))

}
μirr

C⊂S(2, c1, k) = a number irreducible components M irr
C⊂S ,

and so on.
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Consider some partial cases of the general situation:
Example. Artamkin component. Let us recall that torsion-free sheaf

F is a quasibundle if

(2.32) C(F ) = Oξ =
d⊕

i=1
Opi

,

is the structure sheaf of a 0-dimensional subscheme without nilpotents. A
quasibundle F quasitrivial, if

(2.33) F∨∨ = V ⊗OS , V = C2.

The canonical epimorphism (see (2.24))

(2.34) F∨∨ = V ⊗OS
φ� Oξ =

d⊕
i=1

Dpi
= C(F )

is the sum of the local epimorphisms V ⊗OS
φi� Opi

defined uniquely by the

line ker φi. Hence a quasitrivial F is defined uniquely by a cycle ξ̃ =
d∑

i=1

p̃i in

the direct product S×P(V ) where p̃i = (pi, ker φi) up to the action AutP(V ) =
PGL(V ). Thus the moduli space of quasitrivial sheaves with c2 = d is

(2.35) MQT (d) = Σd\(S × P(V ))d/PGL(V ),

where Σd is the symmetric group permuting the factors of the direct product.
There is
Artamkin’s Theorem.[1]

(1) For a general quasitrivial sheaf F the local universal deformation exists
if c2(F ) > max(3, 3pg).

(2) The general sheaf of the universal deformation of a general quasitrivial
sheaf of rk 2 with c2 > 3pg(S) is locally free (pg(S) = h2,0(S) is the
geometric genus of S).

(3) The general sheaf in the numerical deformation of a general quasitrivial
sheaf F is H-stable with respect to any polarization H.

From this we have the natural
Definition. A component

MA
H(2, 0, k) ⊂ MH(2, 0, k) ,

whose corona GMA
H(2, 0, k) contains a general quasitrivial sheaf, is called an

Artamkin component .
The component MA

H(2, 0, k) is unique, because for a general quasitrivial F

Ext2(F, F ) = Ext2(O) = pg
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and F is a smooth point of MH(2, 0, k), so F cannot lie in the intersection of
2 such components.

(2.36) dim MA
H(2, 0, k) = 4c2 − 3(pg + 1).

Furthemore, the Artamkin component MA
H(2, 0, k) has a nice property

Proposition 2.3. [1]

(1) For any polarization H ′ ∈ V +(S) (1.4) there exists a Zariski open set
MA

H,H′ of MA
H(2, 0, k), the corresponding bundles of which are H ′-stable

bundles.

(2) MA
H,H′ is invariant with respect to the action of the group of birational

automorphism of S.

Thus, a general vector bundle of the Artamkin component is absolutely
stable and we have the very important

Question. Does the intersection⋂
H′∈V +(S)

MA
H,H′

containing an open set of MA
H(2, 0, k) in Zariski topology (in the complex topol-

ogy)?
It is easy to see that in the situation of Theorem 1.1 for the Artamkin

component MA(2, 0, k) we have

(2.37) resC(G(MA
H(2, 0, k))) ⊃ resC(MA

H(2, 0, k − 1)).

Hence, if for our surface S

(2.38) MH(2, 0, k) = MA
H(2, 0, k)

(it is true, for example, for the projective plane P2), then the number (2.30)

μC⊂S(2, 0, k) = 1

and we have the simplest configuration for MC⊂S(2, 0, k) ⊂ MC(2, 0) (see
(2.29)):

(2.39)

Sing resC(M
A

H(2, 0, k)) = resC(M
A

H(2, 0, k − 1)) ,

Sing Sing resC(M
A

H(2, 0, k)) = Sing resC(M
A

H(2, 0, k − 1)) =

= resC(M
A

H(2, 0, k − 2)) ,

where Sing M is a set of singular points of M . From (2.36) we can see that

(2.40) dim MA
H(2, 0, k) − dim MA

H(2, 0, k − 1) = 4
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and we have Sing-filtration

(2.41) Sing resC(M
A

H(2, 0, k)) ⊃ Sing resC(M
A

H(2, 0, k − 1)) ⊃
⊃ Sing resC(M

A

H(2, 0, k − 2)) ⊃ · · ·

of relative codimension 4. This filtration gives us the sequence of numbers

(2.42) νC⊂S(k′) =

⎛⎝ the multiplicity of a general singular point of

Sing resC

(
M

A

H(2, 0, k + 1)
) ⎞⎠

for k′ � k − 1.
Question. Compute this sequence for P2.
In the general case we have only the M irr

C⊂S(2, 0, k) which it is another
compactification of MH(2, 0, k) and we shall call it a compactification of dense
packing. It is an analogue of the Satake-compactification of the moduli spaces
of abelian varieties.

Sketch of the Proof of Theorem 2.1. We prove the assertion 1) by
comparing the construction of Gieseker’s compactification (2.2) - (2.11) with
the construction of the theory of deformations of pairs (C,E) of Gieseker–
Morrison (see [10]), where C is a curve and E a vector bundle on C. We
can identify the tensors of the first (see (2.6)) and second construction (see
[10]), because we can assume that H0(E) = H0(E|C) passing if necessary to a
multiple of C.

To prove the assertion 2) of the Theorem 2.1 we need some homological
algebra from § 2 of [1] to describe the relations between functor Tor (for re-
strictions) and functor Ext (for the operation ∨∨ on the sheaves).

§ 3 The projective space of conformal blocks.

The structure of the moduli space MC(2, 0) of stable vector bundles of rk 2
with trivial determinant has been intensively studied. First of all, for every
E ∈ MC(2, 0) there exists a representation of the fundamental group π1(C)

(3.1) ρ : π1(C) � (2, C)

such that

(3.2) E = U × C2/π1(C),

where U is the universal covering of C and for v ∈ C, z ∈ U and g ∈ π1(C)

(3.3) g(z, v) = (g(z), ρ(g)(v)).
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Moreover, there exists a unique conjugacy class of unitary irreducible represen-
tations (see [16]). Thus we can construct a topological model of MC(2, 0).

Let g(C) be the genus of C, SU(2)2g be the product of 2g copies of the
unitary group SU(2) and the map

(3.4)
fg : SU(2)2g � SU(2)

fg(A1, B1, . . . , Ag, Bg) =
g(c)∏
i=1

[Ai, Bi], Ai, Bi ∈ SU(2),

where [A,B] = ABA−1B−1, is the ”product of commutators” map. The group
SU(2) acts on SU(2)2g conjugating the components: for g ∈ SU(2)

(3.5) g(A1, B1, . . . , Ag, Bg) = (gA1g
−1, gB1g

−1, . . . , gAgg
−1, gBgg

−1),

and the center of SU(2) acts trivially.
Now, consider the open subset SU(2)2g

0 of SU(2)2gcontaining a collection
of matrices

(A1, B1, . . . , Ag, Bg)

without a common eigenvector. Then

(3.6) MC(2, 0)
top
= M(2, 0) = (SU(2)2g

0 ∩ f−1
g (id))/PU(2),

and

(3.7)

(SU(2)2g − SU(2)2g
0 ) ⊂ f−1

g (id) ,

(SU(2)2g − SU(2)2g
0 )/PU(2) = Hom(π1(C), U(1))/{±Id} =

= (U(1))2g/{±id} = K

is the Kummer surface of J(C).
Hence, topologically the compactification (2.18) is

(3.8) M(2, 0) = f−1
g (id)/PU(2).

It is easy to see (see for example [17]) that

(3.9) H2(M(2, 0), Z) = Z.

The holomorphic structure on C defines on M(2, 0) the structure of an algebraic
variety MC(2, 0) with Pic MC(2, 0) = Z and compactification (2.18). About
the geometry of MC(2, 0) we do not know so much:

(1) MC(2, 0) is a Gorenstein variety satisfying the condition (2.19);

(2)

(3.10) Pic MC(2, 0) = Z;
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(3) if g � 3, then MC(2, 0) determines the curve C uniquely.

Remark. For {c1} odd, MC(2, {c1}) is a complete and smooth algebraic
variety.

We can compute a positive generator L0 of Pic MC(2, 0) in different ways.
We need all of them.

1) Let Jg−1(C) be the variety of divisor classes of degree g − 1 on C and

K
1
2
C ∈ Jg−1(C) such that (K

1
2
C )⊗2 = KC is the canonical class and consider the

subset of MC(2, 0)

(3.11) Δ = {E ∈ MC(2, 0)|h0(E ⊗ K
1
2
C ) > 0}.

Then

(3.12) OMC(2,0)(Δ) = L0.

2) The line bundle K
1
2
C defines a spinor structure on C (see [2]). The

holomorphic structure on E ∈ MC(2, 0) defines a unique gauge class of unitary
antiautodual connections on Etop. Let ∂E be the selfadjoint Dirac operator

acting on the sections of E ⊗ K
1
2
C . Then the index of ∂E is zero and we can

define the line bundle L0 on MC(2, 0) with the fibre over E ∈ MC(2, 0)

(3.13) (L0)E = (det ind ∂E)−1 = ΛmaxH0(E ⊗ K
1
2
C ) ⊗ (ΛmaxH1(E ⊗ K

1
2
C )−1)

(recall that E∨ = E in our case).
3) Consider the fantastic situation (not real life).
Suppose that on C×MC(2, 0) there exists a universal family, that is a vector

bundle E on C × MC(2, 0) such that for every [E] ∈ MC(2, 0)

(3.14) E|C×[E] = E.

Consider the second Chern class

(3.15) c2(E) ∈ H4(C × MC(2, 0), Z)

and the (2,2) Künneth component c
(2,2)
2 (E) of c2(E). Then it is easy to see that

for every line bundle L on MC(2, 0)

(3.16) c
(2,2)
2 (E ⊗ pr∗ML) = c

(2,2)
2 (E).

Indeed, c2(E ⊗ pr∗ML) = c2(E) + c1(E) · c1(L) + c2
1(L). But c1(E) = pr∗ML1,

L1 ∈ Pic MC(2, 0) because det E is trivial. Hence c1(E) · c1(L) + c2
1(L) has

Künneth type (0,4).
Now,

(3.17) c
(2,2)
2 (E) = [C] ⊗ c1(L0),
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where [C] is the fundamental class of C (as 2-manifold). However, in real
life there is no universal bundle on the direct product C × MC(2, 0), and
one must use the following ”covering trick”. There exists a double cover
φ : M̃C(2, 0) � MC(2, 0) such that on C × M̃C(2, 0) a ”universal family” Ẽ
exists and

(3.17′) c
(2,2)
2 (Ẽ) = [C] ⊗ φ∗(c1(L0)).

Let us use the following notation for the positive generator of Pic MC(2, 0):
L0 as line bundle and Δ as divisor (see (3.11)). Consider the complete linear
system |Δ| = PH0(L0) on M̃C(2, 0).

The space of the global sections of L0 is called the space of conformal blocks
(see [11]). Define

(3.18) HC = H0(L0).

The direct construction gives us an isomorphism

(3.19) HC = H0(J(C),O(2Θ)),

where Θ is the theta-divisor of the Jacobian J(C). Hence

(3.20) rkHC = 2g(C).

Beauville’s Theorem. [4] The linear system |Δ| on MC(2, 0) is base
point free and defines a morphism

(3.21) f0 : MC(2, 0) � PHC ,

which is finite and deg f0 = 1 if C is not hyperelliptic and 2 otherwise.
We see that the situation for the pair (MC(2, 0), Δ) is very similar to the

theory of theta-functions of second order on J(C) and what is more, we can
”extend” theta-functions of second order to MC(2, 0).

It is useful to consider instead of the moduli space MC(2, 0) of vector bun-
dles with trivial determinant the moduli space MC(2,KC) of vector bundles
with the canonical class KC as determinant. Of course, as variety MC(2, 0) is

isomorphic to MC(2,KC) by tensor-multiplying the vector bundles by K
1
2
S .

For any vector bundle E ∈ MC(2,KC) consider the following subvariety of
the Jacobian J(C):

(3.22) δ(E) = {L ∈ J(C)|h0(E ⊗ L) > 0}.

It is easy to see that δ(E) is a divisor of the complete linear system |2Θ| on
J(C), where Θ is the theta-divisor defining the principal polarization of J(C).

Moreover, if E = L ⊕ L∨ ∈ Sing MC(2,KC) = K (see (2.18)), then

(3.23) δ(L ⊕ L∨) = ΘL + ΘL∨ ∈ |2Θ|,
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where

(3.24) ΘL = {L′ ∈ J(C)|h0(K
1
2
C ⊗ L ⊗ L′) > 0}.

Thus we have a map
δ : J(C) � |2Θ|,

K

�
�

which identifies a point with (-point) on J(C). This map extends to a map

δ : MC(2,KC) � |2Θ|.
But the complete linear system |2Θ| defines the standard map

(3.25) f|2Θ| : J(C) � |2Θ|∨,

and there exists a canonical isomorphism β : |2Θ| � |2Θ|∨ such that the
diagram

(3.26)

|2Θ|

J(C)
φ� K

δ
�

|2Θ|∨

β

�
f|2Θ|

�

is commutative (see [14]), which can be extended to the diagram

(3.27)

|2Θ|

J(C)
φ� K = Sing MC(2, 0)

i� MC(2, 0)

δ �

|2Θ|∨

β

�
f|2Θ|

�

where φ is standard (2-1) covering (2.18).
Now let us return to § 2 and restrict the morphism δ:

(3.28) δ ◦ β = f0

is the morphism (3.20) defined by the complete linear system |Δ| on MC(2, 0).
We have the finite map

(3.29) f0 : MC⊂S(2, c1, k) � PH∨C



198 The moduli spaces of vector bundles. . .

(by Beauville’s Theorem) and in particular

(3.30) f0 : M irr
C⊂S(2, c1, k) � PH∨C .

We have a morphism of degree 1 of the Gieseker-compactification MH(2, c1, k)
(see (2.1) – (2.12)) to PH∨C :

(3.31)
MH(2, c1, k)

resC� M irr
C⊂S(2, c1, k)

f0� PH∨C
MH(2, c1, k)

fC⊂S � PH∨C .

Now, we can compare the line bundles

(3.32) L, LH , f∗C⊂SOPH∨C (1)

(see (2.12) – (2.15)) on MH(2, c1, k).
Proposition 3.1. There exists a rational number β ∈ Q such that

(3.33) Lβ
H = φ∗C⊂SOPH∨C (1).

Proof. In the setup of § 2 we can assume in the formulas (2.13) – (2.15)
that for C ∈ |2H| we have (1.8), passing if necessary to a multiple of H. We
consider the case c1(E) = 0 only — the other cases can be considered by a
similar method.

Then by the adjunction formula

(3.34) K
1
2
S ⊗ H|C = K

1
2
C ,

because C ∈ |2H| and
KS ⊗OS(C)|C = KC .

For every vector bundle E ∈ MH(2, c1, k) we tensor the short exact sequence

0 � K
1
2 ⊗ H∨ � K

1
2
S ⊗ H � K

1
2
C

� 0

by E to give

(3.35) 0 � E ⊗ K
1
2 ⊗ H∨ � E ⊗ K

1
2
S ⊗ H � E|C ⊗ K

1
2
C

� 0.

The corresponding long exact sequence is

0 � H0(E ⊗ K
1
2 ⊗ H∨) � H0(E ⊗ K

1
2
S ⊗ H) �

� H0(E|C ⊗ K
1
2
C ) � . . .

If we consider each cohomology space of this sequence as the fibre over the point
E ∈ MH(2, 0, k) of a vector bundle on MH(2, 0, k), then the multiplicativity of
determinants of vector bundles in an exact sequence gives the equation

(3.36) L0|MH(2,0,k) = LH ,
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where L0 is the vector bundle (3.12), LH is the vector bundle (2.14), and we
are done. �

Let us return to the finite morphism (3.30) and the space of conformal
blocks (3.17) – (3.26). The name comes from conformal quantum field theory
(see, for example, [20]). One of the main results of this theory is that the
projectivization of this space is almost independent of the curve C. More
precisely:

Theorem 3.1. On the vector bundle E over the Teichmüller space Tg of
marked curves with fibre

(3.37) E|C = HC

over C ∈ Tg there exists a canonical projective flat connection.
This means that we have a canonical way of identifying the projective spaces

PH∨C and PH∨C′ , if the curve C ′ is in a small neighborhood of C.
There are at least three methods to prove this theorem. A more geometri-

cal way is Hitchin’s method from his preprint ”Flat connection and geometric
quantization” (see [11]). At the heart of his construction lies the ”heat equa-
tion” relating the linear variation of the holomorphic structure on C with the
quadratic form on the cotangent bundles T∨MC(2, 0) that is the symmetric
tensor

(3.38) G ∈ H0(S2TMC(2, 0),

which is defined over a point E ∈ MC(2, 0) by the usual cup-product:

(3.39)

H1(T ) ⊗H0(adE ⊗ KC) � H1(adE)

H1(K∨
C)

����
T∨EMC(2, 0)

�����
TEMC(2, 0)

�����
(see [11]).

Now, if in the projective space |C| we consider a little open ball B with the
center C0 not containing singular curves, then for every C ⊂ B the projective
spaces PHC and PHC0 can be identified by the projective connection.

Thus, we have the family of morphisms (3.29)

(3.40) fC⊂S : MH(2, c1, k) � PH∨, C ∈ B

in the same projective space of dimension 2g(C) − 1.
Conjecture 3.1. fC⊂S(MH(2, c1, k)) does not depend on C ∈ B.
Of course this conjecture is true if the restriction map

(3.41) H0(MC(2, 0), f∗0OPH∨(1))
resC� H0(MH(2, c1, k), f∗C⊂SOPH∨(1))

is an isomorphism.
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But a priori we may obtain a kernel of rk k and cokernel of rk c and a
nontrivial map of the complete linear system

(3.42) |C| φ|C|� Gr
(
k, 2g(C) − |k − c|

)
× Gr

(
c, 2g(C)

)
into the direct product of Grassmanians.

But even if the restriction map (3.41) is not an isomorphism, the Conjecture
may be true. Indeed, this is a question about the flat projective connection
on the vector bundle E over the Teichmüller space Tg (see (3.36)) restricted to
the image of the family |C̃| of marked curves from |C| on S. This connection
may be reducible and the invariant subspace is the image the restriction map
(3.41).

This is a question about the geometrical structure of the tensor G (3.38) and
at the end of this paragraph we will give a sketch of the geometric constructions.

Now, even if resC (3.41) is not an isomorphism, but the dimension of
MH(2, 0,K) is ”right”, that is

dim MH(2, 0, k) = 4k − 3(pg + 1)

(see (2.36)), then we have the constant

(3.43) γ
d(k)
S (C) = deg fC⊂S(MH(2, 0, k)),

which is independent of C ∈ |C| of course. (We will give the explanation for
the strange notation d(k) = 4k − 3(pg + 1) in the next paragraph.)

What can we say about this constant? A priori, if we do not know the
configuration MC⊂S(2, 0, k), then we can say nothing. But if the configuration
is simplest as in the case (2.37) and the restriction map (3.41) is an isomorphism
for all k′ � k, then we have the inequality

(3.44) γ
d(k)
S (C) � γ

d(k′)
S · νC⊂S(k′)

for every k′ < k, where νC⊂S is the multiplicity of a general singular point
of

Sing resC(MH(2, 0, k′ + 1))(2.42) .

After that we have the trivial inequality

(3.45)
γ

d(k)
S (C) + 4k − 3(pg + 1) � 2g(C)

‖ ‖ ‖
deg fC⊂S(M) dim fC⊂S(M) dim PH∨ + 1

Before the end of this paragraph, we consider the question of restricting the
projective connection on E over Tg (3.36) to the family |C̃| of marked curves
from |C| and the conditions of the ”heat equation” (3.38) on |C̃| and E of the
type E|C , where E is a vector bundle on S.
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For the variation of curve C in the complete linear system |C| the tangent
space to |C| = Pn in a point C ∈ Pn is

(3.46) TC |C| = H0(NC⊂S) = H0(OC(C2)),

where NC⊂S is the normal bundle of C in S.
The differential of the moduli map for curves on S is the coboundary ho-

momorphism

(3.47) H0(NC⊂S)
δ� H1(TC) = H1(K∨

C)

of the short exact sequence

(3.48) 0 � TC � TS|C � NC⊂S
� 0.

This extension is defined by a cocycle

(3.49) e ∈ H1(N∨
C⊂S ⊗ TC) = H1(K∨

C ⊗OC(−C2)),

and the coboundary homomorphism δ (3.47) is defined by the cup-product

(3.50) H1(K∨
C ⊗OC(−C2)) � e ⊗ H0(OC(C2)) � H1(K∨

C).

Hence, the hypernet of the quadratic form (3.38) is in our case

(3.51)
H0(OC(C2)) ⊗ e ⊗ H0(adE ⊗ KC) � H1(adE)

e ∈ H1(K∨
C ⊗OC(−C2)).

We consider the case, where S is a 3-surface and the vector bundle is the
restriction E|C of an H-stable vector bundle E on S. In that case we have
T∨S = TS, OC(−C2) = K∨

C and the cocycle e ∈ H1(K−2
C ) (3.49) is the dual

of the image of the Wahl-map for the curve C (see [5]).
Now, we can extend (3.49) by the diagram (0.19) to

(3.52)

0 0

H1(adE)

�

H1(adE)
�

H0(KC) ⊗ e ∈ H1(K−2
C ) ⊗H0(adE|C ⊗ KC)

�

� H1(adE|C)
�

H0(OS(C))⊗H1(OS(−2C))

�

⊗ H0(adE(C))

�

� H2(adE(−C))
�

0

�����
0

�

0
�
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where we assume H1(adE(C)) = 0, that is, we have the second case of (0.20).
But H1(OS(2S)) = 0. Using this, we can say

Proposition 3.1. For every smooth curve C ′ ∈ |C| and E ∈ MH(2, 0, k)
every quadratic of the hypernet (3.51) for E|C′ is vanishing on the space of the
extendible Higgs field (see the Definition 0.1).

This is the ”infinitesimal part” of the proof of Conjecture 3.1, if we are in
the case of K3-surfaces.

§ 4 The constants.

In this paragraph we consider the question of computing the constant (3.43)
which is independent of the moduli of the curve C. Thus γ

d(k)
C (C) is a function

of the homology class of C and of the surface S. Indeed, if pg > 0 (or S = P2)
and d(k) > 3pg+3, it is a function of the smooth structure of S. An explanation
of this situation will be given below.

Let S be considering as a smooth simply connected four-dimensional man-
ifold with an intersection form

(4.1) qS ∈ S2H2(S, Z)

of rank b2 (the second Betti number of S) and of index I = b+
2 − b−2 .

Recall that by the Hodge-index theorem

(4.2) b+
2 = 2pg + 1,

where pg is the geometric genus of S.
The intersection form qS (4.1) is unimodular and defined uniquely by its

rank, its index and its parity, that is the form is even iff qS(σ) is even for
σ ∈ H2(S, Z) (by the Poincaré duality we can identify H2(S, Z) with H2(S, Z))
and qS is odd in the other case. The form qS defines the homotopy type of S.

S. Donaldson (see [6]) recently defined on H2(S, Z) a series of homogenous
integer-valued polynomials

(4.3) γd
S ∈ SdH2(S, Z)

of degree d indexed by the elements of an arithmetical progression

(4.4) d(k) = 4k − 3pg − 3

starting from the smallest d0 satisfying the inequality

(4.5) d0 > 3pg + 3.

These polynomials are called Donaldson polynomials; they generalise the degree
2 polynomial qS . But whereas qS is a homotopy invariant of the 4-manifold S,
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the Donaldson polynomials γd
S are only invariants of the smooth structure if

pg � 1 or S = P2.
For the definition we consider an ideal situation (non real-life). Let H

be a polarization of S, that is H ∈ V +(S). Suppose the moduli space M =
MH(2, 0, k) of H-stable 2-vector bundles of S with Chern-classes c1 = 0, c2 = k
is compact, smooth and of the right dimension:

(4.6) dimC M = d(k) = 4k − 3(pg + 1) = 1
2 dim RM.

Then on the lattice H2(M, Z) one has the homogeneous intersection form of
degree d

(4.7) qM (ω) =
∫

M

ω ∧ · · · ∧ ω︸ ︷︷ ︸
d times

.

Suppose a universal bundle E exists on S × M . Then the (2,2)-Künneth-
component of the second Chern-class

(4.8) c2(E)(2,2) ∈ H2(S, Z) ⊗ H2(M, Z)

can be interpreted as a homomorphism

(4.9) c : H2(S, Z) � H2(M, Z),

which we call homological correspondence. It induces on H2(S, Z) the homoge-
neous form of degree d

(4.10)
γd = c∗(qM ),

γd(σ) = qM (c(σ)).

This is the Donaldson polynomial of degree d(k), the complex dimension of M

(see (4.6)). The class c2(E) is algebraic, hence c
(2,2)
2 is a class of Hodge-type

(2.2) and hence the homological correspondence (4.9) preserves the Hodge-
decomposition.

But real life is more complicated:

(1) The existence of M is a very hard problem.

(2) M is not compact.

(3) The universal bundle does not exist and so on.

However, if following Donaldson, we solve these technical problems, then
we obtain the collection of polynomials which for pg > 0 or S = P2 are the
invariants of the differentiable structure of S, not the homotopical one.

It is easy to see that the restriction γd
S |V +(S) defines γd

S |Pic S .
How can γd

S(H) for H ∈ V +(S) be computed?
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The polynomial γd
S is homogenous, hence we can pass, if necessary, to a

multiple of H. Then by definition for C ∈ |NH| with N big

(4.11) γ
d(k)
S (C) = deg fC⊂S(MH(2, 0, k))

(see (3.43)). What do we know about these constants?
First of all, they are positive and hence non vanishing. We can compute

them by the following method. Consider a curve Ci ∈ |C| and some point
pi ∈ PH and the hyperplane p̌i in PH∨. Then we have the divisor

(4.12) Di = f−1
Ci⊂S(fCi⊂S(MH(2, 0, k) ∩ p̌i))

of MH(2, 0, k). Choose d(k) = dim MH(2, 0, k) of such divisors {Di},
i = 1, . . . , d(k). It is easy to see that if we take the collection of these curves

{Ci} and points {pi} in general position, then the intersection
d(k)⋂
i=1

Di is the

finite set of points of multiplicity 1 and

(4.13)
d(k)⋂
i=1

Di ⊂ MH(2, 0, k),

that is, the points of the intersection are not contained in the corona. Hence

(4.14) #
d(k)⋂
i=1

Di = γ
d(k)
S (C).

Remark. The assertion about the general position is easy to see, indeed,
but it is not trivial (see for example the formulas (4.23) – (4.26) and inequality
(4.27) from [19]).

We can take the points pi ∈ PH in the following way. Consider a theta-
characteristic K

1
2
Ci

on Ci and the divisor on MCi
(2, 0):

(4.15) Δi = {E ∈ MCi
(2, 0)|h0(E ⊗ K

1
2
Ci

) > 0}.

Then Δi defines the hyperplane p̌i such that

(4.16) Δi = MCi(2, 0) ∩ p̌i.

Now, we take this construction as the definition of γ
d(k)
S (C) (Donaldson in [6]

does it similarly). We gain the possibility to consider curves of small genus,
too. Working with elliptic and rational curves in the special case of K3-surface,
it is possible to compute constants (4.11).

First of all for K3-surface we have that

d(k) = 4k − 6
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is even and it is convenient to consider the number

(4.17) n(k) = 1
2d(k) = 2k − 3.

Then one has the
Theorem of Friedman–Morgan. ([8]) For a K3-surface S

(4.18) γ
d(k)
S (C) = (g(C) − 1)n(k) · · · (2n(k))!

n(k)!
.

(Independently this constant has been determined by .Ó. Grady.)
The simplest surface of course is P2 and the simplest curve in P2 is a line

P1. In that case

(4.19) γ4k−3
P2 (C) = ck(deg C)4k−3,

where ck is an absolute constant, an invariant of the natural differentiable
structure of P2 (over C). To compute these constants it is convenient to use
the definition (4.15) for a smallest curve that is a line on P2.

Denote

(4.20) M(k) = MH(2, 0, k)

(we can omit the subscript H, because the polarization of P2 is unique). On
every line l ⊂ P2, there exists a unique theta-characteristic

(4.21) K
1/2
l = Ol(−1).

Hence the divisor (4.12) is

(4.22) Dl = {E ∈ M(k)|h0(E|l ⊗Ol(−1)) > 0}

by (4.15).
For a generic line l in P2 the restriction

(4.23) E|l = Ol ⊕Ol

is trivial. If
E|l = Ol(d) ⊕Ol(−d), |d| > 0,

then l is called a jumping line (see [3]).
For every E ∈ M(k) the set of jumping lines

(4.24) C(E) = {l ∈ P̌2|h0(E|l(−1)) > 0}

is a curve of degree k. Hence we have a morphism

(4.25) M(k)
j� |kh|,
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where h is a line in the dual plane P̌2. This is a finite map and the preimage
of a smooth curve C is

(4.26) j−1(C) = {K 1
2
C ∈ Pic C|h0(K

1
2
C ) = 0}.

It is the set of non-vanishing theta-characteristics of C (see [3]). The closure
j(M(k)) provides a new compactification of M(k) (it is easy to see that for a
general quasitrivial sheaf F the curve of jumping lines is

(4.27) C(F ) =
⋃

p̌i,

where
k⊕

i=1
Opi

is the cotorsion sheaf of F (see (2.32)). From this it is easy to

see that this compactification is distinguished from the dense packing one. Let

(4.28) Bk = j(M(k)) ⊂ |kh| = P
(k+1)(k+2)

2 −1

be the closure of the set of curves of jumping lines of stable 2-vector bundles
with c2 = k on P2. Consider the map

M(k)
j� Bk ⊂ |kh|.

It is not hard to prove that, for k big, deg j = 1. Now, we can see that the
constant ck (4.19) is

(4.30) ck = deg Bk · deg j.

Examples.

(1) c2 = 1. In that case the map j (4.25) is an embedding.

(2) c3 = 3 (see the end of [3]). In that case

(4.31) B3 = |3h|, deg j = 3.

We consider the first non-trivial case c4 in detail below.
Now, consider Barth’s interpretation of M(k) (see [3]). Let H be a vector

space of rk k and P2
k be the ”quantum projective plane” of triples of symmetric

matrices
(4.32)

P2
k =

{
(A1, A2, A3)

∣∣ Ai ∈ S2H∨ , ∃ (λ1, λ2, λ3) ∈ C3 : det(
∑

λiAi) �= 0
}

GL(H)

where GL(H) acts on (A1, A2, A3) by similarity transformation:
(4.33)

g(A1, A2, A3) = (gA1g
∨, gA2g

∨, gA3g
∨) , g ∈ GL(H) , g∨ ∈ GL(H∨) .
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There exists a map of the k-quantum projective plane

(4.34) P2
k

jb� |kh|,
where h is a line in the projective plane P2

(λ1,λ2,λ3)
with projective coordinates

(λ1, λ2, λ3) and the curve of degree k jb(A1, A2, A3) is defined by equation

(4.35) det(λ1A1 + λ2A2 + λ3A3) = 0.

