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Ivan E. Wallin (1883–1969) was among the first scientists who noticed the evolutionary impact of symbiotic events. He 
proposed that endosymbiosis was the principal source for speciation (Wallin 1927). Mitochondria and chloroplasts as 
symbiotic descendants of bacteria in a eukaryotic cell are the well-known and most important endosymbiotic key play-
ers, enabling and shaping the evolution of eukaryotes. In addition, a multitude of other symbioses between prokaryotes 
and Eukarya have been described so far. As an example, symbiosis between molluscs and sulphur- or methane-
oxidising bacteria, is a widespread lifestyle in marine habitats (and perhaps yet undetected for other environments). 
These symbiotic associations occur worldwide at oxic–anoxic interfaces such as at the boundary layer of reducing sedi-
ments, in cold seeps, in hydrothermal vents or in mangrove peat. The symbiosis between marine molluscs and chemo-
synthetic bacteria increase the metabolic capabilities and therefore the possibilities to occupy ecological niches of both 
host and symbiotic prokaryote. Nowadays, due to molecular analyses and in situ hybridisation techniques, detection of 
symbioses in recent living organisms is not that difficult. But finding a path back to the point in Earth’s history were 
symbiotic events took place is a tricky challenge. Not long ago only analyses of morphological features of shells and fa-
cies criteria were available for assessment of the lifestyle and the diet of extinct bivalves. Close phylogenetic relation-
ships to recent symbiont bearing genera in a similar habitat make it likely that the extinct genera exhibited a similar life-
style, but these indirect criteria are not sufficient to uncover ancient symbiosis in molluscs. In this review several ap-
proaches of “molecular palaeontology” are discussed, which allow for a direct determination of a symbiotic or non-
symbiotic lifestyle in recent and fossil molluscs. 
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Introduction

“It is concluded that the evolutionary potential of symbio-
sis is great and that symbiosis serves as a supplementary 
speciation mechanism capable of producing directed evo-
lutionary changes” (Taylor 1979). This conclusion may be 
particularly true for bivalves: bacteria and marine mol-

luscs, often form mutualistic partnerships which markedly 
influence the physiology, ecology and evolution of both. 

Autotrophic bacteria assimilate inorganic carbon as 
primary carbon source. The bacterium is chemoauto-
trophic when reducing power and energy needed for as-
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similation of carbon dioxide derives from reduced inor-
ganic compounds. The other important energy source is 
sunlight for photoautotrophic organisms. Chemoauto-
trophic or methanotrophic bacteria are found in a wide 
range of reducing habitats providing these coveted energy 
sources, in particular H2, H2S or CH4. Most prominent 
sites are cold seeps and hydrothermal vents, but dysoxic 
conditions are frequent in marine environments, such as 
in seagrass beds, mangrove sediments or wood and whale 
falls. These habitats of free living autotrophic or metha-
notrophic bacteria are usually also inhabited by molluscs 
hosting symbiotic chemoautotrophs or methanotrophs 
(Lonsdale 1977; Corliss et al. 1979; Jannasch & Wirsen 
1979; Van Dover 2000; Treude et al. 2009; Kiel & Tyler 
2010). Though also bacteria of other metabolic types are 
symbionts of marine invertebrates, most of them are sul-
phur-oxidiser or methanotrophs belonging to the Gam-
maproteobacteria. According to phylogenetic analyses 
these symbioses have been established multiple times in 
earth history and evolved independently (Dubilier et al. 
2008). 

Several marine molluscs, especially some species of 
Cephalopoda, Gastropoda and Bivalvia, are known to cul-
tivate symbiotic microbes. The basic feature of this rela-
tionship is that the symbionts need reduced substrates and 
electron acceptors for their metabolism, which do not oc-
cur in the same microenvironments (Zhang & Millero 
1993). The molluscs are able to bridge the oxic–anoxic 
boundaries using behavioral, morphological or metabolic 
adaptations and supply substrates (e.g., reduced sulphur 
compounds) and electron acceptors (oxygen in most cas-
es) to the microbes. In turn, most if not all organic carbon 
and also nitrogen compounds are provided by the symbi-
ont (Cavanaugh et al. 2006; Dubilier et al. 2008).  