This map is onto and for a generic smooth curve C ∈ |kh|

(4.36) j−1
b (C) = 2(g(C)−1)

(
2g(C) + 1

)
,

the number of nonvanishing theta-characteristics, i.e., the number of even
theta-characteristics {K 1

2
C} in the generic case.

In his article [3] Barth defines an embedding

M(k) ⊂
b� P2

k ,

which can be extended to a commutative diagram

(4.37)

M(k) ⊂
b � P2

k

|kh|
� j bj �

and describes the image of b by equations for the triples (A1, A2, A3) of sym-
metric matrices.

Let Aadj
1 be the adjoint matrix of A1. If det A1 �= 0, then

(4.38) Aadj
1 = A−1

1 · det A1.

Barth defines a rational map of the k-quantum plane

(4.39) P2
k

kom� PΛ2H∨,

kom(A1, A2, A3) = A2A
adj
1 A3 − A3A

adj
1 A2.

This map blows down the hyperplane

(4.40) D1 = {det A1 = 0} ⊂ P2
k

to the Grassmannian
G(2,H) ⊂ PΛ2H∨,

and b(M(k)) is a component of the preimage

(4.41) kom−1(G(2,H)) −D1
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(see [3]). Using the diagram

(4.42)

P2
k⋃

PΛ2H∨
�
ko

m

b(M(k)) |kh|

j
b

�

⋃ ⋃
G(2,H)

�
Bk

j

�

we can compute (following an idea of Tichomirow) the first non-trivial constant
c4 (4.24) – (4.30).

Example. The divisor of Lüroth quartics.
It is easy to see that

(4.43) B4 ⊂ |4h| = P14

is a hypersurface and Barth proved in [3] that B4 is a closure of the set of
Lüroth quartics. For the definition of it take

(1) a smooth conic Q on P2,

(2) 5 points on Q: p1, . . . , p5,

(3) 5 tangent lines at the points: l1, . . . , l5,

(4) all the points of intersections {li ∩ lj}.
(5) Move the 5 points on Q in a linear pencil, then the 10 points of intersec-

tions of tangent lines sweep out a curve of degree 4. This is by definition
a Lüroth-quartic.

The set of Lüroth-quartics in |4h| = P14 is a hypersurface (the conics give
5 parameters, the pencils P1 ⊂ P5 of degree 5 give dim G(2, 6) = 8 parameters
and we have 5 + 8 = 14 − 1).

It is easy to see that a form f of degree 4 defines a Lüroth quartic iff there
are 5 linear forms L1, . . . , L5 ∈ P̌2 such that

(4.44) f =
5∑

i=1

L1 . . . L∨i . . . L5,

where the sign ∨ over L means omitting the linear form.
Denote the hypersurface of Lüroth quartics by

(4.45) DL ⊂ |4k|.
It is invariant under the action of PGL(3, C). On the other hand, in |4h| there
is an other PGL(3, C)-invariant hypersurface

(4.46) DC ⊂ |4h|
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of Clebsch-quartics.
A form f of degree 4 defines a Clebsch quartic iff there are 5 linear forms

L1, . . . , L5 ∈ P̌2 such that

(4.47) f =
5∑

i=1

L4
i .

In 1865 Clebsch proved (see [12])
Clebsch’s Theorem. Let V = C3, PV = P2 and f ∈ S4V ∨ a homogenous

form of degree 4. Consider f as a homomorphism

(4.48) S2V
f� S2V ∨ .

Then f ∈ DC ⇐⇒ det f = 0 .
From this it is clear that

(4.49) degDC = 6.

Now, in 1868 Lüroth (see [12]) constructed a rational map

(4.50) φ : |4h| � |4h|
such that

(4.51) φ(DC) = DL

and φ is (3, C)-equivariant.
The definition of φ is a nice exercise from Symbolic Calculus:
1) Let f ∈ S4V ∨ be a form of degree 4 and (x1, x2, x3) coordinates in V .

Then we have

(4.52) f =
∑

i

(
4
i

)
Aixi,

where the symbols are the usual symbols of symbolic calculus:

i = (i1, i2, i3),
(

4
i

)
=

4!
i1!i2!i3!

, xi = xi1
1 xi2

2 xi3
3 .

2) Consider the formal system of equations

(4.53) f = a4
x = b4

x = c4
x = d4

x,

where

(4.54)

ax = a1x1 + a2x2 + a3x3

bx = b1x1 + b2x2 + b3x3

cx = c1x1 + c2x2 + c3x3

dx = d1x1 + d2x2 + d3x3,
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and consider the system of formal symbols:

ai = ai1
1 ai2

2 ai3
3

with the unique condition:

(4.55)
if i1 + i2 + i3 = 4, then ai = Ai (4.52)

(if i1 + i2 + i3 �= 4, then ai has no meaning).

3) Let the symbol

(4.56) (abc) =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
be the determinant. Similarly define (abd), (acd), . . . . At last we can define the
equivariant rational map (4.45):

4) For a form f (4.52)

(4.57) φ(f) = (abc)(abd)(acd)(bcd)axbxcxdx.

This means that if we decompose determinants, multiply ones and substitute
ai = bi = ci = di = Ai (see (4.52) and (4.55)), we obtain the new form φ(f).

It is easy to see that the linear system with base conditions which give the
map φ is

(4.58) |4H −
∑

Bi|,

where H is a the hyperplane in |4h| = P14.
By Lüroth theorem ([12] (and it easy to see from (4.57)) every Clebsch

quartic is transformed to a Lüroth quartic. Hence

(4.59) 6 � degDL � 6 · 413.

However, the number on the right hand side is too big. From Barth’s diagram
(4.42) we can prove

Proposition 4.1. degDL = 54.
Sketch of proof. (The idea of the proof is due to A.S. Tichomirow.) First

of all, we must define on our k-quantum plane (4.32) a family of lines.
Consider a projective line P1

(t0,t1)
with homogenous coordinates (t0, t1) as a

family of triples of symmetric matrices

(4.60) (t0A1 + t1A
′
1, t0A2 + t1A

′
2, t0A3 + t1A

′
3).

If the triples (A1, A2, A3) and (A′1, A
′
2, A

′
3) are in general position, then the

image P1
(t0,t1)

in P2
k is called a quantum line l on P2

k .
Remark. In contrast to a natural line on P2 a quantum line may be

degenerated.
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Lifting to the set of triples of matrices (S2H∨)3, one can prove that with
respect to the projection jb (4.42) we have an equation of homology classes

(4.61) j∗b (jb)∗(l) = deg jb · l

(this is not trivial, because a quantum plane is a singular variety and we have
to be careful).

It is easy to see that for the two projections of the diagram (4.42)

(4.62) deg jb(l) = k, deg kom (l) = k + 1

(see (4.34) and (4.39)).
Now, in the case k = 4, we can prove that in (4.41) we have the equality

(4.63) kom−1(G(2, 4)) = D1 ∪ b(M(4)),

that is, there are no false components. We will consider subvarieties as as
homology classes below. Then for the quantum line l we have by the projection
formula:

(4.64) [D1 + b(M(4))] · l = kom∗(G(2, 4)) · l = G(2, 4).kom(l) = 2 · 5 = 10

(see (4.62)). Now, by the projection formula and (4.62)

(4.65) D1 · l = j∗b (H) · l = H · jb(l) = 4,

where H is the class of hyperplanes in |4h|. Hence

(4.66) b(M(4)) · l = 6.

By the projection formula, the constant c4 is

c4 = deg B4 = (jb)∗(M(4)) · 1
4jb(l) = M(4) · j∗b ( 1

4 (jb)∗(l))
= b(M(4)) · deg jb

4 l = 9 · b(M(4)) · l = 54,

and we are done.
The next step would be computing the degree of the set of Darboux quintics

in |5h| (see [3]) and so on.
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The classical geometry of vector bundles
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Introduction.

One of the expected products of this summer school is an answer to the
following question:

What is algebraic geometry?

(We write AG for short.) Actually this is a hard task, because everybody
already has the fixed conviction that the objects of AG are algebraic varieties.

An irreducible algebraic variety X has a dimension dimX, and this number
is usually a rough indication of the level of completeness of the geometric theory
describing it. Algebraic varieties of small dimension carry special names:

dim X = 0 : set of points
dim X = 1 : curves (Xavier Gomez-Mont’s lectures)
dim X = 2 : surfaces (Rick Miranda’s lectures)
dim X = 3 : 3-folds (Miles Reid’s lectures)

etc.

To explain how my lectures fit into this list, I would like to remark that two
algebraic varieties of different dimension can be geometrically identical. To see
this, consider the following chain of examples:

dim = 0 : a set of 6 distinct points on P1 up to PGL(2, C) action;
dim = 1 : a curve of genus 2;

dim = 2 : a cubic surface in P3 with one ordinary double point;

dim = 3 : a nonsingular intersection of two quadrics in P5.

The identifications between the objects in dim < 3 are absolutely obvious: the
canonical map of a curve (see Rick Miranda’s lectures [8] in this volume) of
genus 2 is a double cover of P1 ramified in 6 points; considering P1 as a conic in
CP2, blowing up [8] 6 points on this conic and constructing the anticanonical

216
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map [8] of the resulting surface, we get a cubic in P3 with an ordinary double
point.

The threefold in our list carries the imposing full name of Fano threefold of
index 2 and degree 4; its half-anticanonical map [8] displays it as the base locus
of a pencil of quadrics in P5. The six singular quadrics of this pencil take us
back to a set of 6 distinct points on P1.

This example of a chain of identifications is of course very classical and
simple. A more recent example is Mukai’s construction [10] of an identification
of a plane quartic with a Fano variety V22.

Slogan. An algebraic geometer is skillful enough if he or she can recognize
the geometric person under many guises of different dimensions.

My first aim is to give you some experience in this direction. But my task
is a little more complicated, because there is some new person in our game:

algebraic vector bundle

In some sense this geometric object does not have any dimension (or, if you
prefer, is infinite dimensional). But in any case, we can not avoid it. Even in
our simplest chain of identifications, the intersection of two quadrics in P5 is a
moduli space of stable vector bundles on the corresponding curve of genus 2.

So my second aim is to construct a simple but a new chain of geometric
identifications including a vector bundle as a geometric object.

This new chain is not quite as simple as the previous one, but it is per-
haps the simplest illustration of a new geometric observations showing that
classical ag is a slice of much more general geometry. Namely, some
time ago Gromov observed that many results of enumerative ag are true in
symplectic geometry. But a recent observation due to Donaldson is much
more unexpected: many constants of enumerative ag are invariants of the
underlying smooth structure of algebraic surfaces.

Thus my third aim is to explain these relations between AG and differential
geometry.

§ 1 Clebsch and Darboux curves.

Let CP2 be the complex projective plane:

CP2 = PT, where T = C3, so that Pic CP2 = Z · l,

where l is a line. Then |d · l| = PSdT ∗ is the complete linear system of curves
of degree d in CP2. So a homogeneous polynomial φC ∈ SdT ∗ of degree d is
the equation of a curve

C = {φC = 0} ⊂ CP2, that is, C ∈ |d · l|.
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It is a classical enumerative problem in invariant theory to compute the
degree deg V of some PGL(3, C)-invariant subvariety V ⊂ |d · l|.

Example. The discriminant hypersurface in |d · l|:
VSing =

{
C ∈ |d · l| : SingC �= ∅

}
.

This is obviously a subvariety of |d · l| invariant under PGL(3, C), and an easy
calculation shows that

deg VSing = 3 · (d − 1)2.

Now, a curve in CP2 which splits completely as a union of lines

(2.1) Δr =
r⋃

i=1

li

is called a polygon or an r-gon. In §4 we will define an r-gon to be regular if
all its sides li and all its vertices li ∩ lj are distinct. Let Pr ⊂ |d · l| be the
subvariety of all r-gons.

Useful exercise. What is deg Pr ?
Definition 2.1. We say that a curve C circumscribes a regular r-gon Δr

if for every pair (i, j) the vertex (= intersection of sides) li ∩ lj ∈ C.
Let

(2.2) MPd
r = {Δr, Cd} ⊂ Pr × |d · l|

be the closure of the incidence variety of pairs consisting of a regular r-gon Δr

and a curve Cd of degree d circumscribing it. We have two projection maps:

(2.3)

MPd
r

Pr

�
pΔ

|d · l|

p
C

�

Thus the subvariety

(2.4) pC(MPd
r) ⊂ |d · l|

of curves of degree d circumscribing some r-gon is invariant under PGL(3, C).
Problem. What is deg pC(MPd

r) ? More precisely, what is

(2.5) sr(d) = deg pC · deg pC(MPd
r)?

In terms of the defining equations, it is easy to see that

(2.6) (Δ, C) ∈ MPr−1
r ⇐⇒ φC =

r∑
i=1

(φΔ/φli)

where Δ =
r⋃

i=1

li.
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Historically, the problem (2.5) is closely related to the following problem:

Definition 2.2. We say that a polygon Δ =
r⋃

i=1

li is apolar to a curve C if

(2.7) φC =
r∑

i=1

(φli)
d.

Let

(2.8) MPAd
r = {Δr, Cd} ⊂ Pr × |d · l|

be the space of apolar pairs of polygons and curves. We again have two pro-
jection maps

(2.9)

MPAd
r

Pr

�
pΔ

|d · l|

p
C

�

Thus the subvariety

(2.10) pC(MPAd
r) ⊂ |d · l|

is also invariant under PGL(3, C).
Problem. What is

(2.11) cr(d) = deg pC · deg pC(MPAd
r)?

These problems were solved recently by Geir Ellingsrud and Stein Strømme.
Using Bott’s formula, they computed the constants cr(d) for r < 9 and sr(r−1)
for r = 6, 7, 8, 9, 10. For example, they find

(2.12) 5! · c5(d) = d10 − 100d8 + 150d7 + 3680d6 − 10260d5 − 52985d4+

+ 224130d3 + 127344d2 − 1500480d + 1664640 .

The following particular cases of the general enumerative problem will be im-
portant for us:

Definition 3.

(1) A curve C ∈ pC(MPd
d+1) is called a Darboux curve.

(2) A curve C ∈ pC(MPAd
d+1 is called a Clebsch curve.

For special reasons, Darboux curves of degree 4 are called Lüroth quartics.
These names have a historical explanation. Namely it is easy to see that the
virtual (expected) dimension

(2.13) v. dim MPd
d+1 = v. dim MPAd

d+1 = 3d + 2.
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Remark. This dimension is one more than the dimension of the subvariety
of rational curves of degree d.

But in 1865, Clebsch observed the following:
Clebsch’s Theorem.

• The image pC(MPA4
5) is a hypersurface1 in |4 · l| = P14 .

• If C is nonsingular then C ∈ pC(MPA4
5) ⇐⇒ p−1

C (C) = P1.

• deg pC(MPA4
5) = 6.

Exactly the same facts hold for MP4
5, that is, for Lüroth quartics, as Lüroth

observed in 1868. But the degree of the hypersurface of Lüroth quartics was
only computed in 1918 by F. Morley [9]:

(2.14) deg pC(MP4
5) = 54.

This constant was reproduced in modern investigation (Tyurin, Le Potier,
Ellingsrud and Strømme) under absolutely new motivations related to PDEs.

Remarks.

• It follows from Clebsch’s Theorem, that the polynomial (2.12) satisfies

c5(4) = 0,

that is, 4 is a root of s5(d). Can you see this from the display of this
polynomial (2.12)?

• The fibres of the projection pC of the diagram (2.9) were used by S. Mukai
to describe special Fano varieties: let

pC : MP4
6

� |4 · l|

be the right side of the diagram (2.3). Then

(i) for general C, the inverse image P−1
C (C) is a Fano threefold;

(ii) if C = 2q is double nonsingular conic then P−1
C (2q) is a compactifi-

cation of C3 [10].

(iii) The exact formulas of Ellingsrud and Strømme also work when the
degree of curve is not small with respect to the number of sides of poly-
gons. More precisely, if d ≥ r−1, S. Mukai proved that pC(MPA5

7) = |5·l|,
and that the map pC is birational. But you can see that the constant
c7(5) is negative.

1this is in spite of the fact that v. dim MPA4
5 = dim |4 · l| = 14
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§ 2 Vector bundles on an algebraic surface and their sections.

Let me recall briefly the main constructions of sheaf theory on algebraic
surfaces. The starting point is the structure sheaf OS = O of an algebraic
surface S. For a first approach, it is enough to consider a nonsingular surface.
Thus the stalk OP of O at a point p ∈ S is a 2-dimensional regular local ring.
Every coherent sheaf F has a stalk FP at each point P ∈ S, which is a module
of finite type over OP ; moreover, in a neighborhood U of any point, there is a
resolution

Op
U

� Oq
U

� F |U � 0.

Thus each sheaf F on S defines a filtration S2 ⊂ S1 ⊂ S by the homological
dimension of the stalk. If this filtration is trivial then F is called a vector
bundle and we will note it as E.

For a sheaf F on S the canonical homomorphism

(3.1) can : F � Hom(Hom(F,O),O) = F ∗∗

can be completed to a 4-term exact sequence

(3.2) 0 � T (F ) � F
can� F ∗∗ � C(F ) � 0

We say that F is a torsion sheaf if F = T (F ), a torsion-free sheaf if T (F ) = 0
and a reflexive sheaf if F = F ∗∗.

It is easy to see that on a surface, a reflexive sheaf is a vector bundle.
Moreover, for a torsion-free sheaf F , we have dim SuppC(F ) = 0; that is, in
this case C(F ) is an Artinian sheaf.

A pair of sheaves F1 and F2 defines three vector spaces

Exti(F1, F2) , i = 0, 1, 2

with the usual functorial properties.
In the short exact sequence of sheaves

(∗) 0 � F2
� F � F1

� 0,

the sheaf F is called an extension of F1 by F2; such an extension is given by
an element e(F ) in the vector space Ext1(F1, F2), so the set of classes of such
extensions has the structure of the vector space Ext1(F1, F2). For the zero class
0 ∈ Ext1(F1, F2) we have F = F1 ⊕ F2.

Exercises.

• Prove that on an algebraic curve C, every coherent sheaf F is a direct
sum

F = T (F ) ⊕ F ∗∗.



222 The classical geometry of vector bundles

• Suppose that we have two extensions F and F ′ of F1 by F2 and F ′1 by F2,
together with a homomorphism φ : F ′1 � F1. Then the identity map
F2 = F2 and the given map φ extend to a homomorphism F ′ � F if
and only if the homomorphism

φ̃ : Ext1(F1, F2) � Ext1(F ′1, F2)

induced by φ satisfies

(3.3) φ̃(e(F )) = e(F ′).

Of course, we would prefer to work only with vector bundles, which is
enough for working over algebraic curves. But over algebraic surfaces, it is
absolutely necessary to use torsion-free sheaves.

Any rank 1 torsion-free sheaf J on an algebraic surface S admits an exact
sequence of the form (3.2):

(3.4) 0 � J � OS(D) = J∗∗ � C(J) � 0,

where D is some divisor on S, and we can untwist this sequence by tensoring
with OS(−D):

(3.5) 0 � J(−D) � OS
� Oξ

� 0.

The last sheaf is the structure sheaf of 0-dimensional subscheme (a cluster,
or a “fine 0-cycle”) ξ of S, and J(−D) = Iξ ⊂ OS is the ideal sheaf of this
subscheme. A cluster ξ defines a cycle of points

[ξ] =
∑

deg(ξ, pi) · pi.

We say that ξ is reduced if we have

deg(ξ, pi) = 1 (or 0) for every i.

In this case ξ = [ξ], and the cluster is a configuration of distinct points on S.
Thus a rank 1 torsion-free sheaf admits two invariants: c1(J) = c1(J∗∗) and

c2(J) = deg ξ = h0(Oξ).
Now let s : OS

� E be a section of a vector bundle E of rank 2. We say
that a section is regular if its zero set is a 0-dimensional subscheme: (s)0 = ξ.
In this case, by definition, deg ξ = c2(E).

Remark. If the zero set of a section contains an effective curve C, we can
untwist it by −C to obtain a regular section s : OS

� E(−C). In this case

deg ξ = c2(E) − C · (c1(E) − C).

For a rank 2 vector bundle E, the dual map to a regular section s can be
extended to the Koszul resolution (as in David Eisenbud’s lectures)

(3.6) 0 � Λ2E∗
∧S∗� E∗

s∗� OS
can� Oξ

� 0
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of the zero set (s)0 = ξ of s.
The kernel of can is just the ideal sheaf of ξ from (3.5) and from the first

part of the sequence (3.6) we get the exact sequence

0 � Λ2E∗ � E∗ � Iξ
� 0.

Tensoring this sequence by the invertible sheaf Λ2E = detE we get finally the
short exact sequence of a regular section:

(3.7) 0 � OS
s� E � Iξ(c1(E)) � 0.

As we know, an extension of this type is given by an element e∈Ext1(Iξ(c1(E)).
For the last space, by Serre duality we have

(3.8) Ext1(Iξ(D),OS) = Ext1(OS , Iξ(D + KS))∗ = H1(Iξ(D + KS))∗,

where KS is the canonical class of S.
Thus a pair (s,E) consisting of a vector bundle and a section is given by a

cluster (s)0 = ξ and a hyperplane p ⊂ H1(Iξ(c1(E) + KS)).

§ 3 The first interpretation – moduli spaces of stable pairs.

Now we will consider the space MPd
d+1 of pairs (2.2) only. A polygon Δ =∑

li is called regular if i �= j =⇒ li �= lj , and li∩lj = lk∩ln =⇒ (i, j) = (k, n).
That is, all the sides of Δ are distinct, and all the vertices of Δ (= intersections
of sides) are different too.

A pair (Δ, C) is called regular if Δ is regular and C is nonsingular.
Let P 0

r be the open subset of regular polygons. Then we have the open
subset

(4.1) M0P
d
d+1 = p−1

Δ (P 0
r ) ∩ p−1

C

(
pC(MPd

d+1) \ VSing ∩ pC(MPd
d+1)

)
of regular pairs.

Every regular polygon Δ =
r⋃

i=1

li defines a cycle of points

(4.2) Δ∗ = l∗1 + · · · + l∗r

on the dual plane P2∗. It is a fine cycle, and we want to consider it as a cluster
(0-dimensional subscheme) of the dual plane.

On the other hand, Δ also determines the cycle of vertices

(4.3) Ver Δ =
⋃
i,j

li ∩ lj
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on the plane CP2 itself. The cluster Δ∗ defines an ideal sheaf IΔ∗ , and the
family of extensions

(4.4) 0 � OP2∗ � E � IΔ∗(2) � 0

parameterised by the space PH1(IΔ∗(−1))∗ (see the end of the previous sec-
tion).

From the exact sequence

0 � IΔ∗(−1) � OP2∗(−1) � OΔ∗(−1) � 0

we get the isomorphism

(4.4) H1(IΔ∗(−1) = H0(OΔ∗(−1)),

so the extension (4.4) is given by a hyperplane in H0(OΔ∗(−1)).
On the other hand, the space of curves of degree d circumscribing Δ is the

following:

(4.5) |d · l − Ver Δ| = PH0(IVer Δ(d)).

It’s easy to see that ranks of the spaces (4.4) and (4.5) are equal. We would
like to prove that

(4.6) H1(IΔ∗(−1) = H0(IVer Δ(d))∗.

Let me emphasize again that on the left-hand side we have a sheaf on P2 but
on the right-hand side we have a sheaf on the dual plane P2∗.

Remark. Actually the proof of this equality is a very good exercise for
David Eisenbud’s lectures.

Here is the heart of our lectures: for a geometric object (Δ, C) on the plane
P2 we get a new interpretation as a pair (s,E) (see the end of the §3) on the
dual plane P2∗.

Let P2 = PT , where T = C3, and P2∗ = PT ∗. Let

(4.7) H1(IΔ∗(k)) = Vk.

Then every line l on P2∗ defines a homomorphism

(4.8) H1(IΔ∗(−1)) = V−1
� H1(IΔ∗) = V0

given by multiplication by φl.
When l sweeps out PT = (P2∗)∗, we get a homomorphism

(4.9) T ⊗ V−1
� V0,

which we can consider as a homomorphism of vector bundles on P2:

(4.10) V−1 ⊗OP2(−1)
φ� V0 ⊗OP2 .
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The homomorphism φ is nothing other than a (d+1)×d matrix of linear forms
on P2, which we can extend to the exact sequence
(4.11)
0 � OP2(−d − 1) � V−1 ⊗OP2(−1)

φ� V0 ⊗OP2 � coker � 0.

It is easy to see that Supp coker = Ver Δ.
Now applying the functor Hom(∗,OP2(−1)) to this exact sequence, we get

Eagon–Northcott resolution

(4.12) V ∗0 ⊗OP2(−1) � V ∗−1 ⊗OP2 � IVer Δ(d) � 0

of the ideal sheaf IVer Δ(d).
Remark. Our Eagon-Northcott resolution is a slight generalization of the

Koszul complex (see Eisenbud’s lectures).
Now the cohomology long exact sequence of (4.11) provides the required

equality (4.6) and an embedding

(4.13) M0P
d
d+1 ↪→ MP(2, 2, d + 1)

to the moduli space MP(2, 2, d + 1) of stable pairs (s,E) where E is a vector
bundle of rank 2 with c1 = 2, c2 = d + 1. Here the zero set of s is a simple
cluster in the dual plane, that is, a (d + 1)-gon in P2.

Now the left-hand side of (4.13) admits a projection map pC to |d · l|, and
the right-hand side admits the projection on the second component – the vector
bundle.

To compare these projections and to compute the fibres of pC , we have to
consider a new geometric object, the noncommutative plane.

§ 4 Noncommutative planes.

For any pair (Δ, C) ∈ M0P
d
d+1, the nonsingular curve C contains the effec-

tive divisor

(5.1) Ver Δ =
⋃
i,j

(li ∩ lj)

(4.3) of degree 1
2d(d + 1). Let OC(h) = OP2(1)|C .

Lemma 5.1 The divisor class

(5.2) Ver Δ − 2h = θ

is a regular theta characteristic of C. That is, 2θ = KC is the canonical class of
C, and h0(OC(θ)) = 0, in other words, this theta characteristic is ineffective.
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Proof. Consider the polygon as a curve of degree d+1. Then the support
of the intersection

Supp (Δ · C) = Ver (Δ),

because for every line li the intersection

C ∩ li = li ∩
(⋃
j 	=i

lj
)
.

(Both of sides have degree d and by definition the curve C contains the set in
the right-hand side of this equality). Now by definition

Ver Δ = Sing Δ

and every singular point of Δ is quadratic. Hence as divisor classes on C, we
have

2Ver Δ = C · Δ = (d + 1)h,

and
2Ver Δ − 4h = (d − 3)h = KC

by the adjunction formula.
Now if Ver Δ − 2h = η is effective then

η = (d − 1)h − Ver Δ

and there exists a curve C ′ of degree (d − 1) which contains Ver Δ. But then
C ′ and Δ have a common component, because

C ′ · Δ ≥ 2 deg Ver Δ = d(d + 1) > deg C ′ · deg Δ = (d − 1) · (d + 1).

Thus,

C ′ = C0 +
n⋃

i=1

li,

where C0 does not contain lines. Repeating this arguments for C0 and Δd+1−n,
we get a contradiction. QED.

Now the pair (C, θ) defines a net of quadrics. Namely, if θ is an ineffective
theta characteristic on C then the complete linear system |θ + h| is base point
free and h0(OC(θ + h)) = d. Consider OC(θ + h) as a OP2-sheaf, and the
canonical surjective map

H0(OC(θ + h)) ⊗OP2 � OC(θ + h) � 0.

We have the exact sequence

0 � ker
α� H0(OC(θ + h)) ⊗OP2 � OC(θ + h) � 0,

and it is easy to see that

ker = H0(OC(θ + h))∗ ⊗OP2(−1)
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and we have the net of correlations

(5.3) α : H ⊗OP2(−1) � H∗ ⊗OP2

where H = H0(OC(θ + h))∗.
Under any identification H = H∗ and a choice of the homogeneous coordi-

nates (λ0, λ1, λ2) of P2, we can consider the homomorphism (5.3) as a linear
combination of a triple of symmetric d × d matrices

(5.4) λ0 · A0 + λ1 · A1 + λ2 · A2,

where the equation of curve C is

(5.5) φC = det(λ0 · A0 + λ1 · A1 + λ2 · A2),

and we can consider the line bundle OC(θ +h) as the family of cokernels of the
net of correlations (5.3).

Now the group GL(d, C) acts on the set of triples in the usual way:

(5.6) g(A0, A1, A2) = (gA0g
∗, gA1g

∗, gA2g
∗)

Let {(A0, A1, A2)}ss be the set of semistable points with respect to this action.
Then the variety

(5.7) {(A0, A1, A2)}ss
/

PGL(d, C) = P2
d

is called the noncommutative plane.
C.T.C. Wall proved that

(5.8) (A0, A1, A2) ∈ {(A0, A1, A2)}ss =⇒ φC = det(
2∑

i=0

λi · Ai) �= 0.

Thus we have a regular map

(5.9) pC : P2
d

� |d · l|
sending a triple to φC (5.5). Thus

deg pC = 2g−1 · (2g + 1), where g = 1
2 (d − 1)(d − 2)

is the number of even theta characteristics of a nonsingular plane curve of
degree d.

Now assume that a triple (A0, A1, A2) satisfies det A0 �= 0, and consider the
skew symmetric matrix

(5.10) [A0, A1 ∧ A2] = A1 · A−1
0 · A2 − A2 · A−1

0 · A1.

It easy to see that the rank of this matrix rankα is an invariant of a class of a
net of quadrics. Thus we have a filtration

(5.11) P2
d(0) ⊂ P2

d(2) ⊂ · · · ⊂ P2
d ,
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where
P2

d(2r) =
{
(A0, A1, A2)

∣∣ rank[A0, A1 ∧ A2] ≤ 2r
}
.

Now we have the pseudoclassical
Problem. What is

(5.12) deg pC(P2
d(2r)) · deg pC?

The relationship between our geometric objects is given by the following
Proposition 5.1.

1) pC(MPd
d+1) ⊂ pC(P2

d(2));

2) d ≤ 5 =⇒ pC(MPd
d+1) = pC(P2

d(2)).

To prove these statements, we need a final interpretation of the geometric
objects.

Consider the flag diagram

(5.13)

F = {p ∈ l}

P2
�

p

P2∗

q

�

Then we can apply the functor q∗ ◦ p∗ for any net of quadrics α (5.3). We get
the exact sequence of sheaves on the dual plane P2∗:

(5.14) 0 � H ⊗OP2∗(−1)
q∗◦p∗(−1)(α(1))� H∗ ⊗ Ω(1) � coker α � 0

and as second invariant of a net we have the number

rank Hom (coker α,OP2∗).

But actually it is not a new invariant, because of the following result:
Barth’s theorem (see [1]).

rank Hom(cokerα,OP2∗) = d − rankα

where 2r is the rank of the net of quadrics (5.10)–(5.11).
Thus for every net α of rank 2 on P2 we have the complex on its dual plane

(5.15)
0 � H ⊗OP2∗(−1)

q∗◦p∗(−1)(α(1))� H∗ ⊗ Ω(1)
can� Cd−2 ⊗OP2∗ � 0

which is called a monad, and the middle cohomology

(5.16) ker can /im q∗ ◦ p∗(−1)(α(1)) = E

is a semistable torsion-free sheaf of rank 2 with the Chern classes c1 = 0, c2 = 2.
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So we have the map
P2

d(2) � M(2, 0, d)

to the Gieseker closure of the moduli space of stable vector bundles on P2∗.
The construction of the inverse map is as follows: a point p ∈ P2 gives a line
lp ∈ P2∗ in the dual plane. A line lp ∈ P2∗ is called a jumping line for E if

(5.17) E|lp �= Olp ⊕Olp , which happens iff h0(E(−1)|lp) �= 0.

Thus in the dual plane P2∗ we have the curve C(E) of jumping lines of E.
Now it is easy to see that H1(E(−2)) = H = Cd and the Serre dual space

H1(E(−1)) = H∗. Now multiplication by the equation of any line φlp defines
the correlation

(5.18) H1(E(−2)) = H � H1(E(−1)) = H∗

as an element of the net of correlations (5.4) C(E) = C(5.5).
Now consider a regular pair (Δ, C) ∈ M0P

d
d+1 (see (5.1)), where Δ =

⋃
li.

Then we have the chain of identifications:

(5.19) (Δ, C) = (C∗ · s,E)

where s is a regular section of E;

(5.19′) E = (C, θ) = (α)

So a pair (Δ, C) is geometrically equivalent to the exact sequence on P2∗:

(5.20) 0 � OP2∗(−1) � E � IΔ∗(1) � 0

where IΔ is the ideal sheaf of 0-dimensional cycle Δ∗ on P2∗.
Corollary. The space of circumscribed (d + 1)-gons to a Darboux curve

C is a rational irreducible variety.
Indeed, it is birationally equivalent to PH0(E) !
These geometric identifications were done for “regular” geometric objects.

It is reasonable to construct some “natural” nonsingular compactification of the
space of regular objects sending the computation of constants of type (5.12),
(2.11), (2.5) to the regular procedure of computations of Chern classes of stan-
dard vector bundles on “moduli space” our geometric figures.
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§ 5 Compactifications.

A regular (d + 1)-gon (2.1) is of course a curve of degree d + 1 on P2, and
so the space Pd+1 of all polygons is a compact irreducible subvariety in the
complete linear system |(d + 1) · l|. Geometrically,

(6.1) Pd+1 = Sd+1P2∗

is the (d + 1)-st symmetric power of P2∗, a rather singular algebraic variety.
Fortunately for algebraic surfaces, there is a canonical desingularisation of it.
Let us recall that a regular polygon Δ defines a zero dimensional subscheme
Δ∗ (4.2). Thus as a compactification of the space of regular polygons on P2, we
can consider the moduli space of zero dimensional subscheme of P2∗ of degree
d:

(6.2) Hilbd+1 = M(1, 0, d + 1)

which is called the Hilbert scheme on P2∗. The beautiful and very important
theory of Hilbert schemes says that for a nonsingular algebraic surface, this
scheme is again nonsingular (see [5]). The space of extensions of type (5.20)
is given by the projectivisation of the vector space H1(Iξ(−1)) (see (3.8)),
because of c1(E(1)) = 2h, and because the canonical class of the plane is given
by KP2∗ = −3h. Thus, it is natural to represent the space of all nontrivial
extensions (5.20) as a projectivisation of a vector bundle on Hilbd+1. Of course,
this variety is nonsingular.

From now on, all of our geometric objects are defined on the dual projective
plane P2∗, and we omit the star.

First of all, on the Hilbert scheme we have the special divisor class H
defined by clusters intersecting a fixed line. On the other hand, the Hilbert
scheme defines the universal subscheme Z ⊂ P2 ×Hilb, and the two projection
maps to the direct components define the diagram

(6.3)

Zd+1

P2
�

pS

Hilbd+1

p
H

�

For any divisor class OP2(k), consider the vector bundle

(6.4) Ek = R0pH(p∗SOP2(k)).

These sheaves are locally free, because the canonical homomorphism is surjec-
tive.

In particular, in our case k = −1, the fibre of this vector bundle over
ξ ∈ Hilb is H0(Oξ(−1)). Now the cohomology long exact sequence of

(6.5) 0 � Iξ(−1) � O(−1) � Oξ
� 0
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gives the isomorphism

(6.6) H0(Oξ(−1)) = H1(Iξ(−1))

Thus the space of all extensions of type (5.20) is the projectivisation

(6.7) PE∗−1.

The next thing we have to understand is that our constant sd+1(d) (2.5) is the
top Segre class of the standard vector bundle on Hilb:

(6.8) sd+1(d) = stop(E−1(H))

To see this, we have to return to the isomorphism (4.6) and remark that for
s ∈ H0(IVer Δ(d) the condition ”a curve C = (s)0 passes through a point
l∗ ∈ P2∗” defines a section of E−1(H)! Thus by the definition of the Segre
class, 3d + 2 general points determine a general (3d + 2)-dimensional subspace
W of H0(E−1(H)). Now the canonical homomorphism

W ⊗OHilb
can� E−1(H)

is general enough and

(6.9) deg coker can =: stop(E−1(H)) = sd+1(d)

is the number of Darboux curves through 3d + 2 general points.
Using this beautiful interpretation, G. Ellingsrud and S. Strømme computed

(2.12) (using Bott’s formula for the C∗-action on Hilb, see [4]):

s5(4) = 54
s6(5) = 2540
s7(6) = 583020
s8(7) = 99951390
s9(8) = 16059395240

s10(9) = 2598958192572.

This list can be extended if your computer is good enough and you have S. A.
Strømme as a collaborator. But to understand the nature of these numbers
(it’s the new shape of mathematical questions, is not it?), you have to use
new identifications, proposed below, and the collection of beautiful new results
provided by differential topologists such as Fintushel and Stern, Kotschick and
Lisca and many others. We will discuss this in the next section.

Thus this story is not finished yet. The nonsingular compactification (6.7)
of the moduli space of pairs (Δ, C) (on P2∗!) is called the moduli space of
stable pairs (C∗ · s,E) (see [15], Lecture 6):

(6.10) PE∗−1 = MP(2, 2, d + 1).
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Let us consider the general diagram of our identifications:

(6.11)

PE∗−1 ====== MP(2, 2, d + 1)

Hilbd+1
�

pΔ

|d · l| � pj

p
C

�
M(2, 2, d + 1)

pE

�

where M(2, 2, d + 1) is the moduli space of semistable bundles, the map pE

sends a pair (E, s) to the vector bundle E, and pj sends the vector bundle E
to its curve of jumping lines (5.17). Now twisting sheaves by OP2(1) gives the
isomorphism

M(2, 0, d) = M(2, 2, d + 1)

and we can use the chain of identifications (5.19).
Remark. The extension of the map pj to the compactification of moduli

spaces is a nontrivial task.
The map pE is only a rational map, as treated in detail in [12]: we described

there what has to be blown up and what gets blown down. But in any case,
we can describe the image of this rational map: the final moduli space contains
the Brill–Noether locus

(6.12) M1 =
{
E ∈ M(2, 2, d + 1)

∣∣ h0(E) ≥ 1
}
.

Thus, we have

(6.13) M1 = pE(MP(2, 2, d + 1))

This is just what we need. Now, by the R–R theorem,

(6.14) d ≤ 5 =⇒ M1 = M(2, 2, d + 1).

Moreover, if d = 4, that is, for the Lüroth quartics we have the following
construction: let Q be a nonsingular plane conic and |η| be a general linear
pencil of divisors of degree 5 on Q. For an element of this pencil p1 + · · ·+ p5,
consider the pentagon Δ =

⋃
li, where li is the tangent line to Q at pi. When

elements sweep out this pencil, the cycles Ver l(Δ) sweep out a quartic curve
C.

So we have the divisor classes

(6.15) OPE∗−1
(1) = p∗C(O|d·l|(1)) = OMP(2,2,d+1)(D),

(6.16) μ(l) = p∗j (O|d·l|(1))

on MP(2, 2, d + 1) and M1, which are related by the birational map pE . This
situation is a beautiful exercise in practical birational geometry. As you know
from Miles Reid’s lectures, a birational map may well alter the degree of a
divisor. But in our case (this beautiful observation is due to Dmitry Orlov) the
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existence of the regular maps pC and pj relating our divisors as in (6.15) and
(6.16) gives the equality

(6.17) stop(E−1(H)) = cd+1(d) = D3d+2 = (μ(l))3d+2.

The last link of this beautiful chain of identifications of geometric objects is
following: the points of each of the moduli spaces MP(2, 2, d+1), M(2, 2, d+1)
and M1 describe geometric objects on the same algebraic surface, the plane P2.
But the construction of the divisor class μ(l) sends us to geometric objects
(jumping curves) on the dual plane P2∗. From the algebraic geometric point
of view this is reasonable, but we promised to extend these constructions to
objects of differential geometry. As a differential topological object, the pro-
jective plane does not define the dual plane. Avoiding this obstacle, we would
like to describe the constants sd+1(d) in terms of P2. That is, we want to define
μ-class μ(l) in terms of objects on P2 only.

Now on the direct product P2 ×M(2, 2, d + 1), the universal sheaf F exists
locally only (for technical details see [14]), but the Pontrjagin class

(6.18) p1(F) = 4c2(F) − c2
1(F) ∈ Pic P2 ⊗ Pic M(2, 2, d + 1)

is defined correctly in any case. The intersection number on Pic P2 gives the
isomorphism (Pic P2)∗ = Pic P2 so we can consider the Pontrjagin class (6.18)
as the homomorphism

(6.19) μ = 1/4p1(F) : Pic P2 � Pic M(2, 2, d + 1).

Now it’s easy to see that the divisor class μ(l)|M1 is just (6.16).
Now to get our classical enumerative algebraic geometry constants (2.11)

in the more general set-up, we have to use the equality

(6.20) sd+1(d) = (μ(l))3d+2,

and to extend the definitions of M1 ⊂ M(2, 2, d + 1) and μ(l) in differential
geometric terms. Of course now M1 ⊂ M(2, 2, d + 1) will be compact spaces
and μ(l) ∈ H2(M(2, 2, d + 1), Z) is a 2-cohomology class only but this is quite
enough to define the constant (6.20)!
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§ 6 Differential geometry.

Algebraic geometry can be considered as a part of differential geometry,
namely as Kähler geometry. Then we have to use new notions like connections,
differential forms and so on; you can learn this approach from the standard
monograph [6]. We also strongly recommend the monograph [2] as a unique
source of new style to use these ideas. But it is very important to understand
that classical algebraic geometry is a foundation of almost all the local con-
structions of Riemannian geometry. We will discuss the special case of the
projective plane P2, but you can determine the generality quantor yourself.

Let M be the underlying 4-manifold of the complex projective plane P2.
Any Riemannian metric g on M defines a decomposition of the complexified
tangent bundle TCM as a tensor product

TCM = (W−)∗ ⊗ W+

of two rank 2 Hermitian vector bundles W± with

c1(W±) = −3h,

where h is the generator of H2(M, Z).
Write ∗ for the Hodge star operator on Ω2(M) determined by the metric g.

Moreover, for any U(2)-bundle E on M of topological type (c1 = 2, c2 = d+1)
and any Hermitian connection a ∈ Ah on E, putting any Hermitian connection
∇0 on Λ2W± gives a coupled Dirac operator

(7.1) Dg,∇0
a : Γ∞(E ⊗ W+) � Γ∞(E ⊗ W−).

Now the orbit space of irreducible connections modulo the gauge group

B(2, 2, d + 1) = A∗h(2, 2, d + 1)/G
contains the subspace

(7.2) Mg(2, 2, d + 1) =
{

(a) ∈ Mg(2, 2, d + 1)
∣∣ ∗Fa = −Fa

} ⊂ B(E)

of antiselfdual connections with respect to the Riemannian metric g (here Fa

is the curvature form of a connection a).
Now we can consider the subspace of jumping connections:

(7.3)
Mg

1(d) =
{
(a) ∈ Mg(2, 2, d + 1)

∣∣ rank kerDg,∇0
a ≥ 1

} ⊆ Mg(2, 2, d + 1).

The virtual codimension of Mg
1(d) (that is, the expected codimension deter-

mined by the Atiyah–Singer index theorem) is given by

(7.4) v.codimMg
1(d) = 2 − 2χ = 2(5 − d),

where χ is the index of the coupled Dirac operator (7.1), which depends only
on the Chern classes of E.
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So you can see that for d ≤ 5

(7.5) Mg
1(d) = Mg(2, 2, d + 1)

Please compare this fact with (6.14)!
For a generic metric g, the moduli spaces Mg(2, 2, d + 1) and Mg

1(d) (7.3)
are smooth manifolds of the expected dimension with regular ends (see [2] and
[11], Chap. 2, § 3). Moreover, Mg(2, 2, d + 1) admits a natural orientation (see
[2]) inducing an orientation on Mg

1(d), because its normal bundle has a natural
complex structure. This orientation is described in detail in [11], Chap. 1, § 5.

Moreover, there exists the so-called Uhlenbeck compactification of our mod-
uli spaces

(7.6) Mg(2, 2, d + 1) ⊇ Mg
1(d).

Now for any element of our filtration the first Pontrjagin class of the univer-
sal connection on the direct product M ×Mg(2, 2, d+1) (by the slant product)
defines cohomological correspondences

Hi(M, Z)
μd� H4−i(Mg(2, 2, d + 1), Z),

Hi(M, Z)
μ1

d� H4−i(Mg
1(d), Z),

and two collections of numbers

(7.7) Dg(d) = (μd(h))4d−3,

the so-called Donaldson numbers (Donaldson polynomials) of P2, and

(7.8) sγd
g = (μ1

d(h))3d+2.

Now, suppose as a special case that our metric g is the Fubini–Study metric
gF−S . In this case, by the Donaldson–Uhlenbeck identification theorem, we
have

MgF−S (2, 2, d + 1) = M(2, 2, d + 1),

where the right-hand side is the moduli space of holomorphic stable bundles
on P2 (6.11).

Making this identification (a) = E, we have identifications

(7.9) ker DgF−S
a = H0(E) ⊕ H2(E) and cokerDgF−S

a = H1(E),

where Hi(E) denote coherent cohomology groups (see [2]).
But by Serre duality H2(E) = H0(E(−2))∗ = 0, by the stability of E.

Thus, the subspace MgF−S is

(7.10) MgF−S

1 (d) =
{
E ∈ M(2, 2, d + 1)

∣∣ h0(E) ≥ 1
}
,

that is (see (6.12)),
MgF−S

1 (d) = M1
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and our constants (7. 8)

(7.11) sγd
F−S = sd+1(d)

are constants (2.5) and (6.8).
These integers do not depend on the metric g, because the space of all

Riemannian metrics is contractible. (In fact, to be rigorous, we have to use
much more sophisticated bordism arguments, similar to those in [2], where the
same statement was proved for the Donaldson’s numbers (7. 7)).

Let us remark that the initial terms of both collections (7.7) and (7.8) are
coincidence by (7.5) and (6.14)

Dg(4) = sγ4
g = 54;

Dg(5) = sγ5
g = 2540;

and the collection of Donaldson’s constants was extended to infinity by Ellingsrud
and Göttsche (see [3]):

Dg(6) =233208;
Dg(7) =35825553;
Dg(8) =8365418914;
Dg(9) =2780195996868;

Dg(10) =12535588470906000; etc.

Let me remark that we have got the following striking fact:
Theorem. The constants (7.11) = (2.5) = (6.8) are invariants of the

underlying differentiable structure of P2.
It is well known that the complex structure on M is unique. Recently it

was proved that the symplectic structure on M is unique. The next question
is the following differentiable version of the Poincaré conjecture for P2:

Conjecture (DPC for P2
). The complex projective plane P2 has a

unique differentiable structure.
In particular this statement would imply the following fact
Corollary. The constants (7.11) = (2.5) = (6.8) are invariants of the

topological structure of P2.
There is overwhelming direct evidence for this statement, and hence a par-

tial confirmation of Conjecture DPC for P2. Namely, there are two possible
methods to construct our constants using the topological structure of the plane
only. The first approach is related to the following fundamental problem:

Hilbert scheme problem. Can we give a purely topological construction
of the Hilbert scheme Hilbd and of the standard vector bundles (6.3)?

Of course this problem is interesting in full generality for all 4-manifolds.
If we could realize the scheme (6.3) topologically then, as proposed by G.
Ellingsrud, we could use induction over d to prove

Proposition 7.1. The constants (6.8) are topological invariants.
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The second approach to prove the statement of Corollary is related to prov-
ing of the same fact for Donaldson’s constants (7.7) proposed by Kotschick and
Lisca using the Kotschick–Morgan Conjecture from [7].

The idea of this program is following: let us blow up one or two points on P2

and for this new surface P̃2 let us consider the same numbers as (7.7). But now
these numbers depend on the Riemannian metric in essential way. However
it can be shown that the dependence of these numbers on the metric can be
controlled explicitly! Going from P2 to P̃2, we have to consider the collection
{α}d ⊂ H2(P̃2, Z) of classes such that

(7.12) α = 0 mod 2 and − 4d ≤ α2 < 0.

The intersection of the positive cone in H2(P̃2, R) with the hyperplane α⊥ is
called a d-wall (or the d-wall defined by α). Let Δd be the set of open chambers
into which the positive cone is divided by all d-walls.

Proposition 7.2.

1) The constant Dg(d) of (7.7) for P̃2 depends on the chamber C ∈ Δd,
which contains the g-self dual harmonic 2-form.

2) If C and C ′ are chambers then

(7.13) DC(d) − DC′(d) =
∑
α

δd(α),

where the sum is taken over all d-walls α such that

α · C ′ < 0 < α · C,

that is over all walls dividing C and C ′.

Now the following result has been proved:
Proposition 7.3. The constant Dg(d) of (7.7) for P̃2 are determined by

the difference terms δd only.
The following fact is ”almost” proved:
Kotschick–Morgan Conjecture (see [7]). The difference terms δd are

homotopy invariants.
So finishing the proof of this conjecture implies the topological definition of

the Donaldson constants (7.7).
Remark. Mixing the Hilbert scheme method and the difference terms

method is a very fruitful technique. G. Ellingsrud and L. Göttsche [3] can
use it to compute any Donaldson number exactly, but the real nature of these
expressive numbers remains an open question.

Finally, to prove the topological nature of the constants sγd
F−S = sd+1(d)

(7.11), we have to mimic these constructions for the moduli spaces of jumping
instantons (7.3) or, in full generality, for the spin polynomials (see [13]) in place
of the Donaldson polynomials.
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I would like to finish by drawing the following conclusion:
Moral. Different interpretations of classical algebraic geometric figures

provide very fruitful approaches to understanding the nature of results of ENU-
MERATIVE AG.
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The Weil–Petersson metric on the moduli
space of stable vector bundles and
sheaves on an algebraic surface

A twistor description of the Weil–Petersson metric on the moduli space of
stable vector bundles on a K3-surface with hyper-Kähler structure is given,
and this metric is extended to the compactification of the moduli space by
torsion-free sheaves.
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Dedicated to the memory of my sister

Introduction.

The moduli space of stable vector bundles on a compact Kähler surface
(S, ω) has a canonical Kähler metric, which it is natural to call the Weil–
Petersson metric. Recall that this metric was originally constructed by Weil
and Petersson on the Teichmüller space of distinguished Riemann surfaces of
genus g; in that context it was studied by Ahlfors [1], Royden [14], and Wolpert
[20]. The basic result of this research was to describe the geometrical properties
of the curvature. In particular, Wolpert proved that the metric has negative
sectional curvature.

The actual construction of the Weil–Petersson metric is based on the exis-
tence of a constant curvature metric on a Riemann surface; hence, it became
possible to carry this construction over to multidimensional Kähler manifold
only after the Calabi–Yau problem was solved, i.e., after Kähler–Einstein met-
rics were constructed on compact Kähler manifolds with negative or zero first
Chern class (see [21]).

Koiso [10] verified the Kähler condition for the Weil – Petersson metric
in the multidimensional case, and Siu [15] developed the method of canoni-
cal lifting of tangent vectors in order to study the curvature properties of this
metric. This led Siu to a precise (and relatively simple) description of the com-
plete curvature tensor and a proof that the holomorphic bisectional curvature
is negative in certain important but special cases.

Finally, Schumacher [17] and Nannicini [13] studied the curvature proper-
ties of the Weil–Petersson metric for manifolds with zero Chern class, and they
proved (using different methods) that the holomorphic bisectional curvature is
negative in the case of symplectic manifolds. In particular, in the case of polar-
ized K3-surfaces, Schumacher proved that the Weil–Petersson metric coincides
with the Bergman metric of the type III symmetric domain that is induced on
the moduli space by the period mapping [15].

The Weil–Petersson metric is defined on the moduli space of stable vector
bundles on a compact Riemann surface using the identification of the moduli
space of stable vector bundles with the moduli space of Hermitian–Einstein
connections on a fixed C∞-bundle.

242



Introduction 243

Zograf and Takhtadzhyan made an exhaustive investigation of the prop-
erties of this metric, connecting the properties of the curvature tensor with
classical problems in the theory of Riemann surfaces [23].

In particular, the symplectic form of the Weil–Petersson Kähler metric co-
incides with the ∂̄-derivative of the canonical section (given by the Hermitian–
Einstein connection) of the affine bundle on the connection over the moduli
space of vector bundles. The same form is proprtional to the curvature form
of the Quillen metric on the determinant bundle of the family of ∂̄-operators.

By explicitly computing the curvature tensor and interpreting its compo-
nents, one obtains positivity of the scalar curvature and nonnegativity of holo-
morphic bisectional curvatures.

In the multidimensional case, the solution of the Kobayashi–Hitchin prob-
lem concerning the existence of a Hermitian–Einstein connection in a holomor-
phic stable vector bundle leads to the construction of the Weil–Petersson metric
on the moduli space of vector bundles (see [19] for the greatest generality).

Buchdahl [2] proved the Kobayashi–Hitchin conjecture for complex-analytic
surfaces with Hermitian metric g, whose symplectic form is ∂̄∂-closed.

In the case when a Kähler surface (S, ω) is the base of vector bundles, the
notion of a Hermitian–Einstein connection coincides with the notion of an anti-
self-dual connection (ASD) connection [8], and so it is equivalent to the notion
of a holomorphic stable bundle. In this case Ito [8] computed the curvature
form for the Weil–Petersson metric on the moduli space of vector bundles; in
certain cases this made it possible to connect the sign of the curvature of the
surface with the moduli space [9]. In particular, if the metric g on S is hyper-
Kählerian, then so is the Weil–Petersson metric on the moduli space of vector
bundles (see [8] and [9]).

On the other hand, if S is an algebraic surface and g is the Hodge met-
ric giving the polarisation H, then, using modular operations ([24], Chapter
II), one can construct a series of components of the moduli space of H-stable
vector bundles of standard birational type; in particular, they are birationally
equivalent to the surface S itself. In this case one would like to compare the
original metric on S and the Weil–Petersson metric on S, as metrics on the
moduli space of vector bundles. The obstacle to doing this is the fact that, in
general, the components of the moduli space of stable bundles are not com-
pact. They can be compactified (see Gieseker [4]) using semistable torsion-free
sheaves. Thus, one does not have a direct differential geometric construction
of the Weil–Petersson metric on the points of the boundary (see [8]), and we
are left with two problems:

1) to extend the Weil–Petersson metric to the compactification of a com-
ponent of the moduli space of stable vector bundles;

2) to study the geometry of the curvature tensor of the extended metric at
boundary points of the moduli space.

In this paper we solve both of these problems in the case when S has a
nondegenerate symplectic structure, i.e., in the case of 3-surfaces and abelian
surfaces. We give a description of all of the constructions only in the case of
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3-surfaces, since the constructions are exactly the same for abelian surfaces.
We shall apply the twistor construction of hyper-Kähler metrics (see [5], [7],
and [16]).

This paper was written in its final form during my stay at Tokyo Metropoli-
tan University, and I would like to thank Professor Y. Miyaoka for his hospi-
tality and support.

I would like to thank A. Todorov for interesting and stimulating discussions
of the problem.

§ 1 Hyper-Kähler metrics.

A triple of infinitesimal structures on the tangent bundle TX of a smooth
manifold X having the form

(1.1)

TX
g� T ∗X g∗ = g (Riemannian structure)

TX
I� TX I2 = −1 (complex structure),

TX
ω� T ∗X ω∗ = −ω (symplectic structure)

together give a single almost complex Hermitian structure

(1.2) h : TX � T ∗X, h̄∗ = h,

if

(1.3) IgI∗ = g, IωI∗ = ω = Ig.

If the structure is I-integrable and the form ω is closed, then we say that it is
a Kähler structure.

Remark. Thurston [18] constructed an example of an almost complex
Hermitian structure with closed form ω, which is not Kähler.

If dimX = 4, then there is an important generalisation of an almost complex
structure (1.1) — an infinitesimally quaternionic structure, which is given by
three almost complex structures:

(1.4)
I : TX � TX, I2 = J2 = K2 = −1,
J : TX � TX, IJ = −JI = K,
K : TX � TX, KI = −IK = J.

If X has a metric g (1.1), which is invariant under I, J , and K (see (1.3)),
then we can define the three skew-symmetric forms:

(1.5) ωI = Ig, ωJ = Jg, ωK = Kg.

In contrast to Thurston’s example in [18], we have the following
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Lemma (Hitchin [6], Lemma 6:8). If the forms ωI , ωJ and ωK in (1.5)
are closed, then any almost complex structure

(1.6) {aI + bJ + cK|a, b, c ∈ R, (aI + bJ + cK)2 = −id}
is integrable.

In this case the four-tuple (g, I, J, K), or (g, ωI , ωJ , ωK), is called a hyper-
Kähler structure on X, and I, J, K, ωI , ωJ , ωK are called the components of the
hyper-Kähler structure on X.

The complex structures I, J, K are not in any way distinguishable from the
other points of the two-dimensional sphere S2 =q=P1 which parametrizes the
complex structures (1.6) on X. It is easy to see that the form

(1.7) ωI + iωK

is a nowhere degenerate holomorphic 2-form for the complex structure I on
X. We shall call the family (1.6) the conic of complex structures of the hyper-
Kähler structure.

If dimX = 4, then a Riemannian metric g on X can be a component of
only one hyper-Kähler structure; and a Kähler structure is hyper-Kähler if and
only if it is self-dual and Ricci-flat [16]. In this case the holomorphic forms
(1.7) for the family (1.6) of complex structures generate a family of one-dimen-
sional subspaces in H2(X, C), which sweep out a conic in the projectivisation
PH2(X, C) as the complex structure varies. This explains the terminology
”conic of complex structures (1.6)”.

In addition to having a simple integrability criterion (that three forms be
closed; see Hitchin’s lemma), hyper-Kähler structures enjoy one other remark-
able property: they have a characterisation in terms of the complex geometry
of the space of twistors (see [5] and 16]).

Theorem (HKLR [5], Theorem 3.3). Let Z be a smooth complex manifold
of dimension 2n + 1 for which the following conditions hold:

1) There exists a holomorphic surjection

(1.8) Z
π� P1 = q

(i.e., dπ : TZz
� Tqπ(z) is an epimorphism for every z ∈ Z).

2) The relative tangent bundle

(1.9) TZ/π = ker dπ

has an isomorphism

(1.10) TZ/π
ω̃� (TZ/π)∗ ⊗ π∗Oq(2)

such that

(1.11) ω̃∗ ⊗Oq(2) = −ω̃.
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3) There exists a holomorphic section

(1.12) s : q � Z

such that the normal bundle of the curve

(1.13) l = s(q)

has the form

(1.14) Nl⊂Z = C2n ⊗Oq(1);

4) There exists a real structure

(1.15) σ : Z � Z,

acting on the fibre of the bundle (1.8) which is compatible with (1.10),
preserves the section s in (1.12), and induces the antipodal map on q = P1:

(1.16) σ : z � 1/z.

Then a hyper-Kähler structure is induced on the manifold of σ-real sections.
Conversely, every hyper-Kähler structure determines a smooth complex mani-
fold Z with all of the features (1.8)− (1.15), where the base manifold X can be
identified with the manifold of σ-real sections and the hyper-Kähler structure
coincides with the induced hyper-Kähler structure.

We may always suppose that there is a σ-real section of the form (1.12)
passing through every point of the fibre of the surjection (1.8), and this section
is unique, because the real sections do not intersect.

The manifold Z is called the twistor space of the hyper-Kähler structure
(g, q) on X. The real sections of the bundle (1.8) are disjoint, and they deter-
mine a C∞-bundle

(1.17) Z
p� X,

whose fibre

(1.18) p−1(x) = l

is a smooth rational curve in Z with normal bundle of the form (1.14).
The family of fibres of the surjection (1.8) coincides with the family of

complex structures (1.6) that is parametrized by the conic q = P1 = S2.
Let G be the space of sections of (1.8) of the form (1.12) – (1.14), and let l be

a σ-real section, which we can identify with a point x ∈ X so that p−1(x) = l.
Then the space of lines which intersect l determines a symmetric correlation
on the subspace of σ-real sections of the space H0(Nl⊂Z) = TGl, which we can
identify with the complexification of the tangent space TXx. This symmetric
correlation also determines the quadratic form gx of the metric g on TXx.
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Now let (X, g) be a K3-surface with Ricci-flat Kähler structure. Then the
twistor space Z(S) is a three-dimensional compact manifold with two surjec-
tions

(1.19)

Z(S)

S
�

p

q

π

�
,

where π is a holomorphic map, p is a C∞-map, and the pair p × π gives a
C∞-identification of Z(S) with S × q.

The fibres π−1(z) are Kähler K3-surface. For any such surface

(1.20) Sz = π−1(z),

the surface Sσ(z) has a complex structure conjugate to Sz. We shall later have
need of this type of variation of complex structure.

Definition 1.1.

1) A simple variation of a complex analytic surface S0 is a smooth three-di-
mensional manifold Z and a smooth manifold T with distinguished point
t0 connected by maps

(1.21)

Z

∪
S0

�
�

p

S0
π� t0 ∈ T

π

�

such that

a) π is a smooth holomorphic map of π−1(t0) = S0, and

b) p is an everywhere nondegenerate C∞-map which gives a C∞-iso-
morphism

(1.22) Z
p×π� S0 × T.