Photosymbiosis is most successful in oligotrophic wa-
ter under nutrient-limited conditions (Hallock & Schlager 
1986; Hallock 1987; Schlager 2003). Eukaryotic algae of 
the genus Symbiodinium (zooxanthellae) are the most preva-
lent symbionts of molluscs. The zooxanthellae satisfy a 
major part of the host's energy demand (Trench et al. 
1981; Klumpp et al. 1992; Hawkins & Klumpp 1995). In 
turn, zooxanthellae cover their nitrogen and phosphate 
demands mainly through their host’s excretion products. 
Multiple studies provided insight into symbiont-host in-
teraction, their metabolic features and how symbiotic 
partners are adapted to each other. Various approaches 
like 16S ribosomal DNA sequence analysis, fluorescence 
in situ hybridisation, transmission electron microscopy, 
stable isotope and fatty acid analysis were applied so far 
(Kharlamenko et al. 1995; McKenzie et al. 2000; Colaco et 
al. 2007). However, studies aiming at reconstruction of 
evolution of symbiotic molluscs were based on compari-
son of shell morphologies or were conducted in specific 
palaeoenvironments like vents and seeps (Fig. 1).  

In order to get a better understanding of the evolu-
tionary steps and to give an estimate for the time point 

when a representative of a mollusc taxon starts its cooper-
ation with microbes and shifts its diet to chemo- or pho-
totrophic we need to detect a direct symbiotic fingerprint 
of the investigated fossil. These fingerprints or biosigna-
tures must be stable in geological timescales. 
 

 

Fig. 1: Late Miocene seep at Montepetra (Italy) with a mass occurrence of 
lucinid clams (Heterodonta: Lucinoida). 

 

 

Endosymbiotic molluscs 

Recent situation 

Within the clades of recent molluscs, endosymbiosis with 
sulphur- or methane-oxidising (chemosynthetic) bacteria 
occur in seven bivalve families: Solemyidae, Nucinellidae, 
Montacutidae, Mytilidae, Thyasiridae, Lucinidae (being the 
most diverse familiy), Vesicomyidae (Taylor & Glover 
2009, 2010; Taviani 2011, and references therein; Taylor et 
al. 2011; Oliver et al. 2013). In addition, the Teredinidae 
are known to harbour endosymbiotic cellulose-digesting 
symbionts (Distel et al. 2002). 
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The symbiosis seems to be obligate in all species of Lucin-
idae, Vesicomyidae and Solemyidae, while some species of 
Thyasiridae and Mytilidae are asymbiotic. Their life styles 
are highly diverse, ranging from epifaunal to deep infaunal 
(Taylor & Glover 2010). Lucinids occur also in the deep 
sea at cold seeps (Callender & Powell 1997), hydrothermal 
vents (Glover et al. 2004) and wood or whale falls (Dubi-
lier et al. 2008). Though they appear to be rare on such 
sites, Kiel & Tyler (2010) stated that this might be a sam-
pling artifact. Nevertheless, the more common molluscs 
of deep-sea habits are all three families of chemosynthetic 
gastropods, bathymodiolian mussels, vesicomyid clams 
and solemyids (Dubilier et al. 2008; Kiel & Tyler 2010).  

A symbiotic relationship to chemosynthetic bacteria is 
also known from three gastropod families (Provannidae, 
Lepetodrilinae and Peltospiridae) and from one family of 
the Aplacophora (Simorthiellidae, Dubilier et al. 2008). 
These organisms are all inhabitants of deep sea seep and 
vent sites. 