2) A simple variation of a holomorphic vector bundle E on S0 which covers
the simple variation (1.21) is a vector bundle E on Z such that

a) E|π−1(t0) = E, and

b) there exists a C∞-isomorphism of bundles f : p∗E � E
The twistor space (1.19) is an example of a global simple variation.
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§ 2 Stratification of the moduli space.

We consider a torsion-free sheaf F on a compact smooth algebraic surface
or a Kähler surface S. Such a sheaf determines the standard exact triple

(2.1) 0 � F
can� F ∗∗

ϕ� C(F ) � 0,

where can is the canonical homomorphism from the sheaf to the double dual
sheaf

F ∗∗ = Hom((F,OS),OS) .

F ∗∗ is a locally free sheaf, i.e., it is the sheaf of germs of sections of a
holomorphic bundle E on S, and C(F ) is a sheaf supported in the finite set of
points

(2.2) supp C(F ) =
n∑

i=1

xi(F ), xi(F ) ∈ S,

where F is not locally free. The bundle E = F ∗∗ is called the reflexive span of
the sheaf F .

The symple cycle (2.2) and the reflexive space E = F ∗∗ are the first invari-
ants of the sheaf F .

The Artinian sheaf C(F ) in (2.1) splits into a direct sum of sheaves sup-
ported at xi(F ) :

(2.3) C(F ) =
n⊕

i=1
C(F )i, suppC(F )i = xi(F ),

and the epimorphism ϕ in (2.1) also splits:

(2.4) ϕ = (ϕ1, · · · , ϕn),

where ϕi : F ∗∗ = E � Ci(F ) is a local epimorphism which is nonzero only
over the point xi(F ). Each such epimorphism can be completed to an exact
triple:

(2.5) 0 � Fi
� F ∗∗ = E

ϕi� C(F )i
� 0,

and it is easy to see that

(2.6) F =
n⋂

i=1

Fi ⊂ E.

The components of the direct sum (2.3) are called the local components of the
Artinian sheaf, and the subsheaves Fi are called the local spans of F .

The geometrical object we define next is a generalisation of the notion of
a zero-dimensional scheme, or a fine cycle ([25], § 2), or a cluster (in Miles
Reid’s terminology).
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Definition 2.1. An equipped local cluster of rank r supported at the point
x ∈ C is a triple (Ax, V, ϕ), where Ax is an Artinian sheaf supported at x,
V = Cr is a vector space, and ϕ is an epimorphism of sheaves

(2.7) V ⊗OS
ϕ� Ax

� 0;

this epimorphism is called the cluster’s equipment. A local cluster Ξx of rank
r (supported at x ∈ S) is a class of equipped clusters (2.7) considered modulo
linear automorphisms of the vector space V and automorphisms of the sheaf
Ax. A cluster of rank r is a formal sum

(2.8) Ξ =
n∑

i=1

Ξi,

where Ξi is a local cluster supported at xi, (here {xi} is a set of distinct points
on S).

Example 1. It is easy to see that a rank 1 cluster is the same as a family
of sheaves

(2.9) {Oξ ⊗ L}, L ∈ Pic S,

where Oξ is the structure sheaf of a zero-dimensional subscheme ξ ⊂ S. Such
a cluster determines a subsheaf Jξ ⊗ L in each invertible sheaf L, where Jξ is
the sheaf of ideals of the subscheme ξ ∈ S.

Example 2. Any torsion-free sheaf F of rank r determines a rank r cluster
Ξ(F ).

Namely, for any point xi(F ) in (2.2) there is a neighborhood Ui such that
F ∗∗ = E|Ui

= Cr × OUi
, and the epimorphism in the exact triple (2.1) deter-

mines the local clusters

(2.10) Ξ(F )i = Ξ(Fi)

and the rank r cluster (2.8).
The equipment of a local cluster (2.7) factors as a composition of homo-

morphisms

(2.11)

Cr ⊗OS
ϕ � Ax

H0(Ax) ⊗OS

ca
n

�
ϕ̄⊗O

S
�

,

where

(2.12) ϕ̄ : Cr � H0(Ax)

is a certain homomorphism which may have a kernel or a cokernel.
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The rank of the kernel

(2.13) rk kerϕ̄ = k

will be called the local defect of the cluster, and the rank

(2.14) d = rkH0(Ax)

will be called the local degree of the cluster.
Proposition 2.1. Let Kr

d(k, Ax) be the manifold of local clusters of rank
r, degree d local defect k and Artinian sheaf Ax (see (2.7)). Then either
Kr

d(k, Ax) = ∅, or else

(2.15) Kr
d(k, Ax) = Gr(r − k, H0(Ax))0/AutAx

is a Zariski open subset of the Grassmannian of (r − k)-dimensional subspaces
in H0(Ax) of rank d, considered modulo the action of the group AutAx.

Proof. In fact, if no (r−k)-dimensional subspace of H0(Ax) spans Ax, then
Kr

d(k, Ax) = ∅. Otherwise, there is a Zariski open subset of the Grassmannian
consisting of the subspaces of sections which span Ax. We then have (2.15).

Now if Ξ is a rank r cluster with local decomposition (2.8), then the vector

(2.16) d̄ = (d1, d2, · · · , dn),

where di is the local degree of the cluster Ξi (see (2.14)), is called the vector
degree of the cluster, and the vector

(2.17) k̄ = (ki, k2, · · · , kn),

where ki is the local defect of Ξi (see (2.13)), is called the vector defect of the
cluster.

Let Kr
d̄
(k̄) be the moduli space of clusters of rank r, degree d̄, and defect

k̄, and let

(2.18) Kr
d̄(k̄,

∑
xi) ⊂ Kr

d̄(k̄)

be the subspace of clusters supported in
∑

xi.
Proposition 2.2. The space Kr

d̄
(k̄,
∑

xi) does not change under a simple
variation of the base surface S (see Definition 1.1).

Proof. What the proposition says is that the space (2.18) for any of
the surfaces St in a simple variation, where t ∈ T (see (1.21)), is canonically
biholomorphic to the same space for S0. Note that

(2.19) Kr
d̄(k̄,

∑
xi) = Kr

d1
(k̄1, x1) × · · · × Kr

dn
(k̄n, xn),

and so it suffices to prove the proposition for a single point x ∈ S0. But a
simple variation determines an isomorphism of fibres of the structure sheaves

(2.20) (OS0)x = (OSt)x,
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and hence also an isomorphism of the spaces, of the algebras {Ax}, which are
finitely generated over these rings, and of all of the features of the cluster (see
Proposition 2.1). This gives us the desired canonical biholomorphic equiva-
lence.

In the same way as rank 1 cluster — a zero-dimensional subscheme ξ (see
Example 1) — determines a subsheaf Jξ ⊗ L in each rank 1 bundle L, a rank
r cluster Ξ determines a family of subsheaves in each vector bundle E:

(2.21) F(E, Ξ) = {F ⊂ E|F ∗∗ = E, Ξ(F ) = Ξ}.

In particular, in the case of an invertible sheaf L and a rank 1 cluster ξ ⊂ S,
the family F(L, ξ) in (2.21) consists of the single sheaf Jξ ⊗ L.

Let B(E, Ξ) be the base of the family of sheaves in (2.21). To describe this
base it is useful to decompose Ξ into local clusters (2.8) and represent a sheaf
F in (2.21), [F ] ∈ B(E, Ξ), as the intersection of its local spans.

The geometrical interpretation of the features of a cluster, along with Propo-
sition 2.1, implies the following fact.

Proposition 2.3.

1) If [F ] ∈ B(E, Ξ), then its local span Fi (see (2.6)) satisfies

(2.22) [Fi] ∈ B(E, Ξi),

where the Ξi are the local components (2.8) of the cluster Ξ.

2)

(2.23) B(E, Ξx) = Gr(k, Ex)

is the grassmannian of k-dimensional subspaces (the kernels of the homo-
morphism ϕ̄; see (2.12)) .

3)

(2.24) B(E, Ξ) = B(E, Ξ1) × · · · × B(E, Ξn)

and the components of [F ] ∈ B(E, Ξ) have the form

(2.25) [F ] = ([F1], · · · , [Fn]).

Given a bundle E of rank r, we can define the family of subsheaves

(2.26) F(E, d̄, k̄) = {F ⊂ E|F ∗∗ = E, Ξ(F ) ∈ Kr
d̄(k̄)}.

where Kr
d̄
(k̄) is the space of clusters of vector degree d̄ and vector defect k̄ (see

(2.16) and (2.17)) with base B(E, d̄, k̄), and also the subfamily

(2.27) F(E, d̄, k̄,
∑

xi) = {F ⊂ E|Ξ(F ) ∈ Kr
d̄(k̄,

∑
xi)}.
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(see (2.18)) with base B(E, d̄, k̄,
∑

xi). The bases of these families are stratified
as follows:

(2.28)

B(E, d̄, k̄)
π � Kr

d̄(k̄)⋃ ⋃
B(E, d̄, k̄,

∑
xi)

π� Kr
d̄(k̄,

∑
xi)

π−1(Ξ) = B(E, Ξ),

over the spaces in (2.24).
Proposition 2.4.The space B(E, d̄, k̄,

∑
xi) does not change under a sim-

ple variation of the base surface S and the bundle E.
Proof. Besides the argument used to prove Proposition 2.2, we need only

add the observation that the spaces (2.23) are canonically biholomorphic to
one another under a simple variation of the bundle E (see Definition 1.1, 2)).

We are now ready to describe the compact smooth components of the moduli
spaces of sheaves on S. Let H = [ω] be the class of the Kähler form which is
used to define the notion of stability [19].

Consider a torsion-free stable sheaf F and the exact triple (2.1). Then

(2.29) c1(F ) = c1(F ∗∗), c2(F ) = c2(F ∗∗) + rkH0(c(F )).

The first of these equalities implies the important fact that:

(2.30) F is stable ⇔ F ∗∗ is stable.

In fact, the definition of H-stability (in the sense of Mumford and Takemoto)
involves only the ranks and first Chern classes, and passing to the reflexive
spans is functorial: F1 ⊂ F ⇒ F ∗∗1 ⊂ F ∗∗.

The homotheties of F determine an embedding OS
� EndF =Hom (F, F )

which, along with the trace homomorphism tr : EndF � OS , gives the de-
composition

(2.31) EndF = OS ⊗ ad F.

A flat sheaf F on the product S⊗T , where t0 ∈ T is the germ of the analytic
space for which F|S×t0 = F , is called a local variation of F . The stable sheaf
F is simple, i.e.,

(2.32) h0(ad F ) ====
sd

h2(ad F ) = 0,

where ” ====
sd

” means ”equal by Serre duality”. Hence, for F we have
Theorem (Mukai [11]).

1) The sheaf F has a universal variation with base [F ] ∈ SplF .

2) The germ of the analytic space [F ] ∈ SplF is reduced and smooth in [F ],
and the tangent space to SplF at [F ] satisfies the relation

TSplF[F ] = Ext1(F, F ).
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By (2.30), the reflexive span F ∗∗ is a stable bundle, and we have another
result:

Theorem (Artamkin [22], Lemma 6.2). If F has rank greater than 1, then
the generic sheaf of the universal local family SplF is locally free, i.e., it is the
sheaf of germs of sections of the bundle.

The bases of the universal local families of stable sheaves glue together to
form the global components of the moduli space MH(r, c1, c2) of stable sheaves
of rank r with Chern classes c1 and c2.

Here we shall consider the so-called ”fine” components of MH(r, c1, c2).
Definition 2.2. A component M of the moduli space MH(r, c1, c2) is said

to be fine, if

1) M is a complete smooth manifold, and

2) there exists a family F of sheaves on S ×M which is flat over M and has
the property that the Kodaira–Spencer map

(2.33) TM[F ] = Ext1(F, F )

is an isomorphism for every [E] ∈ M .

Combining the criteria of Mukai [11] and Maruyama [12] gives
Proposition 2.5. If

(2.34) g.c.d.
(

r,
c2
1

2
− c2

)
= 1,

then all of the components of MH(r, c1, c2) are fine.
Returning to cluster spaces, we can now construct the family of sheaves

(2.35) F(r, c1, c2, d̄, k̄) =
{
F
∣∣ F ∗∗ ∈ MH(r, c1, c2 −

∑
di) , Ξ(F ) ∈ Kr

d̄(k̄)
}

with base B(r, c1, c2, d̄, k̄), from which we have two maps

(2.36)

B(r, c1, c2, d̄, k̄)

MH (r, c1, c2 −
∑

di)
�

R

Kr
d̄(k̄)

f

�
R([F ]) = [F ∗∗]
f([F ]) = Ξ(F )

such that the direct product

(2.37) B
(
r, c1, c2, d̄, k̄

) (R,f)� MH (r, c1, c2 −
∑

di) × Kr
d̄(k̄)

has as a fibre the space

(2.38) (R, f)−1(E, Ξ) = B(E, Ξ).

We proceed to describe the stratification of the moduli space MH(r, c1, c2)
of torsion-free stable sheaves of rank r with Chern classes c1 and c2.
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In the first place, MH(r, c1, c2) contains the closed submanifold

(2.39) C = {[F ] ∈ MH(r, c1, c2)|F �= F ∗∗}

of non-locally-free sheaves and the dense quasiprojective submanifold

(2.40) M0
H(r, c1, c2) = MH(r, c1, c2) − C

of moduli of stable bundles.
The integer vectors d̄ in (2.16) and k̄ in (2.17) determine a stratification of

the manifold C in (2.39):

(2.41) Cd̄(k̄) = {[F ] ∈ C|Ξ(F ) ∈ Kr
d̄(k̄)}.

Each stratum has an embedding

(2.42) Cd̄(k̄)
g� B(r, c1, c2, d̄, k̄)

into the manifold (2.36).
Proposition 2.6. Each component of Cd̄(k̄) embeds into a Zariski dense

subset of a component of the manifold B(r, c1, c2, d̄, k̄), (2.36).
Proof. If the component B of the manifold (2.36) contains the point [F ]

corresponding to the stable sheaf F , then there exists a Zariski dense subset BH

in B, whose points correspond to the stable sheaves. For any sheaf [F ] ∈ BH ,
the universal variation (2.33) contains [F ] as a smooth point and determines a
component M of the manifold MH(r, c1, c2). Then the intersection M

⋂
Cd̄(k̄)

is a component of the manifold (2.41) which maps isomorphically onto B0.
Remark. Here we have made essential use of the properties of K3-surfaces.

§ 3 Twistor space of a component of the moduli space of bundles.

Now let M be a fine component of the moduli space of H(= [ω])-stable
(r, 0, c2)-sheaves, as in Proposition 2.5, and let

(3.1) M = M0
⋃

C,

where M0 is the component (2.40) of the moduli space of stable bundles and
C is the component (2.39) of the moduli space of non-locally-free sheaves.

Suppose we have an algebraic K3-surface S = S0 with complex structure
I, a Ricci-flat metric g that is Hermitian compatible with I (see § 1), and a
symplectic form ω. We consider the features of Yang–Mills theory on S (see
[25], § 3).

Let E be a C∞-complex vector bundle of rank r on S with Chern classes
c1 = 0 and c2 > 0, and Hermitian structure h. Let AC be the affine space
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of SL(r,C)-connections on E, let GC = AutE the group of SL(r,C)-gauge
transformations, and let

(3.2) F : AC � H0(ad E ⊗ Ω2
C)

be the curvature map with its Hodge decomposition

(3.3) F = F 2,0 ⊕ F 1,1 ⊕ F 0,2

for the complex structure I on S.
Let A′′0 be the space of integrable semiconnections on E (i.e., d

′′
-operators

with d
′′ · d′′= 0), and let

(3.4) AC = A′ ⊗A′′

be the d
′
-, d

′′
-decomposition of the space of connections, whereAh ⊂ AC =

A′ ×A′′ is the subset of SU(r)-connections.
Let G = AutEh be the subgroup of SU(r)-gauge transformations,

(3.5) A1,1
h = {a ∈ Ah|F 2,0(a) = F 0,2(a) = 0}

the subset of SU(r)-connections with curvature of type (1,1), and

(3.6)

AC === A′ ⊗A′′

∪
A′ �x′�

π
′

Ah
x′′� A′′

π ′′

�

the projections onto the direct factors, giving the identifications

(3.7) Ah = A′′ , Ah = A′′ ×A′ ,
and determining a complex structure on Ah.

This complex structure on the tangent space to a connection a ∈ Ah has
the form

(3.8) (TAh)a = H0(ad E ⊗ Ω0,1).

The quadratic form

(3.9) G(ω) = 2i

∫
S

tr(ω ∧ ω∗)

on the space (3.8) determines a canonical metric on Ah. This metric gauge
invariant.

Let A0
h be the subset of irreducible connections, and let

(3.10) X = Ah/G
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be the orbit space of the gauge group. Then the gauge invariant formula (3.9)
gives a metric on the space X in (3.10).

The metric g on S determines an operator ∗ on the 2-forms on S, and it
splits the curvature tensor (3.2) into two components

(3.11) F (a) = F+(a) + F−(a), ∗F+(a) = F+(a), ∗F−(a) = −F−(a).

A connection a is said to be anti-self-dual (ASD) if

(3.12) F+(a) = 0.

This equation is invariant relative to the gauge group, and

(3.13) Mg
ASD = {a modG|F+(a) = 0} ⊂ X

is the space of orbits of irreducible ASD-connections in the space X in (3.10).
Definition 3.1. The restriction to Mg

ASD of the metric G in (3.9) is called
the Weil–Petersson metric on Mg

ASD.
It is easy to see that this is a Kähler metric (the same is true for G on X )

in the complex structure determined by the isomorphism (3.8).
We shall call the class of the Kähler form [ω] = H a polarisation of S even

if it is not an integral class. In that case the definition of a stable holomorphic
bundle E does not change: for any subsheaf F ⊂ E, rkF < rkE, we have

(3.14)
c1(F ) · H

rkF
<

c2(F ) · H
rkE

(even if the numbers in the numerator are not integers).
Using the local ∗-decomposition of the bundle

(3.15) Ω2 = Λ+ ⊕ Λ−, ∗|Λ+ = id, ∗|Λ− = −id

in the case of a Kähler metric it is easy to see that

(3.16) Λ+ = Rωg ⊕ Ω2,0.

Hence, the curvature tensor of an ASD-connection a satisfies the relation

(3.17) F 2,0(a) = F 0,2(a) = 0.

i.e., a ∈ A1,1
h , and the d′′-connected component of a determines a holomorphic

structure on E.
According to a result of Uhlenbeck and Yau, this construction gives an

isomorphism

(3.18) Mg
ASD(r, 0, c2) = M0

H(r, 0, c2)

between the space of ASD-connections on a bundle of rank r with c1 = 0 and
c2 > 0 on the one hand, and the moduli space of stable bundles on the other.
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We can now proceed to the construction of the twistor space (1.8) for the
Weil–Petersson metric G on the moduli space (see (3.9)). We return to the fine
component M of the moduli space of sheaves (see (3.1))and the dense subset
M0 of vector bundles. We first construct the twistor space Z(M0) in (1.8) for
the subset M0. Let M be the component of the moduli of ASD-connections,
so that (3.18) gives an isomorphism

(3.19) M = M0.

We consider the simple variation of complex structures (1.19):

(3.20)

Z(S)
π� q

∪ ∪
S = π−1(z)z

� z,

that is given by the hyper-Kähler structure on S0. Suppose that the complex
structure on Sz is given by means of the automorphism Iz in (1.1), and ωz is the
Kähler form of the Ricci-flat metric g on S0. Let M0

z be the component of the
moduli space of stable bundles which are holomorphic on Sz, i.e., holomorphic
relative to Iz. Then the family of complex manifolds

(3.21) M0
z , z ∈ q,

sweeps out a complex manifold Z(M) with two projections

(3.22)

Z(M)

M
�

p

q = P1,

π

� π−1(z) = M0
z ,

where the fibre of the holomorphic projection π is the moduli space M0
z of

holomorphic stable bundles on the surface Sz in (3.20), and the C∞-projection
p gives an isomorphism (see (3.19) and (3.18)):

(3.23) p : π−1(z) = M0
z

� M.

Thus, the sphere of complex structures Mz, z ∈ q = S2, on M gives a simple
variation of each fibre of the projection π.

We must now construct the features 2) (1.10), 3) (1.14), and 4) (1.15) of
the geometric interpretation of hyper-Kähler structure in the HKLR theorem
in § 1.

In the first place, on the union Z(M) of the moduli spaces M0
z there exists a

real anti-involution σ which covers the anti-involution (1.16), since we obviously
have

(3.24) M0
z̄ = M

0

z,
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so that condition 4) HKLR theorem is fulfilled.
Next, the isomorphism (1.10) is given on the fibres by the Mukai symplectic

form [11] on the moduli space of simple vector bundles on a K3-surface. More
precisely, let

(3.25) [E] ∈ Z(M), π([E]) = Z, [E] ∈ M0
z .

Then E is a holomorphic bundle on Sz. The fibre of the relative tangent bundle
to Z(M) at the point [E] is

(TZ(M)/π[E]) = (TM0
z )[E] = H1(Sz, ad E)

(see (3.26)).
Since the canonicall class on the surface Sz is trivial, it follows by Serre

duality that there exists a skew-symmetric isomorphism

(3.27) H1(Sz, ad E) � H1(Sz, ad E)∗,

which gives the Mukai symplectic structure on M0
z (see [11]) and determines

the isomorphism (1.10) up to an invertible sheaf lifted from q. Comparing the
determinants of the relative tangent bundle and its dual (and taking the skew
symmetry into account), we obtain the isomorphism (1.10). This gives part 2)
of the HKLR theorem. It remains for us to construct a real section (1.12) with
normal sheaf (1.14).

To do this, we consider a self-dual connection a ∈ M on the bundle Eh (see
the beginning of the section). Then a complex structure z ∈ q determines a
holomorphic bundle structure Ez on (Eh, a), and the family {Ez} of holomor-
phic sections on the family {Sz} of Kahler surfaces determines a holomorphic
bundle Ẽ on Z(S) such that

(3.28) Ẽ|Sz
= Ez, z ∈ q.

By analogy with the theory of instantons we shall call Ẽ a physical anti-
instanton on the twistor space Z(S) in (1.29). It is easy to see that Ẽ on Z(S)
determines a simple variation of any bundle Ez on Sz (see Definition 1.1).

On the other hand, the family (3.28) determines a section of the twistor
space Z(M) in (3.22) over q:

(3.29)
q

s� Z(M)

s(z) = [Ez] ∈ M0z , l = s(q) , σ(l) = l.

Now we need only verify that the normal sheaf Nl∈Z(M) of a curve l in the
twistor space Z(M) has the form (1.14). Comparing the exact triples on l

0 � T l � TZ(M)|l � Nl⊂Z(M)
� 0

0 � TZ(M)/π|l � TZ(M)|l d π|l � π∗T l|l � 0
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we see that

(3.30) Nl⊂Z(M) = TZ(M)/π|l
and nondegenerate skew-symmetric pairing (3.27) implies the equality

(3.31) TZ(M)/π|l = (TZ(M)/π)∗ ⊗ K∗
Z(S)/q,

where KZ(S)/q is the relative tangent bundle.
On the three-dimensional manifold Z(S) we have

(3.32) KZ(S)/q = π∗Oq(−4).

In fact, in (1.19) the complex ”line” l = p−1(x) ⊂ Z(S) has normal sheaf

(3.33) Nl∈Z(S) = Ol(1) ⊕Ol(1)

and hence

(3.34) KZ(S)|l = Ol(−4).

From this we obtain (3.32).
The real line l ⊂ Z(M) is determines by the real anti-instanton Ẽ in (3.28).

Hence,

(3.35) TZ(M)/π|l = R1π ad Ẽ

and, by relative Serre duality,

(3.36) R1π ad Ẽ = (R1π ad Ẽ∗ ⊗ KZ(S)/π)∗,

from which we obtain (3.31).
The construction of the anti-instanton Ẽ starting with any fibre Ez, z ∈ q,

determines a section

(3.37) H1(Sz, ad Ez) � H1(ad E).

Because

(3.38) H0(Sz, ad Ez) = H2(Sz, ad Ez) = 0,

a standard spectral sequence with second term Hi(Rπ ad Ẽ) gives the equality

(3.39) H0(R1π ad Ẽ) = H1(ad Ẽ)

and (3.37) is a real section of the canonical map

(3.40) H0(R1π ad Ẽ) ⊗Oq
can� R1π ad Ẽ.
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This implies that can is an epimorphism over z, and hence over any point.
Thus,

(3.41) R1π ad Ẽ =
N⊕

i=1
Oq(di), d � 0,

and, by (3.31) and (3.32), we have

(3.42)
N⊕

i=1
Oq(di) = ⊕Oq(2 − di),

from which it follows that d can only be 0, 1, or 2.
If a component exists with d = 0, it determines a σ-real point in P(H1(ad Ẽ));

however σ determines quaternionic real structure in P(H1(ad Ẽ)) having no real
points.

Consequently,

(3.43) Nl⊂Z(M) = N ⊗Ol(1)

and we have constructed all of the geometrical features of a hyper-Kähler struc-
ture on M0

z = M which are enumerated in the HKLR theorem in § 1. We have
thus proved

Theorem 1. A hyper-Kähler structure on a compact smooth Kähler surface
S induces a hyper-Kähler structure on any fine component M0 (see (3.1)) of
the stable vector bundles. Here the hyper-Kähler metric on M0 = M is a
Weil–Petersson metric (see Definition 3.1).

In the next section we compactify the twistor space Z(M) by means of real
lines, obtaining a smooth compact complex manifold Z(M), and we construct
a hyper-Kähler structure on a fine component of the moduli space M of torsion-
free stable sheaves.

§ 4 The twistor space of a fine component of the moduli space of
stable sheaves.

We return to the union (3.1) and the equality (3.18) at the beginning of the
last section:

(4.1)

M = C∪M0

‖
M.

We would like to adjoin to the twistor space Z(M) the family of ”lines”

(4.2) {l[F ]}, [F ] ∈ C,
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which can be depicted by the diagram

(4.3) p−1([F ]) = l,

Z(C)

C
�

p

q

π

� π−1(z) = Cz,

so that diagram (3.22) is completed to a diagram

(4.4)

Z(M) ∪ Z(C) = Z(M)

M0

p
�

∪ C

p

�
q

π

� π−1(z) = Mz,

where Mz, z ∈ q, is a fine component of the moduli space of torsion-free stable
sheaves on the Kähler surface Sz, and Z(M) is a smooth compact complex
manifold.

Remark. We shall identify the original algebraic surface S with the fibre
of the morphism π of the twistor bundle (1.19) over a point z0 ∈ q, and we
shall omit the indices: M = Mz, C = Cz, M0 = M0

z , and so on.
To construct Z(M) it suffices to complete the family of physical anti-

instantons of the form (3.28) using torsion-free sheaves F̃ on the twistor space
Z(S), each of which gives a family of torsion-free sheaves:

(4.5) F̃ |Sz = Fz, [Fz] ∈ Cz, z ∈ q,

on the family of surfaces Sz, z ∈ q, (1.19).
The sheaf F̃ on Z(S) determines a σ-real line if and only if

(4.6) Ext1Oq
(F̃ , F̃ ) = CN ⊗Oq(1)

(see [11] and (1.1.23) in [24]), [F̃ |s] ∈ C ⊂ M , and for the standard exact triple
on Z(S)

(4.7) 0 � F̃ � F ∗∗ � C(F̃ ) � 0,

where F ∗∗ is the reflexive span of F̃ , we have the following
Proposition 4.1. If F̃ determines a σ-real line which compactifies Z(M),

then F ∗∗ = Ẽ∞ is a physical anti-instanton on Z(S), and SuppC(F̃ ) =
n⋃

i=1

p−1(xi(F )), where {xi(F )} are the points (2.3).

Proof. On the surface S = S0 the sheaf F = Fz0 is the limit of a sequence
of bundles Ei, i � ∞, [Ei] ∈ M0 (see (4.1)). Let {ai}, i � ∞, be a
sequence of ASD connections in M = M0 which converge to the point [F ] ∈ C.

By Uhlenbeck’s weak compactness theorem, one can choose a subsequence
{aj}, j � ∞, of the sequence {ai} which, after a suitable gauge transfor-
mation, converges to an ASD connection

(4.8) a∞ ∈ Mg
ASD(c2(F ) − h0(C(F )))
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(see (2.29)) uniformly (with bounded curvature norms) over
S − {x1(F ), ..., xn(F )}, where {xi(F )} is the set of points on S where F
is not locally free (see (2.3)).

The ASD-connection (4.9) determines a physical anti-instanton Ẽ∞ on Z(S)
whose restriction to each fibre Sz coincides with F ∗∗z , i.e., Ẽ∞ = F̃ ∗∗ and

(4.9) SuppC(F̃ ) =
n⋃

i=1

p−1(xi(F )).

Remark. In the framework of the theory of sheaves on the three-dimen-
sional manifold Z(S) one can show that for a torsion-free sheaf F̃ the single
condition (4.6) is sufficient for the reflexive span to be locally free. To con-
struct a sheaf F̃ which gives a ”real line”, it now suffices to describe the local
components

(4.10) c(F̃ )i, SuppC(F̃ )i = p−1(xi(F )),

in terms of the local components C(F̃ )i (see (2.3)) and the local epimorphisms

(4.11) ϕi : Ẽ∞ � C(F̃ )i,

which give the families of equipped clusters of rank r (see (2.7)).
We divide the procedure for constructing F̃ into three steps:

1) lowering the rank of the cluster;

2) lowering the local degree; and

3) making the construction in the simplest case, to which we are led by steps
1) and 2).

We first describe the procedure for a single fibre S0 of the bundle
Z(S) � q.

1. Lowering the rank of a cluster. Let Ξx be a local cluster of the
sheaf F on S = S0 with zero defect, i.e., the local equipment ϕ, (see (2.11)), is
an embedding.

We choose a flag V1 ⊂ V2 ⊂ · · · ⊂ Vr in the space V of the cluster’s
equipment. The image of these spaces determine a filtration A1 ⊂ A2 ⊂ · · · ⊂
Ax of the Artinian sheaf Ax in (2.7) and a sheaf filtration F1 ⊂ F2 ⊂ · · · ⊂
Fr−1 ⊂ F , where

(4.12) Fi = ker(ϕi : F ∗∗ � Ax/Ai).

Then

(4.13) (Vi/Vi+1) ⊗Os
� Ai/Ai−1 = Osi
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is a rank 1 cluster, i.e., a zero-dimensional subscheme ξ ⊂ S (see Example 1 in
§ 2), and

(4.14) Fi/Fi−1 = Jξi

is the sheaf of ideals of the subscheme ξi.
Thus, locally in a neighborhood of x ∈ S the sheaf F can be represented as

a chain of extensions of sheaves of ideals.
2. Lowering the local degree. A local cluster Ξx of rank r and defect

k determines a local cluster Ξ0
x of rank (r − k) and defect 0:

(4.15) (V/ ker ϕ̄) ⊗Os
� Ax

� 0

(see (2.11)), to which we can apply the rank lowering procedure, thereby re-
ducing everything to the case of rank 1 cluster. In that case the structure sheaf
Oξ is filtered by subsheaves of nilpotents

(4.16) Nd
ξ ⊂ Nd−1

ξ ⊂ · · · ⊂ Oξ,

where Oξ/N
i
ξ is the ith order reduction and

(4.17) Jξ ⊂ Jξ1 ⊂ · · · ⊂ Jξd−1 ⊂ Os

is the corresponding filtration of the sheaves of ideals of the subcycles of a fixed
order.

By a locally simple sheaf we mean a sheaf which has a local cluster of degree
1.

Given a sheaf F , we consider the exact triple (2.1) and apply the functor
Ext(F, ) to it:

(4.18) 0 � Ext0(F, F ) � Ext0(F, F ∗∗) �

� Ext0(F,C(F )) � Ext1(F, F ) � Ext1(F, F ∗∗) �

� Ext1(F,C(F ))
δ� Ext2(F, F ) � 0 .

We shall later see that in this case we may suppose that δ is an isomorphism.
But it is obvious that the first monomorphism in this sequence is also an iso-
morphism. Hence, we have the exact triple :

(4.19) 0 � Ext0(F,C(F )) � Ext1(F, F ) � Ext1(F, F ∗∗) � 0.

We compute the last term in this triple by applying the functor Ext( ∗ , F ∗∗)
to (2.1):

(4.20) 0 � Ext1(F ∗∗, F ∗∗) � Ext1(F, F ∗∗) �

� Ext2(C(F ), F ∗∗) � Ext2(F ∗∗, F ∗∗) � 0.
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By Serre duality, we may change the end of this sequence so as to obtain the
triple
(4.21)

0 � Ext1(F ∗∗, F ∗∗) � Ext1(F, F ∗∗) � Ext0(F,C(F ))∗ � 0.

Thus, the space Ext1(F, F ) in (4.19) is an extension of Ext1(F ∗∗, F ∗∗) by means
of spaces of the form Ext0(F,C(F )) and their duals, and these split into a sum

(4.22) Ext0(F,C(F )) =
n⊕

i=1
Ext0(F,C(F )i)

of local components. Furthemore, each local component splits into a sequence
of extensions of local components corresponding to simple sheaves.

We now pass from the fibre S to the entire three-dimensional manifold Z(S),
and make all of our calculations over the base q.

Suppose that all of the local components of F have the form

(4.23) C(F )i = Oxi
;

we consider the local epimorphisms ϕi : Ẽ∞ � Oxi
� 0. Then in the

neighborhood Ui of each line li = p−1(xi) the sheaf F̃ = ker
n⊕

i=1
ϕi has the form

(4.24) F̃ |Ui
= (ker ϕ̄i) ⊗OUi

⊗ Jl,

where Jl is the sheaf of ideals of the real line l = li.
We now apply the functor ExtOq (F, ) to the triple

(4.25) 0 � F̃ � Ẽ∞ � n⊕
i=1

Oli
� 0

and obtain the exact triple of bundles on q
(4.26)

0 � n⊕
i=1

Ext0Oq
(F̃ ,Oli) � Ext1Oq

(F̃ , F̃ ) � Ext1Oq
(F̃ , Ẽ∞) � 0,

whose fibre coincides with the exact triple (4.19).
To compute the last term of this triple, we apply the functor ExtOq ( , Ẽ∞)

to (4.25) and obtain

(4.27) 0 � Ext1Oq
(Ẽ∞, Ẽ∞) � Ext1Oq

(F̃ , Ẽ∞) �

� n⊕
i=1

Ext0Oq(F̃ ,Oli)
∗ ⊗ K∗

Z(S)/q
� 0

where KZ(S)/q = Oq(−2) is the relative canonical class Z(S)
π� q (see

(3.48)). (To interpret the last term we use relative Serre duality over q.)
Since Ẽ∞ is a physical anti-instanton, it follows by Lemma 3.1 that

(4.28) Ext1Oq
(Ẽ∞, Ẽ∞) = R1π ad Ẽ∞ = N∞ ⊗Oq(1).
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It remains only for us to compute the local terms in (4.26) and (4.27) for each
i. Each such term occurs as a direct summand in the first and last component.
Hence, it suffices to compute the local terms in a neighborhood of a single real
line l.

Lemma 4.1

(4.29) Ext0Oq
(F̃ ,Ol) = ker ϕ̄ ⊗Oq ⊕ Nl⊂Z(S).

Proof. Since F̃ locally has the form (4.24), it is obvious that the first
component in (4.29) occurs. It remains to compute Ext0Oq

(Jl,Ol). To do this,
we apply the functor Ext0Oq

(Jl, ) to the standard triple

(4.30) 0 � Jl
� OZ(S)

� Ol
� 0,

obtaining

(4.31)

0 � Ext0Oq
(Jl,Ol) � Ext0Oq

(Jl, Jl) � 0

‖
Nl⊂Z(S),

which gives us (4.29).
Corollary 1.

(4.32) Ext0Oq
(F̃ ,Ol)∗ ⊗ K∗

Z(S)/q = ker ϕ̄ ⊗ Nl⊂Z(S).

Corollary 2.

(4.33) Ext1Oq
(F̃ , F̃ ) =

n⊕
i=1

ker ϕ̄i ⊗ E ⊕ CN ⊗Oq(1),

where each component of E is determined by the line li and the vector v ∈ ker ϕ̄i

and can be represented as an extension

(4.34) 0 � Oq
� E � Oq(2) � 0.

In fact, all of the components of the extensions (4.26) and (4.27) have only
trivial extensions of one another, except for the components of the form

(4.35) 0 � Ext0Oq
(F̃ ,Ol) � E � Ext0Oq

(F̃ ,Oq)∗ ⊗ K∗
Z(S)/q

� 0,

where the first term lies in the first term of (4.26) and the second term lies in
the last term of (4.27).

Lemma 4.2 The extension (4.34) is nontrivial.
Proof. We return to the fibre-by-fibre interpretation of the bundle (4.33),

its first components and Serre duality

(4.36) Ext1(F, F ) � Ext1(F, F )∗.
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Then it is not hard to see that the fibre of the elementary bundle (4.34) over
point z ∈ q can be identified with the tangent space to the surface Sz at the
point x = l ∩ Sz. Hence,

(4.37) E = TZ(S)/q|l, l = p−1(x).

On the other hand, the restriction of the relative tangent bundle satisfies:

(4.38) TZ(S)/q|l = Nl⊂Z(S) = Ol(1) ⊕Ol(1),

i.e., the extension (4.34) is nontrivial.
Corollary.

(4.39) Ext1Oq
(F̃ , F̃ ) = CN ⊗Ol(1).

In the simplest case we have thereby constructed the real line F̃ which
compactifies Z(M).

In the general case, when [F ] ∈ Cd̄(k̄), (2.41), we apply the procedure for
lowering the local degree (see (4.15) – (4.17)). At each step of this procedure
only components of the form Oq(1) can appear in Ext1Oq

(F̃ , F̃ ). On the other
hand, procedure for lowering the rank of a cluster leads to a representation
of the components of Ext1Oq

(F̃ , F̃ ) as an extension of components of the same
form Oq(1).

Thus, in the general case we also have the decomposition(4.39). We thereby
obtain the compactification (4.4) of the twistor space Z(M), and so have proved
our basic result.

Theorem 2. The hyper-Kähler structure on a component of the moduli
space M0 of stable vector bundles that is induced by the hyper-Kähler structure
on S extends to a hyper-Kähler structure on the fine component M of the moduli
space of torsion-free stable sheaves on S.

§ 5 Concluding remarks.

In the case when the surface S has positive or negative canonical class
Ks, there does not exist a geometrical (twistor) characterisation of the special
metrics on the multidimensional components M of the moduli space. However,
here we shall describe an indirect way to obtain such a characterisation. In the
case Ks < 0 the method is based on the

Calabi effect. A Kähler structure (X, ω) induces a hyper-Kähler struc-
ture on the cotangent bundle T ∗X.

Calabi first discovered this effect by studying the example of projective
space [3].
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In the same way as symplectic reduction modulo the action of U(1) on Cn

by homotheties with the standard Hermitian structure on Cn gives the Fubini–
Study Kähler structure on Pn−1, the same action of U(1) on Cn × (Cn)∗ leads
to the Calabi hyper-Kähler structure on T ∗Pn−1 (see [6]).

Hitchin applied hypersymplectic reduction to observe the Calabi effect in
the case when X = N is the moduli space of stable bundles with fixed deter-
minant on a curve, and ωP−W is the Kähler form of the Weil–Petersson metric
on N [6].

The Hitchin structure on T ∗N is obtained as the hypersymplectic reduction
of the standard flat hyper-Kähler structure on the cotangent bundle of the affine
space of semiconnections modulo the action of the infinite-dimensional gauge
group [6].

This construction has a direct generalisation to the case of a moduli space
of sheaves on a surface.

Let M be a fine component of the moduli space of K∗
s -stable sheaves on

S, and let M0 ⊂ M be a component of the moduli space of bundles. Let
ω be the Kähler form of the Calabi–Yau metric on S, and let gW−P be the
Weil–Petersson metric on M0. Then one has

Theorem 3. The Weil–Petersson metric gW−P on M0 induces a hyper-
Kähler structure on T ∗M0, and this structure extends to a hyper-Kähler struc-
ture on T ∗M . The image of the embedding of M into T ∗M as the zero section
is a totally geodesic submanifold of the hyper-Kähler manifold.

In the case Ks > 0, instead of the cotangent bundle T ∗M
π� M , one

must consider the bundle HM
π� M , where HM is the moduli space of

Higgs bundles (i.e., pairs (E,ϕ : E � E ⊗ T ∗S)). This leads to analogous
constructions and results.
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To I.R. Shafarevich

Introduction.

A mathematical c-instanton is, by definition, a vector bundle F on a pro-
jective space P3 = P(T ), T = C4, with the following properties:

(0.1)

1) rkF = 2,

2) c1(F ) = 0, c2(F ) = c,

3) h0(F ) = 0,

4) h1(F (−2)) = 0,

(we refer to the papers [3], [4], [1] for the background and for a discussion of
related topics). For any c-instanton F , dim H1(P3, F (−1)) = c.

Let H = Cn be a vector space over C and H∗ = HomC(H, C).
Definition 1. A pair (F, i), where F is a mathematical c-instanton and

H1(F (−1))
i� H∗

is a monomorphism, is called an H-marked c-instanton. A pair (F, i) is called
an exactly marked c-instanton, if i is an isomorphism.

Let Mc denote the moduli space of mathematical c-instantons, and let
Mc(H) denote the moduli space of H-marked c-instantons.

If we attach to every pair (F, i) its image i(H1(F (−1))) ⊂ H∗, we have a
fibering

(0.2) ϕc : Mc(H) � G(c, n),

with the Grassmann variety of c-subspaces of H∗ as a base and the moduli
space Mc(u) as the fiber over a point u ∈ H∗.

The group GL(n, C) = AutH acts on Mn(H) and defines a principal
GL(n, C)-bundle:

(0.3) π : Mn(H) � Mn

272
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over the moduli space of n-instantons. Consequently, these moduli spaces are
birationally equivalent to direct products:

Mn(H) bir∼ Mn × GL(n, C)

Mc(H) bir∼ Mc × GL(c, n) × GL(c, n) × GL(c, C)

and the moduli space Mc(H) has as many components as Mc has. Moreover,
the unirationality of Mc is equivalent to the unirationality of Mc(H).

There is a certain way to embed all these spaces Mc(H) into the same vector
space Λ2T ∗ ⊗ S2H∗ (§1), and any H-marked n-instanton is a superposition of
marked 1-instantons (or half-instantons, see Definitions 2 and 3). In this paper
we describe the properties of such superpositions.

§ 1 Mn(H) as Determinantal Locus (Determinantal Variety).

Let (F, i) ∈ Mn(H) be any exactly marked n-instanton. A vector bundle
F is a cohomology bundle of a complex of bundles over P3 = P(T ), where
T = C4):

(1.1) 0 � H⊗OP(T )(−1)
a� H∗⊗ΩP(T )(1)

c� C2n−2⊗OP(T )
� 0,

where ΩP(T ) = (TP(T ))∗ is the cotangent bundle of P(T ).
For the dual complex

(1.2) 0 � C2n−2⊗OP(T )
c∗� H⊗TP(T )(−1)

a∗� H∗⊗OP(T )(1) � 0,

the initial part of the corresponding cohomology sequence

(1.3) 0 � C2n−2 Γ(c∗)� H ⊗ T
Γ(a∗)� H∗ ⊗ T ∗

is exact, and defines a homomorphism

α(F, i) : H ⊗ T
Γ(a∗)� H∗ ⊗ T ∗

of rank 2n + 2. This homomorphism can be considered as an element of the
space T ∗ ⊗ T ∗ ⊗ H∗ ⊗ H∗. Hence we may identify such homomorphisms with
the corresponding elements of the tensor space.

On the space T ∗⊗ T ∗⊗H∗⊗H∗ there are three involutions ∗, ∗H and ∗T :

∗(t1 ⊗ t2 ⊗ h1 ⊗ h2) = t2 ⊗ t1 ⊗ h2 ⊗ h1

∗H(t1 ⊗ t2 ⊗ h1 ⊗ h2) = t1 ⊗ t2 ⊗ h2 ⊗ h1

∗T (t1 ⊗ t2 ⊗ h1 ⊗ h2) = t2 ⊗ t1 ⊗ h1 ⊗ h2.
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These operators commute pairwise, and

(1.5) ∗ = ∗H · ∗T

The tensor α = α(F, i), (F, i) ∈ Mn(H) has additional symmetries:

(1.6) α∗ = −α.

(this follows from Serre duality and the existence of a skew-symmetric form

F
γ� F ∗ ,

which induces an isomorphism H1(F (−1)) = H1(F ∗(−1))),

(1.7) α∗T = −α

(this follows from the representation of F as the cohomology bundles of the
complex (1.1)). So we have α(Mn(H)) ⊂ S2H∗ ⊗ Λ2T ∗, and α(F, i) is a
hypernet of quadrics in H (see [7], § 1, where some different interpretations of
this notion are given).

Conversely, a tensor α ∈ S2H∗ ⊗ Λ2T ∗ is of the form α(F, i) if and only if

(α0) rkα = 2n + 2
(α1) the homomorphism (t1 ∧ t2) ⊗ H

α� H∗ is an isomorphism for
some t1, t2 ∈ T

(α2)
⋂

t∈T

ker((t0 ∧ t) ⊗ H
α� H∗) = 0 for every vector t0 ∈ T

An arbitrary homomorphism α : H ⊗ T � H∗ ⊗ T ∗, tensored with OP(T ),
can be included in commutative diagram

(1.8)

H ⊗ TP(T )(−1)
a∗ � H∗ ⊗OP(T )(1)

H ⊗ T ⊗OP(T )

�

α �
α
′

�

H∗ ⊗ T ∗ ⊗OP(T )

�

H ⊗OP(T )(−1)

�
�

H∗ ⊗ ΩP(1).

�

This diagram can be completed by a homomorphism a∗ if and only if the
homomorphism α′ : H ⊗OP(T )(−1) � H∗⊗OP(T )(1) is zero. If we consider
this homomorphism as a tensor α′ ∈ S2T ∗ ⊗ H∗ ⊗ H∗, then we have

(1.9) 2α′ = α + α∗T .

Therefore, α is ∗T -skew-symmetric if and only if there exists a homomor-
phism a∗ in (5).
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We have, then, a complex

(1.10) V ⊗OP(T )
c∗� H ⊗ TP(T )(−1)

a∗� H∗ ⊗OP(T )(1),

where V = H0(ker a∗), and c∗ is the natural homomorphism of sections.
If F is the cohomology sheaf of the dual complex, then the property (α2)

is equivalent to F being a bundle, and the property (α1) is equivalent to the
existence of an exact H-marking of F , together with rkF = rkα − 2n.

Consequently, any tensor α ∈ T ∗ ⊗ T ∗ ⊗ H∗ ⊗ H∗ with α∗T = −α and the
property

(α′2) :

{⋂
t∈T

ker(α : (t0 ∧ t) ⊗ H � H∗) doesn′t depend on t0

}
,

defines H-marked bundle F , which is the cohomology sheaf of the complex
(1.1). Hence

Proposition 1.1. α : Mn(H) � S2H∗ ⊗ Λ2T ∗ is an embedding.
The variety α(Mn(H)) is a linear cone in Λ2(H ⊗ T )∗, and we can pass to

its projectivization Pα(Mn(H)) ⊂ PΛ2(H ⊗ T )∗.
Proposition 1.2. Pα(Mn(H)) contains a Zariski open subset of the com-

plete intersection

(1.11) M2n+2 = Ω2n+2 ∩ P(S2H∗ ⊗ Λ2T ∗)

in the projective space P(Λ2(H ⊗ T )∗), where

Ω2n+2 = {α ∈ P(Λ2(H ⊗ T )∗) | rkα � 2n + 2}.
To prove this fact, it is sufficient to show that the conditions (α1) and (α2)

are open and that 5n(n−1) of the linear equations α−α∗T = 0 are independent
on Ω2n+2. This means that

(1.12) dim Pα(MN (H)) = dim Ω2n+2 − dim ker(1 − ∗H).

But we have from (0.3) that

dim Pα(Mn(H)) = dim Mn + dim PGL(n, C) = n2 + 8n − 4.

On the other hand, dim Ω2n+2 = 6n2 + 3n − 4 ([6], 10.4.3), and we obtain the
equation (1.12).

So M2n+2 is a classical skew-symmetric determinantal variety of type1

(W |4n, 4n|2n+2, [11n2 + n − 1]) .

The ideal sheaf of this variety has the resolvent of Lascoux–Józefiak–Pragacz
(see [5] and the reference in that paper). However the reducibility of this variety
1see [6, ch. X]
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presents an obstacle to obtaining information about it from the general theory
determinantal varieties.

The projective variety M2n+2 ⊂ P(S2H∗ ⊗ Λ2T ∗) (1.11) is a union of its
components

(1.13) M2n+2 = Mn(H) ∪ M0 ∪ M1 ∪ M2,

where Mn(H) is the closure of α(Mn(H)), and where M i is the union of those
components on which the condition (αi) is invalid.

The irreducibility of M2n+2 was proved for n � 4 by W. Barth ([1]). In the
paper [7] the existence of a subvariety of dimension n2 − 1 + n2+3n+6

2 of M0 is
proved. Therefore M0 is non-empty for n � 12. I. Artamkin has observed that
M1 is non-empty for n � 9, and so is M2 for n � 12.

To check this it is sufficient to consider any tensor ω ∈ S2H∗ ⊗ Λ2T ∗ of
rank 2 and all the superpositions α+ω, where α belongs to the component M0

of dimension n2 − 1 + n2+3n+6
2 . We obtain a subvariety in M2, whose general

point satisfies the conditions (α0) and (α1) and whose dimension is greater
than the dimension n2 + 8n − 4 of Mn(H).

This shows that we have obtained a component of M2.

§ 2 The Superpositions.

The filtration

(2.1) PΛ2(H ⊗ T )∗ = Ω4n ⊃ · · · ⊃ Ω2n+2 ⊃ Ω2n ⊃ · · · ⊃ Ω2 = G(2, 4) ,

of the projective space PΛ2(H ⊗ T )∗, where Ω2k ={α∈PΛ2(H⊗T )∗|rkα�2k},
induces the filtration

(2.2) PS2H∗ ⊗ Λ2T ∗ = M4n ⊃ · · · ⊃ M2n+2 ⊃ M2n ⊃ · · · ⊃ M2 ,

where M2k = Ω2k ∩ PS2H∗ ⊗ Λ2T ∗ . Any α ∈ Ω2k is a superposition of k
matrices of rank 2:

(2.3) α =
k∑

i=1

ωi, ωi ∈ Ω2

(the dimension of the variety of such decompositions is 2k(k − 1)). Geometri-
cally, Ω2k is the union of k-chords of Ω2. (A k-chord is a linear envelope of k
points from Ω2.)(See [6], 10.4.5).

Definition 2. A decomposition

(2.4) α(F, i) =
N∑

k=1

α(Fk, ik)
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is called a representation of the marked instanton as superposition of marked
instantons.

Definition 3. A hypernet ω ∈ Ω2 is called an H-marked half-instanton.
Any marked 1-instanton is a superposition of two marked half-instantons.
Proposition 2.1. 1) The space of marked half-instantons is a direct prod-

uct: M2 = G × P(H∗), where G = G(2, T ) is the grassmannian of lines in
P(T ).

2) The embedding G × P(H∗) = M2 ⊂ PS2H∗ ⊗ Λ2T ∗ is defined by all
sections of the sheaf p∗1OG(1)⊗p∗2OP(H∗)(2), where p1 and p2 are the projections
of the direct product on its factors.

3) The moduli space of H-marked 1-instantons is a direct product:

M1(H) = (PΛ2T ∗ − G) × P(H∗) ⊂ PΛ2T ∗ ⊗ S2H∗,

where the projection of M1(H) on P(H∗) is the map (0.2).
4) The closure M1(H) ⊂ PΛ2T ∗ ⊗ P(H∗) lies between two elements of the

filtration (2.2):
M2 ⊂ M1(H) ⊂ M4.

5) OPS2H∗⊗Λ2T∗(1)|
M1(H)

= p∗1OPΛ2T∗(1) ⊗ p∗2OP(H∗)(2).
To prove these facts, it is sufficient to point out that if α∈Hom(Λ2T, S2H∗),

then rkα � 2rk α(t0 ∧ t1) for every t1, t2 from T . Consequently, if rkα = 2,
then rkα(t0∧t1) = 1, and the projectivization P(α(t0∧t1)) does not depend on
t0, t1 ∈ T . Hence α = κ⊗h2, κ ∈ Λ2T ∗, h ∈ H∗. But rkκ⊗h2 = rkκ, and
consequently, rkκ = 2. From this the assertion 1) follows. The other assertions
are proved along the same lines.

Corollary. Any H-marked instanton F is a superposition of marked half-
instantons and is a superposition of marked 1-instantons.

Indeed, PΛ2T ∗ ⊗ S2H∗ is the linear envelope of M2 and M1(H).
Definition 4. If κ ∈ Λ2T ∗, κ∧κ = 0, hi ∈ H∗, a hypernet γ = κ⊗h1·h2

is called a marked quasi-instanton.
Any marked quasi-instanton γ = κ⊗ h1 · h2 is a superposition of two half--

instantons

(2.5) 2κ ⊗ h1 · h2 = κ ⊗ h2
+ − κ ⊗ h2

−, h± = h1 ± h2.

Definition 5. Any mathematical instanton F defines three numbers

(h(F ), d(F ), q(F ))

as follows:
h(F ) is the minimal number of terms in a decomposition of the exactly

marked instanton (F, i) into half-instantons. The numbers d(F ) and q(F ) have
the corresponding meaning for decomposition into 1-instantons and quasi-in-
stantons.

Remark. These numbers do not depend on the choice exact markings.
The functions h(F ), d(F ) and q(F ) are semi-continuous on Mn.
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Evidently 2q(F ) � h(F ) � 2d(F ), h(F ) � n + 1 and d(F ) � n + 1.
The behavior of these functions is rather complicated.
Proposition 2.2. h(F ) = c2(F )+1 if and only if F is a t’Hooft-instanton,

that is, H0(F (−1)) �= 0.
Indeed, if (F, i) is an exactly marked n-instanton and

(2.6) α(F, i) =
n+1∑
i=1

κi ⊗ h2
i , κi ∈ Λ2T ∗, κi ∧ κi = 0, hi ∈ H∗,

then every κi defines a projective line Li ⊂ P(T ). For any projective plane
P2 ⊃ Li F |P2 is not a stable bundle, that is, there exists s ∈ H0(F |P2), s �= 0,
and (s)0 =

⋃
i 	=j

(Lj ∩ P2). Hence F (1) has a section vanishing on each Li,

i = 1, . . . , n + 1.
Conversely, if F (1) has a section, vanishing on these lines Li, then, fixing one

L1, we can define by the other lines L2, . . . , Ln+1 a β-commutative hypernet α0

(see [7]), such that α(F, i)−α0 = κ1⊗h2
1, where Pκ1 = L1 and α0 =

n∑
i=2

κi⊗h2
i .

Corollary. If n � 3, then max
F∈Mn

h(F ) � n + 2.

A trivial calculation shows that for n � 13,

max
F∈Mn

d(F ) � n + 2, max
F∈Mn

q(F ) � n + 3,

and so on.
Any tensor α of the space T ∗ ⊗ T ∗ ⊗ H∗ ⊗ H∗ has the decomposition:

(2.7)

4α = α+
+ + α−− + α+

− + α−+,
α+

+ = α + α∗T + α∗H + α∗ ∈ S2T ∗ ⊗ S2H∗,
α−− = α − α∗T − α∗H + α∗ ∈ Λ2T ∗ ⊗ Λ2H∗,
α+
− = α + α∗T − α∗H − α∗ ∈ S2T ∗ ⊗ Λ2H∗,

α−+ = α − α∗T + α∗H − α∗ ∈ Λ2T ∗ ⊗ S2H∗,

where ∗T , ∗H and ∗ are the operators (1.5).
Notice that for any α ∈ T ∗ ⊗ T ∗ ⊗ H∗ ⊗ H∗, rank α is the rank of the

corresponding homomorphism T ⊗ H � T ∗ ⊗ H∗.
Any tensor ξ of rank 1 is defined by two homomorphisms

(2.8)
ϕi : T � H∗, i = 1, 2, and

ξϕ1,ϕ2 = ϕ1 ⊗ ϕ2 : T ⊗ T � H∗ ⊗ H∗.

If {ti}, i = 0, . . . , 3, is a basis of T and {ti} is the dual basis of T ∗, then
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such a tensor has the following components (2.7):

(2.9)

ξ+
+ =

∑
i,j

ti · tj ⊗ [ϕ1(ti) · ϕ2(tj) + ϕ1(tj) · ϕ2(ti)],

ξ−− =
∑
i<j

ti ∧ tj ⊗ [ϕ1(ti) ∧ ϕ2(tj) − ϕ1(tj) ∧ ϕ2(ti)],

ξ+
− =

∑
i,j

ti · tj ⊗ [ϕ1(ti) ∧ ϕ2(tj) + ϕ1(tj) ∧ ϕ2(ti)],

ξ−+ =
∑
i<j

ti ∧ tj ⊗ [ϕ1(ti) · ϕ2(tj) − ϕ1(tj) · ϕ2(ti)].

The last component ξ−+ is a superposition of 12 quasi-instantons, or of 24 half-
instantons.

Any tensor α ∈ T ∗ ⊗ T ∗ ⊗ H∗ ⊗ H∗ of rank 2n + 2 is a superposition

α =
2n+2∑
k=1

ξϕκ
1 ,ϕκ

2
, rk ξϕκ

1 ,ϕκ
2

= 1

of tensors of rank 1, and its (±)-component equals

(2.10) α−+ =
∑
i<j

ti ∧ tj ⊗
(

2n+2∑
k=1

ϕκ
1 (ti) · ϕκ

2 (tj) − ϕκ
1 (tj) · ϕκ

2 (ti)

)
.

If α ∈ Λ2T ∗ ⊗ S2H∗, then α = α−+ and (2.10) is a decomposition of it into
24(n + 1) quasi-instantons, or 48(n + 1) half-instantons.

Thus we obtain trivial estimates of the numbers h(F ) and q(F ):

q(F ) � 24(n + 1), h(F ) � 48(n + 1).

But we have a more exact geometrical result:
The components ξ−− and ξ−+ (2.9) of the general tensor ξ of rank 1 are ∗T -

skew-symmetric and have the property (α′2) of § 1. According to construction
(1.8), they define H-marked bundles over P(T ).

Let ad TP(T ) be the adjoint bundle to the tangent bundle TP(T ) of the
projective space P(T ), i.e., the subbundle of EndTP(T ) of endomorphisms
with zero trace. We have an isomorphism

(2.11) H1(adTP(T )(−1)) = T,

and any monomorphism ϕ : T � H∗ defines the H-marking of this bundle.
By the well-known exact sequence for the tangent bundle of Pn, we have

Proposition 2.3. If ϕ : T � H∗ is a monomorphism and ξϕ,ϕ is the
corresponding tensor of rank 1, then

(2.12) (ξϕ,ϕ)−− = α(adTP(T ), ϕ).

Remark. The ∗H -skew-symmetry of α(adTP(T ), ϕ) is a consequence of the
fact that adTP(T ) has the orthogonal structure defined by the Killing-form of
adTP(T ).
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From now on we restrict our consideration to ∗-skew-symmetric tensors of
T ∗ ⊗ T ∗ ⊗ H∗ ⊗ H∗, that is, to the subspace

S2T ∗ ⊗ Λ2H∗ ⊕ Λ2T ∗ ⊗ S2H∗.

Any ∗-skew-symmetric tensor ω of rank 2 is defined by a pencil of homo-
morphisms T � H∗, or by a homomorphism ψ : T ⊗ W0

� H∗, where
W0 = C2 is a fixed 2-vector space. Such a tensor has a decomposition

(2.13)
2ω = ω+ + ω−,
ω+ = ω + ω∗T = ω − ω∗H ∈ S2T ∗ ⊗ Λ2H∗,
ω− = ω − ω∗T = ω + ω∗H ∈ Λ2T ∗ ⊗ S2H∗.

If ψ is a monomorphism, then ω−ψ has the following geometric interpretation.
For the bundle adTP(T )⊗W0, we have H1(adTP(T )⊗W0(−1)) = T ⊗W0,

and a homomorphism ψ : T⊗W0
� H∗ defines an H-marking of this bundle.

Proposition 2.4. If ψ : T ⊗ W0
� H∗ is a monomorphism and ωϕ is

the corresponding tensor of rank 2, then

(2.14) ω−ϕ = α(adTP(T ) ⊗ W0, ψ).

Remark. The ∗H -symmetry of ω−ϕ is a consequence of the fact that
adTP(T ) ⊗ W0 has a symplectic structure, defined by the tensor product of
the Killing-form and Λ2W0.

Any tensor α, α∗ = −α, of rank 2n + 2 is a superposition

α =
n+1∑
i=1

ωi, ω∗i = −ωi, rkωi = 2 .

From this we have
Proposition 2.5. Any exactly H-marked n-instanton (F, i) is a superpo-

sition of n + 1 marked bundles adTP(T ) ⊗ W0.
A general homomorphism ψ : T ⊗ W0

� H∗ can be specialized to a
homomorphism of rank 1:

ψ : T ⊗ W0
s� C � H∗.