Deep sea hydrothermal vents with their rich and con-
stant supply of reduced inorganic compounds are perfect 
niches for a chemosynthetic lifestyle, which leads to mass 
development of chemosymbiotic molluscs in such envi-
ronments. They are less abundant in the photic zones. 
The primary production in shallow water is driven by 
phototrophy and is usually dominated by heterotrophic 
communities; however, in some cases chemosymbionts 
could also dominate in shallow water (Dando & South-
ward 1986; Little et al. 2002; Tarasov et al. 2005). Though, 
the role of chemosynthetic molluscs in shallow water sys-
tems like coral reef sediments, seagrass meadows or man-
grove sediments is not that unimportant. The evolutionary 
radiation of Lucinidae, for example, seems to be linked to 
the emergence of seagrasses in the late Cretaceous (Heide 
et al. 2012; and references therein). Lucinids are very im-
portant for the stability of seagrass systems, because they 
detoxify the surrounding sediment from sulfide and lead 
to oxygenation, with a not negligible effect on seagrass 
(Heide et al. 2012). The highest diversity of recent Lucini-
dae was described for tropical reefal habitats (Glover & 
Taylor 2007); also some solemyids (Krueger et al. 1996) 
and thyasirids (Dubilier et al. 2008) occur in this environ-
ment as well as some photosynthetic Cardiidea and 
Tridacnidea. 
Some bivalve species within the Trapeziidae and Cardiidea 
(Fig. 2) maintain symbiotic associations with Symbiodinium 
(Yonge 1936; Kawaguti 1950, 1968, 1983; Purchon 1955; 
Stasek 1961; Hartman & Pratt 1976; Jacobs & Jones 1989; 
Jones & Jacobs 1992; Ohno et al. 1995; Persselin 1998; 
Vermeij 2013). These bivalves exhibit specific characteris-
tics of soft body but also microstructural and macroscopic 
adaptations in shell morphology. Tridacnidea have very 
large and thick shells, others exhibit semitransparent 
shells; all adaptations should improve the exposure of the 
mantle to sunlight (ref. above). 
 

 

Fig. 2: Two phototrophic bivalves in their natural habitats. (A) Fragum un-
edo (Heterodonta: Veneroida: Cardiidae) – mud flat of North Stradbroke Island, 
Queensland, Australia, and (B) Tridacna maxima (Heterodonta: Veneroida: Cardi-
idae) – coral reef of One Tree Island, Queensland, Australia. 
 
 
Symbiont-bearing invertebrates in earth’s history 

Ancient shelled molluscs have a rich and well-documented 
fossil record; they are confirmed since the early Cambrian 
(Goedert & Squires 1990; Peel 1991; Gubanov et al. 2004; 
Vinther & Nielsen 2005; Skovsted et al. 2007; Kiel & Ty-
ler 2010). The common method to detect ancient symbio-
ses in some fossil bivalves/molluscs is based on structural 
features of their shells, e.g., the imprints of the elongated 
anterior adductor muscle and pallial blood vessels in the 
shells. In addition, palaeohabitat occupation patterns give 
important hints for symbiotic life styles (Taylor & Glover 
2000; Amano et al. 2007). Indirect tools to date back sym-
biotic molluscs evolution (estimated molecular age) are 
molecular clocks (Baco et al. 1999; Shank et al. 1999; Dis-
tel et al. 2000; Kano et al. 2002). Upcoming direct molecu-
lar tools are biogeochemical analyses of biosignatures 
which are described in detail below.  
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The longest fossil record and hence the oldest supposed 
symbiotic bivalves are the Lucinidae and Solemyidae. The 
existence of fossil Solemyidae dates back to the Ordovi-
cian (Kiel & Tyler 2010), Lucinidae first appear during the 
Silurian (Taylor & Glover 2006). It was suggested that 
symbiotic relationship of both groups are ancient (Taylor 
& Glover 2000, 2006; Taylor et al. 2008). Thyasirids are 
possibly much younger; they were first described from the 
Early Cretaceous and were found at seeps and wood falls, 
which indicates possible symbiotic lifestyle (Kiel et al. 
2008a, Kiel & Dando 2009). Vesicomyids are also associ-
ated with seep deposits from the beginning of their ap-
pearance in the Middle Eocene; from the Late Eocene 
onwards they could be found in large numbers at vents 
and seeps (Kiel & Tyler 2010 and references therein). 
Bathymodiolins also appear in the Middle to Late Eocene 
(Goedert & Squires 1990; Squires & Goedert 1991; Tavi-
ani 1994; Kiel & Goedert 2006a; Kiel & Little 2006). All 
of these fossil molluscs had recent relatives, thus an an-
cient symbiotic lifestyle of their ancestors living in similar 
environments was deduced (e.g., Goedert & Squires 1990; 
Taviani 1994; Goedert & Campbell 1995; Peckmann et al. 
1999, 2002, 2004; Goedert et al. 2003; Gill et al. 2005; 
Majima et al. 2005; Campbell 2006; Kiel & Little 2006; 
Kiel & Peckmann 2007). 

Inoceramidae disappeared at the end of Cretaceous 
(Dhondt 1983) and were first known from the Permian 
(Cramton 1988). Some authors also speculated about 
chemosynthetic or even photosynthetic lifestyles of some 
inoceramid species (MacLeod & Hoppe 1992).  

The Cardiidea have a fossil record dating back to the 
Late Triassic (Keen 1980; Morton 2000; Coan et al. 2000; 
Schneider & Carter 2001). Recent members of Cardiidea 
with photosynthetic lifstyle like Fragum have a fossil rec-
ord that dates back to Miocene/Holocene (Keen 1980), 
Tridacnids proliferate since the Eocene (Romanek et al. 
1987). Futhermore, for the Neogen bivalve Mercenaria 
“tridacnoides” (Jones et al. 1988) for rudists and some other 
fossil bivalves a photosymbiotic lifestyle was postulated 
(Kauffman 1969; Philip 1972; Vermeij 2013). 

It was speculated about symbiotic relationships in 
some extinct non-bivalve species like brachiopods which 
were associated with chemosynthesis-dominated envi-
ronments in their fossil record (Sandy 2010) and even 
photosymbiosis was postulated for some fossil rostrocon-
chia and brachiopods (Cowen 1970, 1982; Vermeij 2013). 
Fortey (2000) reported that olenid trilobites (Late Cambri-
an/Ordovician) lived under oxygen-poor and sulphur-rich 
conditions at the sea floor. Reduced oral structures and 
extended pleural areas were interpreted as an indication 
for a symbiotic relationship with sulphur bacteria. 

Also fossil members of gastropods inhabiting chemo-
synthetic ecosystems, e.g., Provannids date back to the 
Late Cretaceous (Kiel & Tyler 2010). 

Though fossil deep-sea chemotrophic molluscs are rela-
tively well-documented, not much attention is given to the 
non-seep related shallow water chemo- or phototrophic 
molluscs. At seep and vent sites the epifaunal molluscs 
densely colonise the habitat. Detecting fossil endosymbio-
sis in shallow water molluscs by using biogeochemical 
techniques has an advantage that possibly different het-
erotrophic molluscs co-occur in the same substrate. Com-
paring different species in the same habitat gives a better 
indication of which might have had symbiotic associations 
with chemosynthetic bacteria or maybe phototrophic di-
noflagellates. In the evolution of bathymodiolid bivalves, 
it was expected that the ancestors of this modern deep-sea 
mussels live in shallow water reducing sediments. Thus it 
is possible that “the first contact” between free-living 
chemosynthetic bacteria and heterotrophic bathymodiol-
ids did not start in the deep-sea but in shallower marine 
environments (Duperron 2010). It will be really interesting 
to support these hypotheses by analysis of biosignatures. 
In shallower water habitats the probability to find fossils 
of definitive non-symbiotic molluscs among the putative 
symbiotic ancestor of bathymodiolids is much greater 
than at fossil seep and vent deposits. Here, it is possible to 
compare biosignatures of shell-fossils from different spe-
cies of the same location, to evaluate their lifestyles (see 
below).  
 
 

Molecular markers in tissue of chemo-
symbiotic vs. heterotrophic bivalves 

Prokaryotes are inhabitants of this planet long before the 
raise of eukaryotes and metazoans and consequently “in-
vented” most of the biochemical key processes. They are 
the only organisms capable of primary energy production 
like chemosynthesis and photosynthesis; fixation of mo-
lecular nitrogen is unique to prokaryotes. Thus, all other 
living organisms are able to perform primary production 
only with support of their ancient or current endosymbi-
otic associations with prokaryotes. In any case, metazoans 
whose major diet is based on their autotrophic symbionts 
are closer to the bottom of the food chain than metazoans 
without relationship to such microbes. Some of the sym-
biotic bacteria in molluscs are located within specialised 
gill cells, so-called bacteriocytes. In other cases the bacte-
ria are attached extracellularly at the gill tissue (Dubilier et 
al. 2008; Duperron 2008; Southward 2008).  

Fluids, rich in oxygen and sulfide or methane, are 
drawn into the gill and are absorbed by the bacteriocytes. 
Furthermore, it was reported that Calyptogena use their 
foot to dig for sulfide in the sediment and then use specif-
ic transport proteins which transfer sulfide to symbionts 
in the gill tissue (Zal et al. 2000).  
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The majority of phototrophic symbionts, the zooxanthel-
lae, are located within mantle tissue, sometimes within the 
gill filaments of the host bivalve (Yonge 1981), so that the 
symbionts are exposed to sunlight. 