In that case, T
s� W ∗

0 defines the composition

(2.16) T
s� W ∗

0

κ0� W0
s∗� T ∗,

where κ0 is a standard skew-symmetric correlation. We get that

κψ = s · κ0 · s∗ : T � T ∗, κψ ∈ Λ2T ∗, κψ ∧ κψ = 0.

If C · hψ = im ψ ⊂ H∗, the components (2.3) of the tensor ωψ are

ω+
ψ = 0, ω−ψ = κ ⊗ h2

ψ.
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The superposition α =
n+1∑
i=1

ωψi for such ψi is an H-marked t’Hooft-instan-

ton.

§ 3 The Special Superposition.

The group GL(n, C) = AutH∗ acts on the final element Ω2 of the filtration
(2.1). Consider certain orbits of this action:

I. ω ∈ M2 ⊂ Ω2, ω = κ⊗h2 is a marked half-instanton, and dimM2 = n+3.
II. ti ∈ T ∗, hi ∈ H∗, i = 1, 2,

ω = t1 ⊗ t2 ⊗ h1 ⊗ h2 − t2 ⊗ t1 ⊗ h2 ⊗ h1 ∈ Ω2,
ω+ = t1 · t2 ⊗ h1 ∧ h2,
ω− = t1 ∧ t2 ⊗ h1 · h2 is a marked quasi-instanton.

Let Ω2
II ⊂ Ω2 be the subvariety of all such tensors ω. Then

dim Ω2
II = 2(n + 2).

III. Let ξϕ1,ϕ2 , ϕi : T → H∗, ker ϕ1= ker ϕ2, dim kerϕi = 2 be a tensor
of rank 1 (see (2.8)), and ω = ξϕ1,ϕ2 − ξ∗ϕ1,ϕ2

= (ξϕ1,ϕ2)
+
− + (ξϕ1,ϕ2)

−
+ (see

(2.7)). Then T/ ker ϕi = W0, (ϕ1, ϕ2) : W0 ⊗ I0
� H∗, where I0 = C2,

and ω+ : S2T
S2(j)� S2W0

� Λ2H∗, ω− = κ ⊗ q, where ker κ = kerϕi, and
q = P(W0) × P(I0) is a quadric of rank 4 in P(H).

Let Ω2
III ⊂ Ω2 be the subvariety of all such tensors ω. Then

dim Ω2
III = 4n.

IV. ωψ, ψ : T ⊗W0
� H∗ (see (2.13)), dim ψ(T ⊗W0) = 4, and for some

ω0 ∈ W0 the homomorphism ψω0 = ψ|T×ω0 : T � H∗ is a monomorphism.
Let Ω2

IV ⊂ Ω2 be the subvariety of all such tensors. It has the following
description. A homomorphism ψ can be interpreted as a pencil of homomor-
phisms:

(3.1) 0 � T ⊗OP(W0)(−1)
ψ� H∗ ⊗OP(W0).

In the general case, among the homomorphisms ψp, p ∈ P(W0) there are four
degenerate ones whose kernels define four points {pi} in P(T ), i = 0, . . . , 3.
Any non-degenerate homomorphism ψp of the pencil (3.1) maps these points
on the four points {qi} ∈ P(H∗). In view of this, we have a map:

(3.2) f : Ω2
IV

� S4(P(T ) × P(H)∗),

by which the points (pi, qi), i = 0, . . . , 3, are attached to a sheaf (3.1).
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To describe the fiber of this map it is sufficient to restrict oneself to the
case H∗ = im ψ. The points {pi} in P(T ) and {qi} in P(H∗) define the decom-
positions of the corresponding spaces into a direct sum of 1-spaces:

T =
3⊕

i=0
Li, H∗ =

3⊕
i=0

Mi, dim Li = dimMi = 1.

Using the components of these decompositions, we can construct a new
4-vector space:

(3.3) T{pi,qi} =
3⊕

i=0
Li ⊗ M∗

i .

Proposition 3.1. The points of the fiber of the map (3.2) are in one-to-one
correspondence with the projective lines L ⊂ PT{pi,qi}.

Indeed, a pencil of homomorphisms (3.1) can be decomposed into a direct
sum

(3.4)
0 � Li ⊗OP(W0)(−1)

ψi� Mi,

ψ =
3⊕

i=0
ψi.

Each 1-pencil is defined by a monomorphism ψi : Li → W ∗
0 ⊗Mi, which we

can interpret as monomorphism ψi : Li ⊗ M∗
i

� W ∗
0 .

Adding these monomorphisms, we obtain an epimorphism

(3.5) ψ̃ :
3⊕

i=0
Li ⊗ M∗

i
� W ∗

0
� 0.

This epimorphism defines a skew-symmetric correlation

(3.6) T{pi,qi}
ψ̃� W ∗

0

κ0� W0
ψ̃∗� T ∗{pi,qi},

κ = ψ̃ · κ0 · ψ̃∗,

where κ0 is a standard skew-symmetric correlation of W0 (see (2.16)).
Corollary.. The fiber of the map f (3.2) at {pi, qi} is given by

f−1({pi, qi}) = G ⊂ PΛ2T ∗{pi,qi},

where G is the grassmannian variety of lines in PT ∗{pi,qi}.
Remark. A choice of basis {hi} in H∗ such that P(hi) = qi defines iso-

morphisms Mi
∼= C and, by this, an isomorphism T ∼= T{pi,qi}. Analogously,

a choice of a basis {ti} in T , such that P(ti) = pi, defines an isomorphism
T ∗{pi,qi}

∼= H∗. Consequently, if the four points qi = q coincide, then the
isomorphisms Mi

∼= C define an isomorphism P(T ) ∼= P(T{pi,qi}) and a line
L ⊂ P(T ), which is the line corresponding to a half-instanton (2.16).
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The components of the correlation (3.6)

T{pi,qi} T ∗{pi,qi}
‖ κ� ‖

3⊕
i=0

Li ⊗ M∗
i

3⊕
i=0

L∗i ⊗ Mi,

(3.7) κij : Li ⊗ M∗
i

� L∗j ⊗ Mj

can be interpreted as homomorphisms

(3.8) κ̃ij : Li ⊗ Lj
� Mi ⊗ Mj .

They can be collected together to form a homomorphism

(3.9)

(
3⊕

i=0
Li

)
⊗
(

3⊕
i=0

Li

) (
3⊕

i=0
Mi

)
⊗
(

3⊕
i=0

Mi

)
‖ κ̃� ‖

T ⊗ T H∗ ⊗ H∗.

We obtain

(3.10)

ω− = Λ2T = ⊕
i<j

Li ∧ Lj
κ̃−� ⊕

i�j
Mi ⊗ Mj = S2H∗,

Li ⊗ Lj

κ̃−ij=κ̃ij−κ̃ji� Mi ⊗ Mj ,

ω+ = S2T = ⊕
i�j

Li ⊗ Lj
κ̃+
� ⊕

i<j
Mi ∧ Mj = Λ2H∗,

Li ⊗ Lj

κ̃+
ij=κ̃ij+κ̃ji� Mi ⊗ Mj .

Corollary. ker ω+ =
3⊕

i=0
L2

i .

From this follows
Proposition 3.2. The variety Ω2

IV is birationally equivalent to a direct
product:

Ω2
IV

bir∼ G × S4(P(T ) × P(H∗)),

and
dim Ω2

IV = 4(n + 3).

If ω ∈ Ω2
IV, then its parameters will be denoted by symbols, {pi}ω, {qi}ω,

Tω = T{pi,qi}, Lω ⊂ P(Tω).
Let us fix the quadruple of points {pi} in P(T ) and consider the subvariety

Ω2
{pi} ⊂ Ω2

IV defined by

(3.11) Ω2
{pi} =

{
ω ∈ Ω2

IV | {pi}ω = {pi}
}

.
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Then
dim Ω2

{pi} = 4n.

Definition 6. If D ⊂ Ω2 is any subvariety of Ω2, then a formal sum

(3.12)
n+1∑
i=1

ωi, ωi ∈ D,

defined up to a multiplicative constant, is called a D-superposition.
By the symbol S(D) we denote the variety of the all D-superpositions.
From this definition it follows that S(D) is birationally equivalent to a direct

product

(3.13) S(D) bir∼ Pn × Sn+1(D),

where Sn+1 denote (n + 1)-th symmetric power of our variety.

Associating the tensor α =
n+1∑
i=1

ωi ∈ P(Λ2(T ⊗ H)∗) to the formal sum

(3.12), we define a map

(3.14) α : S(D) � PΛ2(T ⊗ H)∗,

and the projections on components α+
− and α−+ (2.7) provide maps:

(3.15)
S(D)

α+
� P(S2T ∗ ⊗ Λ2H∗),

S(D)
α−� P(Λ2T ∗ ⊗ S2H∗).

These projections define a subvariety S−(D) ⊂ S(D) by

(3.16) S−(D) =

{
n+1∑
i=1

ωi ∈ S(D) |α+(
n+1∑
i=1

ωi) = 0

}
.

Finally, the image α−(S−(D)) ⊂ M2n+2 belongs to the (2n + 2)-th element of
the filtration (2.2). Applying this construction to the orbits I - IV in Ω2, we
obtain the following:

I. α−(S−(M2)) ⊂ Mn(H) is a subvariety of exact marked t’Hooft instan-
tons.

II. Since α−(S−(Ω2
II)) ⊃ α−(S−(M2)),

(3.17) α−(S−(Ω2
II)) ⊂ Mn(H)

is a subvariety of exact marked instantons which are the superpositions of
(n + 1) quasi-instantons.

Analogously
α−(S−(Ω2

III)) ⊂ Mn(H),
α−(S−(Ω2

IV)) ⊂ Mn(H),
α−(S−(Ω2

{pi})) ⊂ Mn(H).
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Proposition 3.3. The variety α−(S−(Ω2
{pi})) is the component of Mn(H)

containing t’Hooft instantons. The dimension of the fiber of the map α− over
a point of α−(S−(Ω2

{pi})) is not more than 4.
Indeed, by (3.13), dimS(Ω2

{pi}) = 4n2 + 5n. By the corollary to (3.10), a
subvariety S−(Ω2

{pi}) ⊂ S(Ω2
{pi}) (3.16) is defined by no more than 3n(n − 1)

equations. From this we get

dim S−(Ω2
{pi}) � n2 + 8n.

Careful checking of the second assertion of our proposition concludes the proof.
For small value of n the conditions

n+1∑
i=1

ω+
i = 0, ωi ∈ Ω2

{pi}

have a simple geometrical meaning. In this situation the direct geometrical
constructions provide

Proposition 3.4. The variety S−(Ω2
{pi}) is unirational for n < 6.

This proves the unirationality of M4 and also of the component of M5,
containing the t’Hooft instantons.
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Delzant models of moduli spaces

For every genus g, we construct a smooth, complete, rational polarized
algebraic variety DMg together with an effective normal crossing divisor
D = ∪ Di such that for every moduli space MΣ(2, 0) of semistable topo-
logically trivial vector bundles of rank 2 on an algebraic curve Σ of genus g
there is a holomorphic isomorphism f : MΣ(2, 0)\ Kg

� DMg \ D,
where Kg is the Kummer variety of the Jacobian of Σ, sending the po-
larization of DMg to the theta divisor of the moduli space. This iso-
morphism induces isomorphisms of the spaces H0(MΣ(2, 0), Θk) and
H0(DMg , Hk).

Izvestiya: Mathematics1, 67:2, 2003, p. 365–376.

1Editor’s note: published posthumously.



Introduction.

At the last meeting of GAEL,2 Oxbury asked for a ”topological” identifi-
cation of the moduli space MΣ(2, 0) with complex projective 3-space CP3 for
any curve Σ of genus 2. To understand the problem, we recall that, as a real
manifold, this moduli space is the space RC(π1(Σ)) of representations classes
of the fundamental group π1(Σ) in SU(2). The problem is to recognize CP3 in
terms of this space.

By standard arguments of algebraic geometry, every complex structure on
a compact Riemann surface Σ of genus 2 induces a complex structure on
RC(π1(Σ)) regarded as the moduli space MΣ(2, 0) of semistable rank 2 holo-
morphic vector bundles with trivial determinant. The space RC(π1(Σ)) with
this complex structure is precisely CP3. But we want to identify RC(π1(Σ))
directly with projective 3-space.

In particular, we claim that

1) as an algebraic variety, the moduli space MΣ(2, 0) is independent of the
complex structure on Σ;

2) the moduli space MΣ(2, 0) is rational, and

3) the spaces of conformal blocks (that is, holomorphic sections of the po-
larization) is independent of the moduli of the curve.

The space RC(π1(Σ)) of representation classes of π1(Σ) in SU(2) admits a
canonical symplectic form Ω, which is defined in a purely topological way (see
[2]). Hence we can apply symplectic arguments or, more precisely, arguments
from the theory of Hamiltonian torus actions, that is, symplectic toric geometry
(see the monograph [8], which is our main reference for technical details).

We recall the set-up of the theory of toric manifolds. Let (M,ω) be a
symplectic manifold of dimension 2n with a smooth Hamiltonian action of the
n-dimensional torus Tn, that is, there is a map f : Tn � DiffM such that

2Géométrie algébrique en liberté (9th edition, 19th–23rd March 2001), the school organised
by EAGER, EU project contract no. HPRN-CT-2000-00099.
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the actions of the images preserve ω. Then the action-angle coordinates define
the moment map

π : M → Δ ⊂ Rn,

whose image Δ is a convex polyhedron in Euclidean n-space. This polyhedron
contains complete information on the symplectic geometry of (M,ω), that is,
Δ determines the manifold, the symplectic form and the Tn-action (see [1]).

Moreover, if (M,ω) is prequantized (see [8]), and M has a Hodge structure
with Kähler form ω, then this Hodge structure can also be reconstructed.

The space RC(π1(Σ)) also admits a well-known Hamiltonian action of T 3g−3

(see, for example, [7]). The differences in properties seem at first sight to be
very slight:

1) for g > 2 the representation space RC(π1(Σ)) is singular,the singular
locus being the Kummer variety

Sing RC(π1(Σ)) = Kg = RU(1)
g / ± id,

that is, the space of U(1)-representations of π1(C) up to ± id, and

2) our (3g − 3)-torus action is smooth only over interior points of Δ and is
continuous everywhere.

For example, if g = 2, then the space RC(π1(Σ)) admits an action of T 3,
and the image Δ of the moment map of this action is the tetrahedron

0 ≤ ti ≤ 1, i = 1, 2, |t1 − t2| ≤ t3 ≤ min(t1 + t2, 2 − t1 − t2) (1.1)

in the standard Euclidean space R3 with coordinates t1, t2, t3. This is a partic-
ular case of the Delzant tetrahedron (see [8]). It uniquely determines the Hodge
Delzant variety DM2, which is just CP3, and the distinguished divisor is ∪CP2

i

for i = 0, 1, 2, 3 (four planes in general position). We call this projective space
the Delzant model of RC(π1(Σ)).

Using the complex structure on RC(π1(Σ)) given by a complex structure
on Σ and applying the equivariant Darboux–Weinstein theorem, we get a holo-
morphic map

DM2 \
4∪

i=0
CP2

i

f� MΣ(2, 0) \ K2. (1.2)

Although DM2 and MΣ(2, 0) are isomorphic to P3 as rational algebraic va-
rieties, this map cannot be extended to a holomorphic identification CP3 =
DM2 = MΣ(2, 0). Instead, we turn to birational (symplectic) geometry.

The purpose of this paper is to construct a Delzant model for any genus with
the properties described in the abstract. The case of genus 2 paves the way for
this. Our construction also gives a finite chain of elementary “birational” trans-
formations (flips) thast send the Delzant model DMg to the rational variety
(CP3)g−1 just as for toric varieties in algebraic geometry (see [5]).

The idea for constructing the Delzant models comes from Donaldson [3],
where a close cousin of DMg was constructed in the odd (smooth) case MΣ(2, 1)
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by imitating a moduli space to explain the appearance of Bernoulli numbers in
the Verlinde formulae. In the even (non-smooth) case, our construction is close
to that of Jeffrey and Hurtubise [12]. It is almost obvious that DMg coincides
with the variety PD of Hurtubise and Jeffrey but no direct proof has so far
been published.

§ 1 The toric structures on RC(π1(Σ)).

Let Σ be a smooth Riemann surface of genus g with fundamental group
π1(Σ) and let C be a simple closed curve on Σ. We have the so-called Goldman
function on RC(π1(Σ)):

cC : RC(π1(Σ)) � [ 0 , 1 ] ⊂ R.

It sends a representative ρ ∈ RC(π1(Σ)) to the number

1
π
· cos−1

(1
2
Tr(ρ([C]))

)
∈ [ 0 , 1 ],

where [C] is the homotopy class of C. Goldman [2] proved that cC is a Hamil-
tonian function of a U(1)-action on RC(π1(Σ)) with respect to the canonical
symplectic structure Ω. (An exact formula for this action in simple geometric
terms is given in [3]. Moreover, if C1 and C2 are two disjoint curves, then

{cC1 , cC2} = 0,

where the Poisson bracket is again taken with respect to Ω. In particular, if
[C1] �= [C2], then we obtain a Hamiltonian action of the 2-dimensional torus
T 2 = U(1) × U(1) on the space RC(π1(Σ)). Adding a third curve, we get an
action of the 3-dimensional torus, and so on. Of course, this process terminates;
it is well known that any maximal set of disjoint homotopy inequivalent circles
consists of 3g − 3 curves. We fix one such set,

{C1, . . . , C3g−3}.

The isotopy class of such a set of circles is called a marking of the Riemann
surface. It is easy to see that the complement of this set is the union

Σg \ {C1, . . . , C3g−3} =
2g−2&
i=1

Pi

of 2g − 2 trinions Pi, where each trinion is a 2-sphere with 3 disjoint discs
deleted:

Pi = S2 \ (D1 ∪ D2 ∪ D3

)
. (2.1)

Such a representation of a Riemann surface is called a trinion decomposition.
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Thus, a trinion decomposition of Σ is given by the choice of a maximal set of
disjoint, non-contractible, pairwise non-isotopic smooth circles on Σ. Such a set
consists of 3g−3 simple closed circles C1, . . . , C3g−3 ⊂ Σg, and its complement
is the union of 2g−2 trinions Pj . The type of such a decomposition is given by
its trivalent dual graph Γ({Ci}), which associates a vertex with each trinion Pi,
and an edge between Pi and Pj with every circle Cl such that Cl ⊂ ∂Pi ∩∂Pj .
Hence the isotopy class of a trinion decomposition is given by a trivalent graph
Γ of genus g.

On the other hand, every trivalent graph Γ with vertex set V (Γ) and edges
set E(Γ) determines a handlebody Γ̃, that is, a 3-manifold with boundary
∂Γ̃ = ΣΓ (a Riemann surface of genus g with a trinion decomposition). This is
done by the “pumping trick” (see [4]): pump up the edges and vertices of Γ to
tubes and small 2-spheres respectively. We get a Riemann surface ΣΓ of genus g
with a tube ẽ for every e ∈ E(Γ) and a trinion ṽ for every v ∈ V (Γ). The isotopy
classes of meridian circles of the tubes define 3g − 3 disjoint, non-contractible,
pairwise non-isotopic circles {Ce}, e ∈ E(Γ), and a trinion decomposition of
Σ.

Thus every Riemann surface with a marking {Ci} is completely determined
by a trivalent graph Γ and so can be denoted by ΣΓ. For such a surface, we
have a map of the space of classes of representations to Euclidean space,

cΓ : RC(π1(Σ)) � R3g−3, (2.2)

with fixed coordinates (c1, . . . , c3g−3) labelled by the elements of E(Γ). This
map is given by ci = cCi

. The following assertions hold.

(1) The map cΓ is a real polarization of a dynamic system with phase space
(RC(π1(Σ)), k · Ω).

(2) ci are action coordinates for this Hamiltonian system.

(3) cΓ is a moment map for the Hamiltonian action (not everywhere smooth)

RC(π1(Σ)) × T 3g−3 � RC(π1(Σ)),

which is described in [7].

(4) The image of RC(π1(Σ)) under cΓ is a convex polyhedron ΔΓ ⊂ [ 0 , 1 ]3g−3.

(5) The symplectic volume of RC(π1(Σ)) is equal to the Euclidean volume of
ΔΓ: ∫

RC(π1(Σ))

Ω3g−3 = Vol ΔΓ =
2 · ζ(2g − 2)

(2π)g−1
.

The functions ci are continuous on the whole of RC(π1(Σ)) and smooth over
(0, 1). We recall that the Hamiltonian torus action on RC(π1(Σ)) is determined
by a closed trivalent graph Γ of genus g. Summarizing, we have the following
set of geometric objects:
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1) the convex polyhedron ΔΓ ⊂ [ 0 , 1 ]3g−3;

2) the part of the boundary Pr = ∂ΔΓ ∩ ∂[ 0 , 1 ]3g−3 ⊂ ∂ΔΓ,

3) the part of the boundary of the convex polyhedron PK = cΓ(Kg) ⊂ ΔΓ,

4) the open subset Δ0
Γ = ΔΓ \ (Pr ∪ PK) ⊂ [ 0 , 1 ]3g−3, and

5) the open toric space

c−1
Γ (Δ0

Γ) = RC(π1(Σ))0 ⊂ RC(π1(Σ)),

which is relatively compact with respect to the moment map

RC(π1(Σ))0
cΓ� Δ0

Γ .

These geometric objects will be described in the next section.

§ 2 Combinatorial constructions.

Here we use the basic set-up of [6]. We recall that any closed trivalent
graph Γ is determined by the set V (Γ) of vertices along with the ”incidence
quadratic form”as follows. Let ZV (Γ) be the free Z-module of all formal linear
combinations of vertices with coefficients in Z. (Of course, the set of vertices
is a distinguished basis of this module.) Then the incidence matrix qΓ is the
symmetric matrix whose entry αvi,vj

is equal to the number of edges joining
the vertices vi, vj ∈ V (Γ).

Of course, the symmetric group on V (Γ) acts on such matrices by permuting
rows and columns.

We recall (see [6]) that a graph Γ is said to be hyperbolic if there are subsets
V+, V− ⊂ V (Γ) such that the subspaces ZV± are isotropic with respect to qΓ.
The matrix of a hyperbolic graph takes the block form

qΓ =

⎛⎜⎜⎝
0 0 ∗ ∗
0 0 ∗ ∗
∗ ∗ 0 0
∗ ∗ 0 0

⎞⎟⎟⎠ , (3.1)

where the blocks (∗ ∗
∗ ∗

)
∈ HomZ(ZV+ , ZV−) (3.2)

give an identification
∗ : V+ ↔ V− (3.3)
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The edges set E(Γ) of a hyperbolic graph can be written as the disjoint union
of triples with a common vertex

E(Γ) = ∪
v∈V+

E(Γ)v

where E(Γ)v is the set of three edges from the vertex v ∈ V+.
We now regard the Riemann surface ΣΓ as the result of pumping the graph

E(Γ) and consider the subset

Σ+ = ∪
v∈V+

ṽ ⊂ ΣΓ = ∪
v∈V+ ∪V−=V (Γ)

ṽ,

which is called a half Riemann surface ΣΓ (see [6]).
All these constructions hold for any trivalent graph, not necessarily con-

nected. In particular, we consider the disjoint union

Θg−1 = Θ & · · · & Θ.

This trivalent graph of genus g determines the Riemann surface

ΣΘg−1 = ΣΘ & · · · & ΣΘ

which is the disjoint union of g−1 copies of a Riemann surface of genus 2 with
the standard trinion decomposition corresponding to the graph Θ.

We fix one vertex in the trinion decomposition of each copy of ΣΘ and
denote this set of vertices by V+ ⊂ V (Θg−1) and its complement by V−. These
sets generate submodules that are isotropic with respect to qΘg−1 . Hence the
graph Θg−1 is hyperbolic with the natural identification ∗ sending a trinion ṽ
with v ∈ V+ to the second trinion of the component ΣΘ.

The half Riemann surface Θg−1 is the union

Σ+ = ∪
v∈V+

ṽ ⊂ ΣΘg−1 ,

which precisely coincides with the half Riemann surface ΣΓ:

ΣΓ ⊃ Σ+ ⊂ ΣΘg−1 .
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§ 3 Spaces of classes of representations.

The spaces RC(π1(Σ)) and (RC(π1(Σ)))g−1 are symplectic spaces with toric
structures defined by the graphs Γ and Θg−1 (see § 1) and moment maps

cΓ : RC(π1(Σ)) � ΔΓ,

cΘg−1 : (RC(π1(Σ)))g−1 � ΔΘg−1 .

Proposition 4.1. The polyhedron ΔΘg−1 is the direct product of g − 1
copies of the tetrahedron ΔΘ:

ΔΘg−1 =
∏

v∈V+

ΔΘ.

We can say more. Let π1(Σ+) be the fundamental group of the half of
ΣΘg−1 and let RC(π1(Σ+)) be the space of classes of its SU(2)-representations.
This space admits the map

c∂Σ+ : RC(π1(Σ+)) � ΔΘg−1 .

Proposition 4.2. The map c∂Σ+ is an isomorphism.
The proof for g = 2 is contained in the proof of Proposition 3.1 of [7].

Thus our assertion holds for every component of the disconnected graph and,
therefore, for any genus.

Now embedding Σ+ ↪→ ΣΓ induces the restriction map

r : RC(π1(Σ)) � RC(π1(Σ+))

and the map cΓ is the composite

cΓ = r ◦ c∂Σ+

because ∂Σ+ is precisely the set {Ce}, e ∈ E(Γ). We have the following
proposition.

Proposition 4.3. The polyhedron ΔΓ is contained in the image of c∂Σ+ .
Thus, ΔΓ ⊂ (ΔΘ)g−1.

It is now easy to check the following well-known statement (see, for example,
[9], Proposition 3.3.5).

Proposition 4.4.
The polyhedron ΔΓ is obtained by taking

1) the product of all tetrahedra corresponding to the trinions,

2) with linear constraints given by the gluing equalities of trinions.

Corollary 4.5.

1) Step 1) of Proposition 4.4 for ΔΓ coincides with the corresponding step
for (ΔΘ)2;
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2) We must replace the equalities in Step 2) of Proposition 4.4 by the corre-
sponding inequalities.

To describe the Delzant model, we must transform ΔΓ into (ΔΘ)g−1 using
elementary transformations of polyhedra. The combination of these transfor-
mations corresponds to an induction over the genus. We carry this out below.

§ 4 Manipulations with moment polyhedra.

We first onsider a special trivalent graph of genus g, the so-called multi-
theta graph gΘ (see Figures 1-3 in [6]). This is a vertical oval O crossed by
g − 1 horizontal strings

{eg−1, eg, . . . , e2g−3}. (5.1)

This graph is symmetric with respect to the vertical axis a0, and we denote
reflection in this axis by i0 : gΘ � gΘ. There are g − 1 vertices

v1, . . . , vg−1 (5.2)

on the left-hand side of the graph, numbered from top to bottom. We choose
a half of the set of vertices by putting

V+ = {v1, i0(v2), v3, i0(v4), . . . } (5.3)

and define the complementary half by V (gΘ) and V− = i0(V+). Then gΘ
becomes a hyperbolic graph (3.1) with isotropic subspaces Z± and identification
involution ∗ = i0 (3.3). The shape of this graph distinguishes the set of edges
on the left-hand side of O:{

e1, e2, . . . , eg−2

∣∣ ei = ∂(vi) ∩ ∂(i0(vi+1))
}
, (5.4)

and we see that these are the only edges that give non-trivial combinatorial
flips. Every such edge ei determines a coordinate ti3 of R3

i and a coordinate
ti+1
3 of R3

i+1.
We now consider the case g = 3. Then the set of horizontal strings (5.1) is

{e1, e2} and the set of vertices (5.2) is {v1, v2}. The subset (5.3) is equal to

V+ = {v1, i0(v2), v3, i0(v4)}

and the set (5.4) coincides with {e1}, e1 = ∂(v1) ∩ ∂(i0(v2)).
We now describe the constraints 2) of Corollary 4.5. Consider the following

involutions of R6 = R3
1 × R3

2:

1) interchanging the 3-spaces: i12(R3
1) = R3

2, and

2) interchanging two coordinates in the 3-spaces R3
1 and R3

2: ie1(t
1
3) = (t23).
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We recall that the constraints 1) of Proposition 4.4 have already been taken
into account:

|ti1 − ti2| ≤ ti3 ≤ ti1 + ti1, i = 1, 2.

We now have to glue the trinions v1, v2 along e1. We easily obtain the following
proposition.

Proposition 5.1. The constraints 2) of Corollary 4.5 are equivalent to the
conditions

|ti1 − ti2| ≤ tj3 ≤ ti1 + ti1, i �= j. (5.5)

This immediately yields the following theorem.
Theorem 5.2. The moment polytope is given by

Δ3Θ = (ΔΘ)2 ∩ ie1((ΔΘ)2). (5.6)

Indeed, the involution i12 preserves the polyhedron (ΔΘ)2. Hence (5.6) is
the geometric interpretation of the inequalities (5.5).

We recall that the tetrahedron ΔΘ is the convex hull of the set S of 4 points
in R3:

ΔΘ = 〈(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)〉
Hence (ΔΘ)2 is the convex hull of the 16 points S1 × S2 in R6 = R3

1 × R3
2.

Proposition 5.3. The polytope Δ3Θ is the convex hull of the 8 points

{(∗, ∗′, 0, ∗, ∗′, 0)} ∪ {(∗, ∗′, 1, ∗, ∗′, 1)}. (5.7)

Here ∗ means a free choice from the set ∗ = {0, 1} and ∗′ = {0, 1}. Indeed,
the inequalities t13 �= t23 induces all the constraints (5.5).

A beautiful description of this situation comes from real algebraic geometry.
Let C be a real algebraic curve of genus g = 2 with real theta characteristics.
Its Kummer surface is a real quartic K2 with 16 complex-conjugate double
singular points {p1, . . . , p16}, called nodes, in CP3. Near the real convex hull
of these points, the affine part of CP3 is represented as R6 = R3 × iR3. Then
the convex hull

〈p1, . . . , p16〉 = ΔΘ2 = ΔΘ × ΔΘ ⊂ R6

is the Delzant polyhedron of (CP3)2 with the natural torus action. We recall
that there are 6 lines through every vertex pi and 6 vertices on each line, as
in the classical Kummer configuration 166. In these terms, one can see the
8 required vertices of the convex polyhedron Δ3Θ. It is easy to make these
polyhedra integral.

We now argue by induction on g. The strategy is quite simple and natural.
We construct a sequence of polyhedra as a sequence of approximations of the
polyhedron ΔgΘ:

1) the first approximation is (ΔΘ)g−1;

2) the second approximation is (ΔΘ)g−3 × Δ3Θ;
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3) the ith approximation is (ΔΘ)g−i × ΔiΘ, and;

4) the final ((g − 1)th) approximation is, of course, ΔgΘ itself.