How may the lifestyle of symbiont bearing molluscs 
lead to identifiable features or even “patterns”, identifiable 
in the fossil record?  

In case that the major nutrients (carbon, nitrogen and 
sulphur) of molluscs derive from their prokaryotic symbi-
onts, the host biomass is based on molecules built by the 
prokaryotic metabolism. In contrast, heterotrophic mol-
luscs filter out or graze off particulate organic matter from 
their surrounding environment. Thus, search for finger-
prints specific for either heterotrophic or chemo- and 
phototrophic molluscs must consider autotrophic and/or 
nitrogen metabolism of the symbionts.  
 
Carbon fixation 

Apart from the cellulose-degraders in Teredinidae and 
methanotrophs, all prokaryotic symbionts fix inorganic 
carbon autotrophically. The common pathway for CO2 
fixation in chemo- as well as in phototrophic symbionts is 
the Calvin-Benson cycle (Herry & Le Pennec 1989; 
Duperron & Fiala-Médioni 2007; Dreier et al. 2012). The 
key enzyme of this pathway is ribulose 1,5-bisphosphate 
carboxylase/oxygenase (RubisCO). RubisCO catalyses the 
fixation of 12CO2 slightly faster than fixation of 13CO2 (Pu-
rich & Allison 2000). This selection leads to an enrich-
ment of 12C in the biomass relative to 13C (negative δ13C 
value). The host obtains the organic carbon from its sym-
bionts (Fiala-Médioni & Felbeck 1990; Childress & Fisher 
1992), hence δ13C ratios of host tissue reflect the carbon 
source. Mentionable is the fact that 13C depletion by 
chemoautotrophic bacteria using the Calvin-Benson cycle 
for CO2 fixation is higher than in photosynthetic algal or-
ganisms, because of different specificities of RubisCO 
form I and II enzymes (Ruby et al. 1987; Blumenberg 
2010; see Table 1). Moreover, these distinct forms of Ru-
bisCO have been also described for chemoautotrophs 
(Robinson & Cavanaugh 1995). They show that form I 
RubisCO is expressed by the symbionts of Solemya velum 
and Bathymodiolus thermophilus, exhibiting relatively low δ13C 
ratios, whereas form II RubisCO is expressed in the 
tubeworms Riftia pachyptila and Tevnia jerichonana with high-
er δ13C ratios (Childress & Fisher 1992). However, the 
δ13C ratios are also influenced by the ratios of source car-
bon (CO2) and by translocation of carbon during uptake 
and transport from symbiont to host (Scott et al. 2004). 

Symbionts that oxidise methane are related to type I 
methanotrophs within the Gammaproteobacteria (Pe-
tersen & Dubilier 2009). Methane serves as electron donor 
as well as carbon source. Biogenic methane exhibits highly 
δ13C depleted signatures (Sugimoto & Wada 1995; Zyakun 
1996). Type I methanotrophs use the ribulose monophos-
phate pathway for carbon fixation (Leak et al. 1985) and 
preferentially consume 12CH4 which leads to a further de-

pletion in δ13C values (Coleman et al. 1981; Grossman et 
al. 2002).  

In summary, δ13C values of tissue from molluscs 
which harbor, chemoautotrophs and/or methanotrophs 
(“primary producers”) are all significantly depleted relative 
to molluscs at higher trophic levels. This depletion pattern 
should also be expected for tissue of phototrophic mol-
luscs 
 
Nitrogen assimilation 

The main nitrogen sources of bacterial biomass and hence 
host tissue in chemoautotrophic symbioses are ammonia 
(NH4+) and nitrate (Johnson et al. 1988; Conway et al. 
1992; Lilley et al. 1993; Lee & Childress 1994; Lee et al. 
1999). Ammonia and nitrate are used by bacteria for bio-
synthesis of amino acids and other nitrogen compounds 
(Payne 1973; Reitzer & Magasanik 1987). Molluscs receive 
their amino acids from their diet (e.g., Neff 1972), which 
is in case of chemosymbiosis mainly based on biomole-
cules from the symbionts.  