Thus we can use induction on g. Note that we have the following objects
at the last step of the induction.

1) The polyhedron ΔΘ ×Δ(g−2)Θ ⊂ R3 ×R3(g−2), which corresponds to the
disjoint union Θ ∪ (g − 2)Θ.

2) The trinion vl in the second component Δ(g−2)Θ. It is distinguished by
the previous inductive step as the lowest trinion of Δ(g−3)Θ. Thus we
have the decomposition R3(g−2) = R3

l × R3(g−3).

3) Distinguished edges e ∈ E(Θ) and e ∈ Evl
((g − 3)Θ), along which we

glue the Riemann surfaces ΣΘ and Σ(g−1)Θ.

4) Distinguished coordinate axes, the t3-axis in R3 and the tl3-axis in R3
l ,

which correspond to the edge e in different spaces with the standard
coordinates (t1, t2, t3) in R3 and (tl1, t

l
2, t

l
3) in R3

l .

The gluing conditions are exactly the same as in (5.5): in the notation just
described,

|t1 − t2| ≤ tl3 ≤ t1 + t2, |tl1 − tl2| ≤ t3 ≤ tl1 + tl1.

The same argument as in Proposition 5.1 yields the following proposition.
Proposition 5.4. The polytope ΔgΘ is the convex hull of 2g points

{(∗, ∗′, 0, ∗, ∗′, 0, ∗, . . . , ∗)} ∪ {(∗, ∗, 1, ∗, ∗, 1, ∗, . . . , ∗)} ⊂ R3(g−1),

where ∗, ∗′ and other symbols have the same meaning as in (5.7).
A slightly different description of the moment polyhedron as a subpolyhe-

dron of Δg−1
Θ was given by Florentino [10].

We recall (see, for example, [8]) that a convex polyhedron Δ ⊂ Rn is said
to be Delzant if, for every vertex v, there is an integral (n × n)-matrix A with
determinant ± 1 such that the map

t ∈ Rn � At − v

sends a neighborhood of v ∈ Δ onto a neighbourhood of 0 in Rn. In other
words, a convex polyhedron Δ ⊂ Rn is Delzant if

1) its 1-skeleton (the union of its edges) is an n-valent graph Γ (a topological
condition), and

2) the set E(Γ)v ⊂ E(Γ) of edges containing the vertex v ∈ V (Γ) is a rational
basis in Rn.
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Of course, a direct product of Delzant polyhedra is again Delzant.
Proposition 5.5. The polyhedron ΔgΘ ⊂ R3g−3 is Delzant.
To prove this we again use induction on g. It is actually enough to consider

the case g = 3. Here we have the unit cube C = [ 0 , 1 ]3 with 8 vertices.
To construct the tetrahedron Δ2, we consider the origin (0, 0, 0) and take all
vertices at a distance

√
2 from it. The convex hull of these 4 vertices is our

tetrahedron Δ2. We carry out the same procedure for R6 = R3×R3: choose all
vertices of the cube at a distance 2 from the origin and take their convex hull,
and so on. Finally, for genus g, the polyhedron ΔgΘ ⊂ R3g−3 is the convex
hull of vertices of the unit cube in R3g−3 at a distance

√
2g − 2 from the origin.

This yields all the polyhedra.

§ 5 The Delzant model.

We now have a precise description of the image of the moment map for
the Hamiltonian torus action on RC(π1(Σ)). This polytope turns out to be
Delzant. Hence, by the main theorem of the Delzant theory, there is a smooth
algebraic variety DMg (the Hodge manifold) with a regular Hamiltonian action
of T 3g−3.

Definition 6.1. The smooth algebraic variety DMg with the Hodge metric
is called the Delzant model of the space RC(π1(Σ)) (or MC(2, 0)).

The direct construction of this rational variety is described in many refer-
ences, but [8] is the best. The following list of its characteristic properties is
well known.

1) The smooth algebraic variety DMg has a canonical polarization H.

2) The dimension of H0(DMg,H
k) can be computed as the number of 1

2k -
integer points (that is, points with rational coordinates whose denomina-
tors are equal to 2k) in ΔgΘ by the Duistermaat–Heckman formula ([8],
Ch. 3). This number is the Verlinde number and equal to the dimension
of the space of conformal blocks of level k and genus g.

3) The set of points (ΔgΘ)2k = 1
2k Z3g−3 ∩ ΔgΘ = BSk coincides with the

set of Bohr–Sommerfeld fibers of the fibration cΔgΘ (2.2) of level k.

In terms of symplectic geometry, the picture is given by two fibrations with
Lagrangian fibres over the same base:

RC(π1(Σ))
cΔgΘ� ΔgΘ

�m
DMg, (6.1)

where m is the moment map of the regular torus action on the Delzant manifold.
It is appropriate to compare this configuration with ”mirror fibrations”.

We recall that the typical (hypothetical) set-up of the SYZ-mirror construction



§ 6 Conformal blocks 299

[11] also consists of two dual Lagrangian fibrations over the same base. We can
regard both fibrations as families of Lagrangian cycles with degeneracy.

The left-hand family

RC(π1(Σ))
cΔgΘ�� ΔgΘ

has fibres of equal dimensions with singular fibres over the (3g − 4)-skeleton of
the base. The fibres of the right-hand family

DMg
m�� ΔgΘ

are tori of different dimensions. Namely, let ski(ΔgΘ) be the i-skeleton of ∂ΔgΘ.
Then

p ∈ ski(ΔgΘ) \ ski+1(ΔgΘ) =⇒ m−1(p) = T i

is an i-dimensional torus. Moreover, every i-dimensional face Fi defines a
projective subspace Pi(Fi) ⊂ DMg with an i-torus action, which is itself a
Delzant space. Thus the Delzant model DMg contains the configuration of
projective subspaces corresponding to the jump of fibre dimensions. This is
typical of the behavior of isotropic fibres for a prequantized dynamical system.

§ 6 Conformal blocks.

Thus, for every complex curve Σ we have two compact complex polarized
varieties

(MΣ(2, 0), Θ) and (DMg, H)

with equidimensional spaces of sections

H0(MΣ(2, 0), Θk) and H0(DMg, Hk) .

The following construction canonically relates these spaces. We first state a
simple geometric fact.

Proposition 7.1. The polyhedron ΔgΘ has a unique internal barycentre c0

of central symmetry.
Clearly, both fibrations (6.1) have regular fibres over this centre. Near the

regular fibres c−1
gΘ(c0) and m−1(c0) we can identify our toric spaces using equiv-

ariant Darboux–Weinstein coordinates. In particular, we identify the fibres

c−1
gΘ(c0) = m−1(c0) = T 3g−3. (7.1)

The tori of both families are Lagrangian, and so the restrictions Θ|c−1
gΘ(c0)

and H|m−1(c0) are trivial line bundles with flat connections which are gauge
equivalent. (The equivariant Darboux–Weinstein lemma can be extended to
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identify the line bundles with unitary connections under the identification
(7.1).)

Summarizing, we have the torus T 3g−3
0 with a trivial line bundle and a flat

connection (L0, a0) (a supercycle) and Lagrangian embeddings

RC(π1(Σ)) ⊃ c−1
gΘ(c0) ←↩ T 3g−3

0 ↪→ m−1(c0) ⊂ DMg

such that the pre-images of Θ and H are equal to (L, a). Then the restriction
maps

H0(MΣ(2, 0), Θk) � Γ∞(L0) ← H0(DMg,H
k)

are embeddings and give the identification of the spaces of holomorphic sections.
Hence the neighbourhoods of non-singular points in the space RC(π1(Σ))

with smooth torus action are modelled by the linear torus action on the complex
projective space as predicted by the equivariant Darboux–Weinstein lemma.
For singular points, we have to find new local models that generalize the case
of CPn.
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Commentaries



The geometry of moduli of vector bundles.

Russian Math. Surveys. 29:6. 1974

This paper is the first introduction in Russian mathematical literature into
the geometry of moduli spaces of stable vector bundles on algebraic curves. One
of the important achievements in this field is the solution by Andrei Nikolaevich
of the global Torelli problem for higher rank vector bundles on a curve - see
papers [A.N. Tyurin. Analogue of Torelli theorem for two dimensional vector
bundles on an algebraic curve. Izvestija AN USSR. Ser. mathem. V. 33, No. 5
(1969), 1149-1170], [Analogues of Torelli theorem for higher dimensional vector
bundles on an algebraic curve. Izvestija AN USSR. Ser. mathem. V. 34, No.
2 (1970), 338-365] (this problem was simultaneously and independently was
solved by D. Mumford and P. Newstead in two dimensional case, and by M.
Narasimhan and S. Ramanan in higher dimensional case). Thus it is not acci-
dental that the present paper is devoted mainly to the exposition of geometric
ideas related to the proof of Torelli theorem for moduli of higher dimensional
vector bundles. An original feature of the paper is the elegant exposition of
the specific duality between the curve X and the variety S = S(r, d) of moduli
of stable bundles of rank r and degree d with fixed determinant over X; this
duality means that, in case when r and d are relatively prime, the universal
bundle U on X × S considered on fibers of the projection X × S → X, i.e. as
a bundle on the variety S, has the variety of moduli isomorphic to the original
curve X. The question whether there exists a similar duality in the theory of
moduli of stable bundles on higher dimensional varieties is extremely interest-
ing and is waiting for further investigation. Among the other merits of this
paper one should mention the nice introduction into the theory of elementary
transformations of vector bundles on a curve, which are an important technical
tool of the theory. The significance of elementary transformations of sheaves
for the geometry of vector bundles, as well as for algebraic geometry and its
applications in general, is nowadays well known, and was firstly understood
just in the papers of M. Narasimhan – S. Ramanan and A.N. Tyurin on the
moduli of vector bundles on curves.

A. S. Tikhomirov

∗ ∗ ∗
This article is based on a series of lectures given in Shafarevich’s seminar

in 1973. It is essentially expository, describing the state of knowledge on the
geometry of moduli spaces of vector bundles on algebraic curves, with particu-
lar reference to then unpublished results of M. S. Narasimhan and S. Ramanan
[6] on deformations of the moduli spaces. The lectures and the article were
intended for an audience with some knowledge of algebraic geometry, but not
expert in the theory of vector bundles. A. Tyurin therefore outlines his own
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versions of proofs and omits many technical details. However, as might be
expected, the article is full of Tyurin’s own ideas and insights, including con-
jectures and speculations, some of which are still not fully worked out.

The article concerns the moduli spaces S = Sn,d of stable bundles of rank
n and fixed determinant of degree d with (n, d) = 1 over a smooth projective
algebraic curve X (there are remarks also on the case (n, d) �= 1). Although A.
Tyurin makes no explicit assumption about the genus, it is clear that he has
in mind the case g ≥ 2 as treated in [6] and many other papers. Some of the
results fail in genus 1, while others are true for trivial reasons.

Chapter I describes the construction of S and some of its basic properties.
The only point requiring comment is the final sentence “It is not much harder
to prove the rationality of S (Newstead)”. Unfortunately this is not true; the
cited reference [9] contains an error, partially but not completely corrected in
[10]. Many attempts at a general proof were given, in some cases increasing
substantially the set of values of n, d for which the result is known to be true,
before the rationality of S was finally established by A. King and A. Schofield
[4] in the late 1990s. For (n, d) �= 1, the problem remains open.

Chapter II contains the main results of the article. According to the de-
scription given in Chapter I, there exists a universal bundle U on X × S, and,
for each x ∈ X, we can consider the restriction Ux of U to {x}×S as a bundle
on S. (Tyurin calls the bundle Ux a Poincaré bundle; nowadays this term is
usually used for U itself.) The bundle U is regarded as a family of bundles on
X parametrised by S, but can also be viewed in this way as a family of bundles
on S parametrised by X. This idea goes back a long time in the context of line
bundles, while for vector bundles it is at least implicit in [5] and explicit in [6].
Tyurin’s statement (Theorem 1) is as follows: for any x ∈ X, the curve X is
the variety of moduli S(Ux) for the bundle Ux.

This statement can be broken into two parts, firstly that Ux �∼= Ux′ if x �= x′

(Theorem 2), secondly that all small deformations of Ux have the form Uy for
some y ∈ X. The second part is proved in [6] and the proof is outlined here
in Chapter V. Theorem 2, on the other hand, is stated but not proved in [6],
so Tyurin’s proof (given in Chapter IV) would seem to be the only one in the
literature.

A. Tyurin sees it as a type of “inversion theorem” comparable to (but
definitely different from) a standard theorem for line bundles. The proof itself
is not completely convincing and indeed does not seem to work in the case n = 2
(the construction yields bundles of trivial determinant rather than determinant
of odd degree), so the result must perhaps remain as a conjecture. What is
certainly true is that X is an étale covering of S(Ux). If X is a general curve
of genus g ≥ 2, this étale covering must be trivial; thus Theorem 2 (hence also
Theorem 1) holds for the general curve of any genus. It would be interesting to
construct a totally convincing proof for an arbitrary curve on the lines proposed
by A. Tyurin.

Another important result from [NR1] is what A. Tyurin calls the étale the-
orem: H1(X, ΘX) ∼= H1(S, ΘS) (where ΘX and ΘS are the tangent bundles
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of X and S). This theorem implies the local Torelli theorem for X �→ S; in fact
the global version of the Torelli theorem, asserting that non-isomorphic X give
rise to non-isomorphic S, had already been proved by both Mumford and New-
stead [5] and Tyurin [12] in rank 2, and by Tyurin [13] in arbitrary rank. Two
further significant corollaries are that the group of biregular automorphisms of
S is finite and Seshadri’s theorem that PicS ∼= Z (see [11, Proposition 3.4]).

The final section of Chapter II contains some problems and conjectures.
Problem I concerns the case (n, d) �= 1. In this case S is not complete; let S

denote the Mumford-Seshadri completion (using semistable bundles) and let S̃
be a desingularisation of S. (It should be noted that there are several possible
desingularisations and partial desingularisations of S which can be used for
S̃.) Moreover U does not exist, but the adjoint bundle adU does exist on S

(but not on S and possibly not on S̃). Tyurin asks whether the theorems of
the previous section hold for S̃. In fact most of the results have no obvious
meaning on S̃, but the local results make sense on S and in general may be
expected to remain true. Moreover one important global result does continue
to hold for S and S, namely the theorem that PicS ∼= Z. This is true for
(n, d) �= 1 except when n = g = 2, and PicS ∼= Z always; this was proved by
J.-M. Drezet and Narasimhan [2], who showed further that S is factorial.

Returning now to the case (n, d) = 1, Problem II concerns the interpretation
of the direct images on S and X of iterated adjoints of the Poincaré bundle.
Although some of these sheaves have been used and investigated, there seems
to have been no geometric interpretation of them.

This problem is followed by a very interesting conjecture, namely that there
should be an exact sequence

0 −→ Jn(X) −→ AutS −→ AutX −→ 0,

where Jn(X) is the group of n-torsion points of the Jacobian of X. This has
recently been proved by A. Kouvidakis and T. Pantev [3, Theorem B], who
have obtained also a version valid for (n, d) �= 1. The proof involves Higgs
bundles and the Hitchin map.

Finally Problem III concerns the Hodge numbers hp,q(S). For the case
n = 2, they were in essence already known. In fact, an additive basis for all
the cohomology groups of S was given in [8]; if care is taken over the choice of
basis for H1(X) which is used in constructing this basis, the basis elements all
belong to some Hp,q(S). The simplest way of stating the formula for the hp,q

in this case is in the form of the Poincaré-Hodge polynomial∑
hp,q(S)xpyq =

(1 + x2y)g(1 + xy2)g − xgyg(1 + x)g(1 + y)g

(1 − xy)(1 − x2y2)
.

A version of this for motivic cohomology has been obtained recently by S. del
Baño [1]; his paper contains also a formula for hp,q(S̃) when n = 2 and d is even,
where S̃ is the Seshadri desingularisation of S. For general rank, the standard
cohomology generators can again all be taken to be of pure Hodge type and
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there is no difficulty in principle about calculating hp,q(S). Tyurin’s conjecture
that Hi+q(X, Ωq) ∼= Hi+p(S, Ωp) for any p, q is clearly wrong. Almost certainly,
there is a typographical error here, but it is not clear what Tyurin intended
to conjecture. What is true and is in the spirit of the conjecture is that the
“Hodge diamond” of S is relatively thin; for example, when n = 2, hp,q(S) = 0
whenever |p − q| > 1

3 (p + q).
Chapters III to V are mainly concerned with the proofs of the results stated

in Chapter II; these follow the same lines as those in [6]. In particular, in Chap-
ter III, Tyurin develops the theory of elementary transformations; this is very
much in the spirit of the work of Narasimhan and Ramanan on Hecke trans-
formations, which was to be further developed in [7]. These transformations,
which are also related to parabolic structures on bundles, have been used in
many deformation problems. In this chapter, Tyurin attempts to construct a
general bundle from the trivial bundle using elementary transformations; this
method is quite sound in principle, but the conjecture in section 2 that the
map ϕ he constructs there is a birational isomorphism is wrong. Indeed ϕ is
not even dominant. This can already be illustrated by the case g = 2, n = 2,
which he discusses immediately after stating the conjecture. If V (or strictly
speaking V ∗) is obtained from I2 by elementary transformations, then I2 is
a subsheaf of V . Hence V has two independent sections; on the other hand
Vgen, as correctly stated by Tyurin, has only one independent section. How-
ever the proof of rationality of S2,1 is correct and generalises to Sn,d whenever
d ≡ −1 mod n. The general question of rationality has already been discussed.

The study of the geometry of moduli spaces of vector bundles, and of many
related moduli spaces, remains a very active area of research. Unfortunately,
there is no recent survey of this area to which the reader can be referred.

P. Newstead
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On the classification of 2-dimensional vector bundles on an
algebraic curve of any genus.

Izv. AN SSSR. Ser. mathem. 1964. V. 28. no. 1

This was one of Andrey Tyurin’s first publications, and initiated his long
series of works on the theory of vector bundles. In fact this subject is present in
different flavors in most of his works. With this paper, Tyurin entered the circle
of leading experts in the theory of algebraic vector bundles, and he remained
in this position until his untimely death, while the theory developed into a
gigantic domain with many links to other areas of mathematics and physics.

In this article Tyurin considers moduli problems in the theory of vector
bundles on complex projective curves of genus > 1. A remarkable feature of
the objects of algebraic geometry is that their deformations are themselves
also parametrised by algebraic varieties – so called moduli varieties. Thus “de-
rived objects” of algebraic geometry remain within the framework of algebraic
geometry, and its methods apply in turn to them. This closed character of
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algebraic geometry dramatically extends the area of application of its methods
and ideas. It is because of this that algebraic geometric approaches have proved
so effective in several other areas of mathematics and physics.

A paradigm case is the theory of rank one vector bundles on a curve: bundles
of the same topological type (that is, with given degree or first Chern class) are
parametrised by the points of a commutative algebraic group, the Jacobian of
the curve. For vector bundles of higher rank the situation is more complicated,
and to obtain a natural algebraic parametrisation we have first to modify the
question. ANT showed in this article that if we add some rigidity to an algebraic
vector bundle of rank 2 on the curve, the resulting objects is parametrised by
an algebraic variety. He proposed to consider pairs consisting of a rank 2
vector bundles with an exceptional subbundle of rank one, and proved that
these “pairs” have an algebraic parametrisation. We have to fix a point on the
curve to define an exceptional subbundle of rank one, which is then simply a
subbundle of rank one “of maximal degree with respect to this point”. Since
for every rank 2 vector bundle there are only a finite number of exceptional
subbundles (bounded by 2g, where g is the genus of the curve), ANT obtains
in this way an algebraic parametrisation of all rank 2 vector bundles with “an
exceptional subbundle” of a given degree. Note that this approach is somewhat
analogous to the introduction of a “level” in the moduli theory of elliptic curves
and Abelian varieties. In the latter case introducing some rigidity (fixing certain
points of finite order) allows us to construct a moduli variety.

In addition, ANT shows that the moduli variety of rank 2 vector bundles
of a given topological type with an exceptional subbundle of maximal degree
can be identified with an open subvariety of a projective space. Thus ANT
obtained a complete solution to the moduli problem for rank 2 vector bundles
using the approach of classical algebraic geometry.

Tyurin’s paper slightly preceded the work of Mumford, Newstead,
Narasimhan and Seshadri, who took a different approach to the construction
of moduli space, based on the notion of stability of a vector bundle, analogous
to the notion of stability of a point in the theory of algebraic group actions.
Namely if we consider from the outset only stable vector bundles (roughly
speaking, the vector bundles that do not contain subbundles of large degree)
then there is a natural algebraic parametrisation of such bundles without any
additional structure. In this way we can also obtain a very natural compacti-
fication of the corresponding moduli spaces.

Formally speaking, these two approaches give different but somewhat simi-
lar result in the case of rank 2 vector bundles. However, the main advantage of
the second approach lies outside purely classical algebraic geometry. Namely
Narasimhan and Seshadri showed that stable vector bundles with trivial first
Chern class are exactly those constructed via irreducible unitary representa-
tions of the fundamental group of the corresponding complex projective curve.
Due to this remarkable coincidence and the depth of the notion of stability, the
second approach has dominated the theory of vector bundles ever since it was
introduced.
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Later, ANT obtained a number of remarkable results based on the notion
of stability. A detailed survey of all these results is contained in the preceding
article of this volume.

Fedor Bogomolov

∗ ∗ ∗
This is Tyurin’s first paper, written at a time when interest was developing

in the classification of vector bundles on algebraic curves. A.Grothendieck
[5] had described bundles on the projective line in 1954 (although the basic
elements of the description go back to the 19th century), and M. F. Atiyah [2]
had done the same for bundles on an elliptic curve in 1957. With hindsight
one can see that these successes, while of major importance, were somewhat
deceptive. It had of course been well understood for many years that curves
of genus ≥ 2 behave in a fundamentally different way from those of genus 0 or
1, but it had probably not been realized that essentially new techniques would
be needed for classifying bundles on curves of higher genus. (In modern terms
we can describe the distinction by saying that the problem is of finite type for
genus 0, tame for genus 1 and wild for genus ≥ 2.) Atiyah [1] had attempted
a classification of ruled surfaces in arbitrary genus and obtained partial results
in genus 2, but it was clear that the problem was already complicated.

Tyurin’s attack on the problem was based on an idea of A. Weil [17], namely
that of matrix divisors. For line bundles, there is a very nice correspondence
with divisors in the classical sense: isomorphism classes of line bundles cor-
respond bijectively to divisor classes. Weil’s idea was to generalize this by
considering matrix divisors. The problem is that the equivalence relation on
matrix divisors corresponding to isomorphism of vector bundles is very badly
behaved, and one must try to simplify this by imposing conditions on the matrix
divisors. This is what Tyurin does for bundles of rank 2 through his concepts of
exceptional subbundles and quasibundles. He fixes a point P ∈ X and defines
a line bundle L to be of height h if h is the smallest integer such that L(hP )
has a non-zero section. He defines a subbundle L of E to be exceptional if
dim H0(X, E ⊗L∗) = 1, and then proves that every indecomposable bundle E
of rank 2 has at least one and at most 2g exceptional subbundles of minimal
height. He calls the pairs (E,L), or the corresponding extensions

0 −→ L −→ E −→ L′ −→ 0,

quasibundles. These are easy to classify since there is a good classification of
extensions. Using this approach, Tyurin classifies quasibundles for fixed detE
and shows that there is a unique “component of maximal dimension” 3g − 3
(Theorems 10, 11). Moreover there exist universal objects. When d = deg E
is odd, he shows further that distinct quasibundles give distinct bundles, so
in modern terms he has constructed a dense open subset of the moduli space.
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In fact, one can describe this as follows. By tensoring our bundles E by some
fixed line bundle, we can suppose that d = 2g − 1; the component of maximal
dimension then consists of quasibundles of the form

0 −→ I −→ E −→ det E −→ 0,

where I is the trivial line bundle and dimH0(X, E) = 1. These extensions are
classified by an open subset of P(H1((detE)∗)), which by Riemann-Roch has
dimension

(2g − 1) + (g − 1) − 1 = 3g − 3.

There are two problems with A. Tyurin’s approach. One is that, in even
degree, even on the component of maximal dimension, a given bundle will corre-
spond to more than one quasibundle. The second, more fundamental, problem
is that a bundle in the component of maximal dimension can degenerate to
a bundle in one of the other components. In other words, the “components”,
when considered in terms of bundles rather than quasibundles, are not really
separate from one another; they should more properly be thought of as strata
in some more global object.

These issues were in the process of being resolved by the introduction of
the concept of stability by D. Mumford [8]. By the time A. Tyurin wrote his
second paper [13] (see also [14]), published in 1965, this time on bundles of
arbitrary rank, Mumford’s results had become available and he was able to
use them. None the less this second paper is still largely concerned with the
use of matrix divisors. This now presents even more difficulties than it did for
bundles of rank 2.

However A. Tyurin did succeed in calculating dimensions and showed that,
for g ≥ 2, the “number of moduli” of unstable bundles (incidentally by “stable”
in this paper Tyurin means what we now call “semistable”) is strictly less than
the corresponding number for stable bundles [13, Theorem 2.5.1]. This has
often been taken as an obvious consequence of Mumford’s theory, but does
in fact require proof, and A. Tyurin was the first to give this proof. In the
course of the proof [13, Lemma 2.5.1], he introduces what is now known as the
Harder-Narasimhan filtration of an arbitrary vector bundle on X [6].

Following A. Tyurin’s second paper, this line of development came to a halt
because of the work of M. S. Narasimhan and C. S. Seshadri. Before Mum-
ford’s concept of stability had become well known, Narasimhan and Seshadri
had already followed up another suggestion from Weil’s paper [17], namely to
consider bundles arising from unitary representations of the fundamental group
[9]. This handles only bundles of degree 0, but they subsequently developed the
ideas to cover bundles of any degree (the construction is again implicit in Weil’s
paper) [10] and showed that their unitary bundles are precisely those that can
be expressed as direct sums of stable bundles, all of the same slope (the slope of
a bundle is the rational number deg E

rank E ). In particular, the irreducible unitary
bundles are precisely the stable bundles. This gives a representation-theoretic
construction for the moduli spaces of stable bundles, which has proved ex-
tremely useful and has been developed in many ways. Subsequently a purely
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algebraic description, following Mumford’s approach, was completed by Se-
shadri (see [12, Première partie] for an outline).

There are further early results of A. Tyurin on the structure of the moduli
spaces (see, for example, [15, 16] and the survey article “The geometry of
moduli of vector bundles” reprinted in this volume). Seshadri’s notes [12]
constitute, among other things, a survey of results known up to 1980. Shortly
after this the introduction of methods inspired by physics played a major rôle;
see particularly [3]. This inspiration has continued to the present day.

One particular line of study seems to relate well to A. Tyurin’s ideas. We
have already remarked that one can view Tyurin’s “components”, when re-
stricted to stable bundles, as providing stratifications of the moduli spaces. A
variation of this idea leads to the consideration of other stratifications, espe-
cially those associated with the name of Corrado Segre. These stratify the
moduli spaces by the degrees of subbundles of maximal degree. In the context
of ruled surfaces, they go back to an 1889 paper of Segre, and their proper-
ties are established in [7], [4] and [11]. The advantage of Tyurin’s approach is
that every bundle arises from a finite number of quasibundles, while bundles
can possess infinitely many subbundles of maximal degree. However the Segre
stratifications are in some sense more natural and maximal subbundles have
become of particular interest recently because of connections with Gromov-
Witten theory.

These papers of Tyurin certainly contain errors (most notably his claim in
[13] to have proved rationality of the moduli spaces), but they also contain
many excellent ideas which were ahead of their time.

P. Newstead
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Vector bundles of finite rank over infinite varieties.

Math. USSR Izvestija. 10 (1976), no. 6.

In this pioneering article, Tyurin solves a number of problems in algebraic
geometry using the language of infinite dimensional manifolds. One of his main
results is a theorem that any vector bundle of finite rank on a smooth algebraic
subvariety X ⊂ P∞ of finite codimension in infinite dimensional projective
space is a direct sum of line bundles O(i), where the O(i) are the powers of the
standard line bundle on P∞ restricted to X. This is a significant generalization
of Grothendieck’s result for vector bundles on P1. The corresponding statement
for X = Pn is called Schwarzenberger’s conjecture, and was proved by W. Barth
and A. Van de Ven for rank 2 vector bundles3.

Parallel to the theory of vector bundles, Tyurin developed the theory of
extensions of algebraic subvarieties in finite dimensional projective spaces to
finite codimension subvarieties in infinite dimensional projective space. This
approach of ANT substantially clarified many previous results on extensions
of algebraic varieties and vector bundles. The analysis of such manifolds is
significantly simpler due to their rich geometry: for example, any two points
of a such a smooth subavariety X in P∞ are joined by a chain of two lines
contained in X, and all such chains are parametrised by an infinite dimensional
variety.

ANT’s proof is based on estimates for vector bundles on the ruled surface
obtained by blowing up a point on P2, and corollaries of these estimates for
vector bundles on other ruled varieties. The interested reader should look at
the english translation of ANT’s article4 since the translator Miles Reid made
some corrections.

Somewhat similar results were also obtained by E. Sato5 soon after ANT.
Later on Sato found a generalization of these results to the Grassmann varieties
Gr(k,∞). He also obtained similar results for corresponding orthogonal and
symplectic Grassmannians6. The final picture is slighly more complex in these
cases since if k > 1 the tautological k-dimensional vector bundle on an infinite
Grassmannian is also indecomposable. Sato showed that any vector bundle
of finite rank on Gr(k,∞) is decomposable into a direct sum of irreducible
components of the tensor algebra T (Sk ⊕ S∗k), where Sk is the tautological k-
dimensional vector bundle on the infinite Grassmann variety Gr(k,∞) and S∗k
its dual.

3Barth W., Van de Ven A. On the geometry in codimension 2 of Grassmannian manifolds. In
Classification of algebraic Varieties and Compact Complex Manifolds Lecture Notes. Math-
ematics 412. Springer, Berlin, 1974. P. 1 – 35
4Math. USSR Izvestia, 1976. Vol. 10. no. 6. P. 1187 – 1204
5Sato E. On decomposition of infinitely extendable vector bundles on projective spaces and
Grassmannian varieties. J. Math. Kyoto Univ. 1977. 17. no. 1. P. 127 – 150
6Sato E. On infinitely extendable vector bundles on G/P . J. Math. Kyoto Univ. 1979. 19.
no. 1. P. 171 –189
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The works of Tyurin and Sato from the late 1970s remained out of the
mainstream of algebraic geometry for a period. Recently, however, Donin and
Penkov7 considered the more general question of vector bundles on an ind-
Grassmann variety. The latter is defined as the inductive limit of smooth
embeddings of finite dimensional Grassmannians. They showed in particular
that Tyurin’s theorem also holds for a Grassmannian Gr(H,∞) of subspaces in
C∞) which are commensurable with a given subspace H of the space C∞; in this
case H has both infinite dimension and infinite codimension in C∞. They also
proved that every vector bundle is trivial on a “twisted” infinite dimensional
projective space obtained as an inductive limit of finite dimensional projective
spaces defined by sequence of smooth embeddings of degree > 1.