Isotopic fractionation of nitrogen may occur during 
uptake and incorporation of nitrogen by bacterial symbi-
onts (Hoch et al. 1992; Yoneyama et al. 1993; Dreier et al. 
2012). Methane-oxidising bacteria, for instance, prefer as-
similation of 14NH3 (Lee & Childress 1994). Independent 
of the pathway of nitrogen assimilation, it is known that 
δ15N ratio increases by about 3.4 ‰ per trophic level (Mi-
nagawa & Wada 1984; Peterson & Fry 1987). Accordingly, 
primary producers must show lower δ15N in tissue than 
their consumers (Conway et al. 1989; Conway et al. 1992; 
Lee & Childress 1994; Colaco et al. 2002; Dreier et al. 
2012). 
 
Sulphur oxidation 

Thiotrophic endosymbiosis is most common among mol-
luscs (see above). Their energy source is sulfide, which 
originates from abiogenic reduction of sulfate or from mi-
crobial sulfate reduction (Kaplan et al. 1963; Aharon & Fu 
2000; Joye et al. 2004). Sulfide in sediments mostly derives 
from microbial sulfate reduction; both biogenically and 
abiogenically generated sulfide is depleted in δ34S (Kaplan 
et al. 1963; Kiyosu & Krouse 1993; Aharon & Fu 2000; 
Joye et al. 2004). The pathway of sulphur oxidation does 
not lead to a significant fractionation of sulphur isotopes. 
The depleted sulfide from sediment is possibly not just 
used as an energy source but is also assimilated by sulfide-
oxidising symbionts and incorporated in their biomass 
(Dreier et al. 2012). In contrast, the sulphur compounds 
of non-thiotrophic molluscs derive from sea-water sul-
fates with δ34S ratios being markedly different from that 
of sulfides in sediments (Kaplan et al. 1963; Trust & Fry 
1992; Michener & Schell 1994).  
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Table 1: Some δ13C values of different chemoautotrophic symbioses and corresponding isotopic discrimination of different carbon fixing pathways (compiled after 
Roeske & O’Leary 1984; Brooks et al. 1987; Conway et al. 1989; Fisher 1990; Kennicutt et al. 1992; Guy et al. 1993; Goericke et al. 1994; Robinson & Cavanaugh 1995; 
Cavanaugh & Robinson 1996; Van Dover et al. 2003; Scott et al. 2004; Van Dover 2007). 

 

 

 
Thus δ34S ratios of biomass from thiotrophic molluscs are 
higher depleted than 34S ratios of non-thiotrophic mol-
luscs (Mizota & Yamanaka 2003; O’Donnell et al. 2003; 
Mae et al. 2007; Dreier et al. 2012). 
 

 

Fig. 3: Chitin staining of a cross section of Tridacna maxima decalcified shell. 
(A) Recent, One Tree Island, Queensland, Australia; (B) Pleistocene, north of Da-
hab, Sinai, Egypt. Cross sections were stained with Calcofluor White. 
 
 
 

In summary, the isotopic compositions of the biological 
elements carbon, sulphur and nitrogen in biomolecules 
from host tissue are excellent biosignatures, providing in-
formation about an animal’s diet and trophic level (Mich-
ener & Schell 1994; Casey & Post 2011). However, in or-
der to determine diet of fossil molluscs, preserved bio-
molecules are needed. Here one may take benefit from the 
mineralised mollusc shells, which are perfect long term 
conservation wrappings for organic matter. 
 
 

Different biosignatures and stability 
over geological timescales 

Various techniques are used to detect symbiotic prokary-
otes in mollusc tissue, such as 16S ribosomal DNA se-
quence analysis, fluorescent in situ hybridisation and 
transmission electron microscopy.  