I. Penkov

∗ ∗ ∗
In this paper A. Tyurin proves a conjecture of R. L. E. Schwarzenberger

that vector bundles of finite rank on an infinite dimensional projective space
P∞ are decomposable as direct sums of line bundles. He also extends this
to bundles on a non-singular infinite projective variety; by this he means an
infinite chain

X0 ⊂ X1 ⊂ . . . ⊂ Xn ⊂ . . .

of non-singular projective varieties such that each Xn is a hyperplane section
of Xn+1. Note further that all line bundles on a non-singular infinite projective
variety have the form O(k) for some integer k. There are also finite versions
of these results. For these, we define an infinitely extendable (or absolute)
projective variety to be any variety that sits in a chain of the above type, with
a similar definition for vector bundles. Then every infinitely extendable vector
bundle of finite rank on an infinitely extendable non-singular projective variety
is a direct sum of line bundles, each of the form O(k) for some k.

The problem originated from a result of Schwarzenberger [8] (Theorem
22.4.2), who showed that any infinitely extendable vector bundle of finite rank
on Pn has the same Chern classes as a direct sum of line bundles; this is
a consequence of the Grothendieck-Riemann-Roch Theorem, and is valid for
topological vector bundles. The rank 2 case of Tyurin’s main result was first
proved by W. Barth and A. Van de Ven [1], while the result for arbitrary rank
was proved independently by E. Sato [5, 6]. Sato also obtained results for bun-
dles on Grassmannians [5] and more generally on homogeneous spaces [7], but
one should note that these varieties are not infinitely extendable as subvarieties
of Pn; of course, for homogeneous spaces, one must allow certain tautological
vector bundles as building blocks as well as line bundles.

7Donin J., Penkov I. Finite rank vector bundles on inductive limits of Grassmannians. IMRN
(International Math. Res. Notices) 2003. no. 34. P. 1871 – 1887
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The problem is closely related to that of the existence of subvarieties of
given codimension in Pn. The corresponding result in this context is that any
infinitely extendable subvariety of Pn is a complete intersection. For subva-
rieties of codimension 2 in Pn with n ≥ 6, there is a precise link with vector
bundles of rank 2 via a construction of Serre [9] (see, for example, [4, 1, 3, 2]);
in particular, there exists an indecomposable vector bundle of rank 2 on Pn

if and only if there exists a non-singular subvariety of codimension 2 in Pn

which is not a complete intersection. For higher codimension and rank, no
such precise relationship is known.

Sato [5, 6] gives a bound N , depending on the invariants of the vector bundle
E on Pn, such that E is a direct sum of line bundles whenever it is extendable
to Pn′ with n′ ≥ N . One can ask whether it is possible to find N independent
of the invariants of E. It is in fact conjectured that every vector bundle of rank
2 on Pn with n ≥ 5 (or n ≥ 6 in characteristic 2) is decomposable. It may be
noted that there is a subvariety of P5 of codimension 2 which is not a complete
intersection (the Segre embedding of P1 × P2), but this does not invalidate
the conjecture. In the mid 1970s, it was widely hoped that an answer to this
conjecture would soon be found, but these hopes have still not been fulfilled
and the problem remains open.

For complete intersections of arbitrary codimension, Hartshorne [3] has con-
jectured that a non-singular subvariety of Pn of dimension d with d > 2

3n is a
complete intersection.

P. Newstead
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Symplectic structures on the varieties of moduli of vector bundles
on algebraic surfaces with pg > 0.

Math. USSR Izv. Ser. Mat. (1) 33 (1989)

The paper is one of the first works in a new direction of modern algebraic
geometry – the theory of symplectic algebraic manifolds. The importance of
this class of varieties is based on the fact that irreducible varieties with holo-
morphic symplectic structure constitute one of the “building blocks”, together
with complex tori and Calabi–Yau manifolds, of Bogomolov’s decomposition
of compact Kähler manifolds with torsion class c1. The intensive study of
symplectic algebraic manifolds was started by Mukai8, where he constructed
a holomorphic symplectic structure on the moduli space of simple sheaves on
Abelian and K3 surfaces.

The present work is a systematic generalization of Mukai’s construction to
the case of surfaces with pg > 0 and to higher dimensional varieties; at the same
time, it treats Poisson algebraic structures. The paper starts with a detailed
treatment of the formalism of Mukai lattices and structures and a description
of properties of simple, exceptional and modular sheaves. Then it gives a gen-
eral procedure constructing a holomorphic symplectic structure (respectively,
a Poisson structure) on components of the moduli space of simple sheaves on
an arbitrary smooth regular surface, and simultaneously local invariants of
these structures. An important geometric examples of the structures discussed
in the paper is given by nondegenerate symplectic structures on the moduli
spaces of ideal sheaves of zero dimensional subschemes of a surface, i.e., the
Hilbert schemes.

The key idea of the paper is Tyurin’s introduction of the modular opera-
tions on the moduli components of simple sheaves on a surface. The notion
of modular operation is based on the theory of mutations of exceptional bun-
dles and helices of bundles developed in the mid-1980s by the Rudakov–Tyurin
seminar on exceptional and stable bundles. Namely, the operations of universal
8S. Mukai Symplectic structure of the moduli space on an Abelian or K3 surface Invent.
math. 77 (1984), 101–116



318 Comments

extension and universal division enable one, starting from a given moduli com-
ponent of simple sheaves and some additional data including the existence of
an appropriate exceptional bundle on a surface, to construct an extensive series
of new moduli components birational to the original one. At the same time a
symplectic structure carries over to all the new moduli components. This gives
rise to a whole hierarchy of moduli varieties of simple modular sheaves, whose
properties are studied in the paper.

It is worth mentioning that the paper is conceptually related to another
important paper of the author9, not included into the present collection, that
gives ample geometric material illustrating the constructions of the present
work. Some of these constructions have been developed in recent research on
moduli of sheaves on K3 surfaces10.

A. S. Tikhomirov

∗ ∗ ∗
This article is concerned principally with the existence of symplectic and

Poisson structures on the moduli spaces of vector bundles on algebraic surfaces.
In this context A. Tyurin defines a symplectic structure on a smooth projective
variety B to be a non-zero skew-symmetric homomorphism ω : TB → T ∗B
from the tangent bundle of B to the cotangent bundle. In a similar way he
defines a Poisson structure to be a non-zero skew-symmetric homomorphism
α : T ∗B → TB. When B is a surface S, a symplectic structure is just a non-
zero section of the canonical bundle KS , while a Poisson structure is a non-zero
section of the dual bundle K∗

S . Although superficially the two definitions are
very similar, they give rise to very different structures except when KS is trivial
(in this case, if we assume further that the surface S is regular, then S is a
K3-surface). In fact, a regular surface with a Poisson structure with KS non-
trivial is rational, while (by definition) a surface with a symplectic structure
has geometric genus pg > 0

In the first chapter, A. Tyurin shows how to construct symplectic (Poisson)
structures on components of moduli spaces of bundles on a regular surface
S from a symplectic (Poisson) structure on S. In Chapter II, he introduces
modular operations which establish isomorphisms between certain components
of the moduli spaces; these are analogous to, but richer than, the operation
of tensoring by a line bundle. These operations are used to construct infinite
series of moduli spaces of bundles on a surface S of general type which are
birationally equivalent to symmetric powers of S.

In Chapter III, A. Tyurin discusses the principal differences in the classifica-
tion theory of bundles between surfaces with symplectic structure and surfaces
9A.N. Tyurin Cycles, curves and vector bundles on K3 surfaces Duke Math. J. V.54. No.1,
1–26
10see: E. Markman. On the monodromy of moduli spaces of sheaves on K3 surfaces – I, II.
arXiv: math.AG/0305042 , math.AG/0305043
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with Poisson structure. In particular, on a surface with symplectic structure,
techniques such as the use of monads, resolution of the diagonal and helices do
not work. On the other hand, a bundle on a surface with symplectic structure
is almost uniquely determined by its second Chern class in the Chow group
CH2(S).

P. Newstead

The moduli spaces of vector bundles
on threefolds, surfaces and curves. I.

Preprint. Erlangen. 1990.

The description of the natural restriction maps from moduli spaces of stable
sheaves on a variety to its subvarieties (e.g., hyperplane sections) is one of the
basic methods of studying these spaces. The present work is an introduction to
this method based on the important geometric case when the base variety is one
of the varieties of an embedded triple “curve, surface, threefold (solid)”. One of
Tyurin’s first observations is that if the threefold is a Fano variety, and the sur-
face a K3, then the moduli component of stable vector bundles on the threefold
is under certain conditions embedded by the restriction map as a Lagrangian
submanifold of the corresponding moduli component of stable bundles on a K3
surface; this component has a natural holomorphic symplectic structure. Then
the paper considers in detail the next step of the operation of restriction of
stable bundles and, more generally, coherent torsion free sheaves when passing
from the surface to the curve. The well known theorem of Mehta–Ramanathan
states that the restriction map of moduli of semistable sheaves (under the nat-
ural condition of ampleness of the curve on the surface) is a rational map. The
present paper generalizes this theorem: under some additional conditions on
the curve, this map is birational onto its image, thus giving as a corollary a
birational embedding of moduli components of stable bundles on the surface
(and of their Gieseker closures) into the space of conformal blocks of the curve.
In particular, this enables to obtain the Donaldson’s line bundle (in the sense of
Le Potier) on the moduli space of sheaves on the surface as a rational multiple
of the standard Hopf bundle on the space of conformal blocks. This gives rise
to a potentially new method of computing the Donaldson polynomials of the
original surface.

In the final part of the paper the above ideology is transferred to the classical
case when one takes the projective plane as the original surface and considers
rank 2 vector bundles on it with trivial determinant, which one then restricts
to lines in the plane. Here the role of conformal blocks is played by the space of
curves of jumping lines of the bundle. The work is apparently the first to give
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a formula relating Donaldson’s constants of the projective plane to the degree
of the variety of curves of jumping lines, and this degree is computed in the
first nontrivial case, when the second Chern class of the bundle on the surface
is 4. In this case the variety of curves of jumping lines is the hypersurface of
Lüroth quartics in the space of plane quartics and, as follows from a classical
result of invariant theory (F. Morley 1918), this degree is conjecturally equals
to 54. The present paper gives an outline of the algebraic geometric proof of
this result using the method of Barth’s nets of quadrics. Other variants of the
proof of this result (and also of the injectivity of Barth’s map of the moduli
of bundles on the plane into the space of jumping lines) were independently
given by Le Potier11. The most detailed exposition of these results and of the
injectivity of the Barth’s map for the case of the second Chern class ≥ 4 is
presented in the paper: J. Le Potier and A.S.Tikhomirov. Sur le morphisme
de Barth. Ann. Scient. Éc. Norm. Sup., 4e série, t.34 (2001), 523-629.

A. S. Tikhomirov

∗ ∗ ∗
This expository article is a considerably extended version of a talk given

by A. Tyurin in Bayreuth in 1990. It is concerned with relating moduli spaces
of stable vector bundles on a flag of varieties X ⊃ S ⊃ C, where X is a Fano
threefold, S is a K3-surface in the anticanonical divisor class and C is a curve
on S. A. Tyurin considers components MX , MS , MC of the moduli spaces
with fixed first Chern class such that E ∈ MX ⇒ E|S ∈ MS ⇒ E|C ∈ MC , so
that there exist restriction morphisms MX → MS → MC .

Tyurin considers here the second of these morphisms in a case where S is
a smooth regular surface (not necessarily K3) and MS = MH(2, c1, c2) is the
moduli space of H-stable bundles of rank 2 on S with Chern classes c1 ∈ Pic S
and c2 ∈ Z. (Here H is an ample line bundle on S and C ∈ |dH| is a generic
smooth curve such that deg c1 ·C is even.) Tensoring by a suitable line bundle
on C, we can take MC = MC(2,O), the moduli space of stable bundles of
rank 2 on C with trivial determinant. One shows that, for sufficiently large d
(depending on k), the restriction morphism resC : MH(2, c1, k) −→ MC(2,O)
is an embedding (in fact Tyurin proves a slightly stronger theorem (Theorem
1.1), which includes also the case where deg c1 · C is odd).

The next step (Theorem 2.1) is to extend this map to a map

resC : MH(2, c1, k) −→ MC(2,O),

where MH(2, c1, k) is the Gieseker compactification of MH(2, c1, k) [6]. Now

Pic MC(2,O) ∼= Z
11J. Le Potier. Fibrés stables sur le plan projectif et quartiques de Lüroth. Exposé donné a
Jussieu le 30.11.1989
J. Le Potier J. Faisceaux semi-stables et systémes cohérents. Vector bundles in algebraic
geometry (Durham, 1993), London Math. Soc. Lect. Note Ser. 208 (1995), 179-239
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(see [4]); let L0 be a positive generator of this Picard group defining a linear
system |Δ|. By a theorem of Beauville [2], |Δ| is base-point free and the induced
morphism

f0 : MC(2,O) −→ PH0(L0)∨

is finite and has degree 2 if C is hyperelliptic and 1 otherwise. Moreover H0(L0)
can be identified with H0(J(C),O(2Θ)) and has dimension 2g(C) − 1. Now by
conformal field theory the projective space PH0(L0) is independent of C for
small variations in complex structure. Denoting this projective space by PH
and composing with the restriction map, we obtain a family of morphisms
((3.40))

fC⊂S : MH(2, c1, k) −→ PH∨.

Tyurin conjectures (Conjecture 3.1) that fC⊂S is independent of C for small
variations.

Independent of this conjecture, however, A. Tyurin raises the question of
computing the degree of fC⊂S in the case where c1 = O and MH(2,O, k) has
the “right” dimension, namely dimMH(2,O, k) = 4k − 3(pg + 1). This degree
is clearly independent of C and is in fact given by a Donaldson polynomial
[3]. These are difficult to compute, but, for K3-surfaces, the problem has
been solved (see (4.18)) by Friedman and Morgan [5] and independently by
K. O’Grady. The article finishes with a calculation for S = P2, in which
case the degree has the form ck(deg C)4k−3 ((4.19)), where ck is an absolute
constant. To compute ck, we can take C to be a line. Now restrictions of
bundles on P2 to lines have been extensively studied, most notably by W. Barth
[1]. It is easy to see that c2 = 1 and c3 = 3, and Tyurin shows, by combining
Barth’s arguments with classical results of Lüroth and Clebsch and an idea
of A. S. Tikhomirov, that c4 = 54. (In fact, Tyurin notes in the article “The
classical geometry of vector bundles” contained in this volume that this number
was first obtained by F. Morley in 1918.)

P. Newstead
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The classical geometry of vector bundles.

Algebraic geometry (Ankara, 1995).
Lecture Notes in Pure and Appl. Math. 193, 347–378.

New York: Marcel Dekker, 1997

The paper is a summary of a small course of lectures given by the author
on the summer school at Ankara (Turkey) in 1995. It is devoted to the intro-
duction into the geometry of vector bundles on algebraic varieties in relation to
applications to enumerative geometry and topology of smooth four-dimensional
manifolds. In this paper there is considered a number of important geometric
objects closely related to vector bundles – nets of quadrics, Darboux configu-
rations and Hilbert schemes. The significance of nets of quadrics in modern
algebraic geometry and, in particular, in birational geometry of threefolds and
geometric invariant theory was clearized in 70ies - 80ies of the last century in
works of A.N.Tyurin, A.Beauville, C.T.C.Wall and other authors – see, e.g.,
papers [A.N.Tyurin. On intersection of quadrics. UMN, V. 30, No. 6 (1975),
p.51-99] e [A.N.Tyurin. The variety of pairs of commuting pencils of symmetric
matrices. Izvestija AN USSR. Ser. mathem. V. 46, No. 2 (1982), 409-430] not
included into the present collection. Further interesting geometric examples of
interaction of all these objects were found by S.Mukai [S.Mukai. Fano 3-folds.
London Math. Soc. Lect. Notes Series, 179 (1992), 255-263], and applications
to enumerative geometry were considered by G.Ellingsrud and S.A.Strømme.
Bott’s formula and enumerative geometry. Journ. Amer. Math. Soc. 9 (1996),
175-193]. The present paper is on one hand an original introduction into the
above papers, and on the other hand it illuminates applications of the tech-
nique of vector bundles and Hilbert schemes to smooth topology of algebraic
surfaces, in particular, to computing of Donaldson’s polynomials. In more de-
tail these algebro-geometric constructions are considered in the paper of J.Le
Potier [J.Le Potier. Systèmes cohérents et polynômes de Donaldson. Lecture
Notes Pure Appl. Math. Math. Vol. 179, 1996, pp. 103-128.]

A special part of the paper is devoted to the discussion of questions related
to computing of Donaldson’s constants of the smooth structure of the complex
projective plane. It is worthwhile to note that the problem of computing of
Donaldson’s constants of the projective plane had stimulated a big number of
works in this direction, among which one should mention the paper by the au-
thor and A.Tikhomirov12 not included into the present collection, and the sub-
12A.Tikhomirov, A.Tyurin. ”Application of the geometric approximation procedure to com-
puting the Donaldson’s polynomials for CP2.” Mathematica Goettingensis, Sonderforss-
chungsbereichs ”Geometrie und Analysis”, Heft 12 (1994), 1-71
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sequent papers by G.Ellingsrud, L.Göttsche, J.Le Potier and S.A.Strømme13.
In the present work there is given an interesting interpretation (based on the
results of Ellingsrud and Göttsche and one conjecture of Kotschick and Mor-
gan) of Donaldson’s constants of the projective plane as its potential homotopy
invariants.

A. S. Tikchomirov

∗ ∗ ∗
This is the text of a talk given by A. Tyurin at a summer school in Ankara

in 1995. Its themes are essentially the unity of geometry and the ubiquity of
algebraic geometry in this more general setting. In particular, many results of
enumerative geometry remain true not only in symplectic geometry but also in
differential geometry and even in topology.

The story starts in the 19th century with Clebsch and Lüroth and runs
through moduli spaces to Donaldson invariants. The whole is told in Tyurin’s
inimitable style. The only recommendation is: read and enjoy, and then think
what it all means.

P. Newstead

The Weil – Petersson metric on the moduli space of stable vector
bundles and sheaves on an algebraic surface.

Math. USSR Izvestiya. (3) 38 (1992)

Tyurin dedicated this article to the memory of his older sister Galina Niko-
laevna Tyurina, who died tragically at the age of 32 during a canoeing trip to
the Prepolar Urals. Galina Nikolaevna was also a student of I.R. Shafarevich,
who obtained several well known results in algebraic geometry. Most of her
work relate to the theory of K3 surfaces and singularity theory.

Weil–Peterson metrics arise naturally on moduli varieties, that is, on vari-
eties that parametrize deformations of some other algebraic varieties. In this
case the tangent space to the moduli variety has a natural description in terms
of the fibre, the algebraic variety corresponding to the given point in the mod-
uli space. Thus if the fibre has a natural metric, there is also a natural metric
on the tangent space of the moduli space. The metric on the moduli space
13G.Ellingsrud, J.Le Potier and S.A.StrømmeSome Donaldson invariants of P2(C). Lecture
Notes Pure Appl. Math. Vol. 179, 1996, pp. 33-38
G.Ellingsrud, L.Göttsche. Variation of moduli spaces and Donaldson invariants under
change of polarization. J. reine angew. Math. 467 (1995), 1-49
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that arises in this way is called the Weil–Peterson metric; it is a Kähler metric
under rather mild conditions on the moduli space.

The Weil–Peterson metric reflects the structure of the variations of the fibre
rather concisely. For example, within this framework, representing a Rieman-
nian surface of genus > 1 as a quotient of the standard disc by a discrete
subgroup provides a Weil–Peterson metric on the moduli variety of complex
curves of genus > 1.

Tyurin considers the Weil–Peterson metric on the moduli space of stable
vector bundles on a compact projective (Kähler) surface. In this case every
stable vector bundle has a so called Hermitian Einstein connection, which pro-
vides a metric on the projectivisation of the vector bundle. This allows us to
define Weil–Peterson metric on the moduli variety of stable vector bundles.
Note that this moduli variety has an infinite number of components of dif-
ferent dimensions (stable bundles with different topological invariants clearly
belong to different components of the moduli space). The components of these
moduli varieties are also noncompact in general. Tyurin described a natural
compactification of the moduli of stable vector bundles on surfaces by torsion
free sheaves. Moreover he proved the existence of components that are smooth
varieties after this natural compactification (he calls these thin components).
In this case, he proves the existence of extension of the Weil–Peterson metric
to a Kähler metric on the corresponding compact manifold.

He considers the case of vector bundles on K3 surfaces in more detail. These
surfaces have a so called hyper-Kähler structure, that is, a two-dimensional
family of Kähler structures related by a quaternionic rotation. Hyper-Kähler
structures have many remarkable properties, and the list of known compact
hyper-Kähler manifolds is rather small. The main observation of the article is
that the extension of the Weil–Peterson metric provides a hyper-Kähler struc-
ture on an infinite series of thin components of moduli spaces of vector bundles
on K3 surfaces. Thus it is possible in principle to find new examples of com-
pact hyper-Kähler manifolds by considering thin components of moduli spaces
of vector bundles. The above construction can also be applied to Abelian sur-
faces. This remarkable idea was further developed by a number of authors and
provided several new examples of compact hyper-Kähler manifolds14.

Tyurin’s idea is also related to Ron Donagi and Yuval Markman construc-
tion of a natural hyper-Kähler structure on the family of intermediate Jacobians
of Calabi–Yau threefolds over the moduli space15.

F. Bogomolov

14see for example: O’Grady, Kieran G. A new six-dimensional irreducible symplectic variety.
J. Algebraic Geom. 12 (2003). no. 3. P. 435 – 505; O’Grady, Kieran G. Desingularized
moduli spaces of sheaves on a K3. J. Reine Angew. Math. 512 (1999). P. 49 – 117; where
new examples of compact hyper-Kähler manifolds were constructed using moduli varieties of
vector bundles on curves of genus 2 and K3 surfaces
15Donagi R., Markman E. Cubics, integrable systems and Calabi - Yau threefolds. Proceed-
ings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993). p.199 –
221. Israel Math. Conf. Proc. 9
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On the superpositions of mathematical instantons.

Progr. Math. 1983. 36, 433–450

Mathematical instantons considered in this paper constitute the important
class of stable algebraic vector bundles on the projective three-space. The de-
scription of the variety of moduli Mn of mathematical instantons (here the
natural number n is the second Chern class of the instanton, which is its basic
discrete invariant) began in 70-s of the last century and since that time they
permanently attract attention of algebraic geometers. The specific property of
instantons is their determination by monads or, equivalently, by the so called
hypernets of quadrics in n-dimensional vector space H. These hypernets, un-
derstood as vectors in the space with additional tensor structure, satisfy the so
called Barth’s conditions which determine in the space of hypernets of quadrics
the locally closed subset Mn(H), and the problem of smoothness, irreducibil-
ity and (uni)rationality of the space Mn is reduced to the similar problem
for Mn(H). In the present paper Andrei Nikolaevich systematically develops
the idea of the set Mn(H) via a representation of its vectors as linear combina-
tions (superpositions) of special decomposable tensors of the space of hypernets
called half-instantons. By this method there are obtained two main results of
the paper - the proofs of unirationality of the space M4 and of the main com-
ponent of the space M5 containing instantons of t’Hooft. The first of these
results is still the best achieved in the field, and there is a conjecture that M4

is rational. Remark that a little earlier than this paper had appeared there was
proved irreducibility (W.Barth, 1981) and smoothness (J.Le Potier, 1981) of
M4. (Similar results for the case n ≤ 3 were stated earlier: n = 1 - by W.Barth,
1977; n = 2 - by R.Hartshorne, 1978; n = 3 - by G.Ellingsrud and Strømme,
1981.) The second result was improved only much later by P.Katsylo (1993)
who proved the rationality of the main component of the space M5. Very re-
cently I.Coandă, A.Tikhomirov and G.Trautmann (2003) proved smoothness
and irreducibility of M5 in the paper [I.Coandă, A.Tikhomirov, G.Trautmann.
Irreducibility and smoothness of the moduli space of mathematical 5-instantons
over P3. Intern. J. Math., V. 14, No.1 (2003), 1-45]. It is curious that in that
paper the authors use certain technical results on superpositions of instantons
obtained in the present work.

It should be mentioned that another version of a representation of instan-
ton hypernets by superpositions of decomposable tensors is worked out in
the paper by Andrei Nikolaevich [A.N.Tyurin. The instanton equations for
(n + 1)−superpositions of marked adTP 3 ⊕ adTP 3 J. reine angew. Math., B.
341 (1983), 131-146] not included in the present collection. In that paper the
author proceeds from hypernets of quadrics to special hypernets of homomor-
phisms and studies these last hypernets by means of their geometric invariants -
the curves of Hesse and Steiner. A general view on the geometry of these curves
as spectral invariants of hypernets was elaborated in the paper by Andrei Niko-
laevich [A.N.Tyurin. The variety of pairs of commuting pencils of symmetric
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matrices. Izvestija AN USSR. Ser. mathem. V. 46, No. 2 (1982), 409-430],
also not included in the present collection. That paper is related to the work of
W.Barth [W.Barth. Irreducibility of the space of mathematical instanton vec-
tor bundles with rank 2 and n2 = 4. Math. Ann., 258 (1981), 81-106] devoted
to the proof of the above mentioned result on irreducibility of M4 in which
Barth points out the relation stated by A.N.Tyurin between the description
of degenerations of instanton hypernets and the enumeration of components
of Hilbert schemes of Steiner space curves supplied with theta-characteristics.
These components in the case of reducible curves are enumerated by Andrei
Nikolaevich for small values of n in the above mentioned paper on commuting
pencils of symmetric matrices.

A. S. Tikhomirov

Delzant models of moduli spaces.

Izv. Mathematics. 2003. (2) 67

Developed by A. N. Tyurin during the last years of his life was the Abelian
Lagrangian Algebraic Geometry (ALAG) that is some universal algebraic view-
point on the geometric quantization area. Besides some other fruitful things,
ALAG allows to compare the outputs of Berezin –Toeplitz and Bohr – Sommer-
feld quantization procedures applied to a given symplectic manifold M as soon
M does admit simultaneously an integrable Kähler structure and some com-
pletely integrable real polarization. In this paper A. N. Tyurin carries through
such the comparison in a very hardly studied case when M = MΣ(2, 0) is
the moduli space of holomorphic structures on the topologically trivial rank 2
vector bundle E over a curve Σ of genus g ≥ 2.

A Kähler structure on M is provided by the algebraic geometric construc-
tion of this moduli space and is prescribed by a choice of a complex structure
on Σ. An integrable real polarization on M comes from Narasimhan – Se-
shadri identification of M with the moduli space of gauge classes of flat SU(2)-
connections on E or, equivantly, with the space RC, of isomorphism classes
of unitary representations of the fundamental group π1(Σ)

�→ SU(2). The
symplectic structure16 on RC is induced by 2-form∫

Σ

K(σ1 ∧ σ2) , where σ1, σ2 ∈ Ω1(Σ) ⊗ su2 ,

K ∈ S2su∗2 is the Killing form ,

16it has singularities for g > 2 and should be considered in orbifold’s terms
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on the whole space of all SU(2)-connections on E. Each ‘pants decomposition’
of Σ by 3g− 3 simple pairwise non-crossing and non-isotopic loops γ ⊂ Σ gives
a complete system of 3g − 3 commuting Hamiltonians:

cγ : RC → [ 0 , 1 ] : � �−→ 1
π

arccos
(
tr
(
�(γ)

)
/2
)

.

This provides RC with a structure of Lagrangian fibration

(0.1) RC
c→ Δ

over some convex polyhedron17 Δ ⊂ [ 0 , 1 ]3g−3. Goldman has shown18 that
the fibres of (0.1) over interior points of Δ are the real (3g − 3)-dimensional
Lagrangian tori. So, RC has got a symplectic toric variety structure19.

In this paper, A. N. Tyurin gives precise effective description for Δ and
constructs very explicitly a chain of flips leading from RC to

(
CP3

)g−1 (for
g > 2). This gives an effective precise description for the combinatoric topology
of RC in a purely real stup, that is without any references to the identification
M

∼� RC.
In fact, this result does much more than close a gap which defied the real

topologists over quite a long time. It implies at once that ‘the conformal block
spaces’20 H0(M,ϑ⊗N ), which are the Hilbert spaces for the Kähler quantization
of M , are naturally isomorphic to the Hilbert spaces coming from the real
polarization of RC. This offers a big challenge, because the Kähler conformal
blocks depend only on a complex structure on Σ (and are not related to a
pants decomposition of Σ) but the real conformal blocks21, quite the contrary,
depend only on the Lagrangian fibration (0.1) (and have no concern with a
complex structure).

A. N. Tyurin evolves this beautiful remark in his last book22 ‘Quantisation,
Classical and Quantum Field Theory and Theta - Functions’, where he uses the
Bortwick – Paul – Uribe map23 to attach a section σS ∈ H0(M,ϑ⊗N ) to each
Bohr – Sommerfeld torus S in the fibration (0.1) and to show that these sec-
tions σS form the standard base in the space of (non Abelian) theta-functions.
On one side, this construction immediately gives a flat projective connection on
the bundle of holomorphic conformal blocks over the moduli space of complex
structures on Σ. On the other side, we get a collection of transition matrices
17it is called the Delzant polyhedron
18see Goldman W. The symplectic nature of fundamental groups of surfaces. Adv. in Math.
54 (1984) pp. 200–225 and Goldman W. Invariant functions on Lie groups and Hamiltonian
flows of surface group representations. Invent. Math., 85, 1986, pp. 263–302
19in the sense of Guillemin V. Moment maps and combinatorial invariants of Hamiltonian
T n-spaces. Birkhäuser (Progress in Mathematics 122), 1994.
20i. e. the spaces of global sections of the natural ϑ-bundle on M
21i. e. the spaces spanned by Bohr –Sommerfeld fibres of the projection (0.1)
22its preliminary version is available at math.AG/0210466
23see Borthwick D., Paul T. and Uribe A. Legendrian distributions with applications to the
non-vanishing of Poincaré series of large weight. Invent. math, 122 (1995), pp. 359–402 or
hep-th/9406036



328 Comments

between the Bohr – Sommerfeld bases in H0(M,ϑ⊗N ) coming from the differ-
ent pants decompositions of Σ and these transition matrices, clearly, form ‘a
rational conformal field theory’ over the graph of all pants decompositions.

So, this short elegant paper displays once again the staggering talent of
Andrey Nikolaevich for assembling a lot of distinct complicated technical details
coming from distant branches of mathematics into strikingly clear geometric
picture.

A. L. Gorodentsev
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