After death, soft tissue is degraded and only shells are 
left for incorporation into the fossil record. Mollusc shells 
are mainly composed of calcium carbonate in aragonite 
and calcite conformation; these crystals are formed be-
tween organic matrix layers. Frémy (1855) was the first 
who described conchiolin, the acid insoluble organic ma-
trix in shells. Later, high proportions of acidic amino acids 
Asx (Asp+Asn) were found in soluble shell organics. X-
ray/electron diffraction revealed matrix-crystal spatial re-
lations protein structure (β-sheet), and the presence of 
chitin (Weiner & Traub 1980; Weiner et al. 1983). 
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Recent studies about shell proteins imply that the organic 
shell matrix is composed of a macromolecular framework 
consisting of a chitin-silk fibronin gel with acidic proteins 
(e.g., Marin & Luquet 2007; Evens 2008; Marin et al. 
2008). To demonstrate the presence of chitin in shells, 
staining with the fluorescence dye Calcofluor White may 
be performed, which binds to cellulose and chitin. Obvi-
ously, also the remaining organic shell matrix of fossil 
shells could be stained. This could be a hint for the persis-
tence of these biomolecules in the shell matrix. Fig. 3 
shows a stained cross section of Tridacna maxima shells 
(recent and fossil) embedded in LR white resin. The cross 
section was decalcified with 0.5 M EDTA over night and 
then stained with Calcofluor White. To exclude unspecific 
binding to embedding resin, an untreated (unfixed, not 
embedded) piece of Tridacna maxima shell was decalcified 
and stained with Calcofluor White (Fig. 4). It is obvious 
that the Calcoflour-stained material in the fossil shell of 
Tridacna maxima (Fig. 4C) is different from the filamentous 
structure in the modern shell (Figs. 4A, 4C).  

In addition, a cross section of a fossil (Upper Creta-
ceous) Inoceramus sp. shell was stained with Calcofluor 
White. Treatment of cross section was identical to that of 
Tridacna but without decalcification. Fig. 5 shows that 
maybe fossil chitin was stained between the calcium car-
bonate crystals of the Inoceramus sp. shell. 

The preserved biomolecules of the shell will provide 
information about the mollusc's diet. In endosymbiont-
bearing molluscs, carbon, nitrogen and sulphur are taken 
up by the symbionts, get an isotopic fingerprint and are 
then incorporated in mollusc biopolymers (see above). 
Since the remains of the organic shell matrix are preserved 
after death, stable isotope analysis of the matrix serves as 
valuable screening tool for detecting symbiotic association 
in living as well as in fossil molluscs. In many studies δ13C, 
δ15N and sometimes δ34S in soft tissue were determined in 
order to analyze dietary intake (Kennicutt et al. 1992; 
Dando & Spiro 1993; Conway et al. 1994; Dando et al. 
1994; Fischer 1995; Colaco et al. 2002; Lorrain et al. 2002; 
Dattagupta et al. 2004; Carlier et al. 2007, 2009). However, 
only few studies describe these isotopic fingerprints with 
respect to the organic matrix of recent and fossil shells 
(O’Donnell et al. 2003; Mae et al. 2007; Dreier et al. 2012). 
Only the study by Dreier et al. provides δ34S values of the 
organic matrix of empty shells from recent bivalves and 
subfossil (Late Pleistocene) shells.  

It was shown that sulphur isotopes are not useful 
markers to detect ancient the thiotrophic lifestyle, because 
after death of the molluscs δ34S values in the organic ma-
trix will decrease. It was assumed that the reason could be 
the instability of sulphur-containing amino acids (Jones & 
Vallentyne 1960) or sulfides derived from proteolysis and 
from bacterial sulfate reduction during soft tissue degrada-
tion. New results confirm the latter hypothesis: the non-
symbiotic bivalve Venerupis aurea, which was used in the 
study of Dreier et al. (2012), was degraded in original sed-
iments under laboratory conditions in an aquarium. After 

half a year the shells were analyzed and δ34S as well as 
C/N ratios were measured. The C/N ratio is an expres-
sion for the grade of alteration and decay of the organic 
shell matrix (Ambrose 1994). The C/N ratio of the artifi-
cial degraded shells of Venerupis slightly increased from 
3.15 (fresh shell) to 3.27 (degraded half a year), the δ34S 
ratio dropped slightly from 7.8 ‰ to 7.5 ‰. Longer rest-
ing time in the sediment is needed to futher decrease the 
δ34S ratio further (Dreier et al. 2012).  

 

 

 

Fig. 4: Chitin staining of decalcified piece of Tridacna maxima shell. (A–
B) Recent, One Tree Island, Queensland, Australia, filament like structures are 
visible; (C) Pleistocene, north of Dahab, Sinai, Egypt, no filaments could be detect-
ed. Cross sections were stained with Calcofluor White. 

 
 

 

Fig. 5: Chitin staining of a section of fossil (Upper Cretaceous of the quarry 
Dammann South, Söhlde, Germany) Inoceramus sp. (Heterodonta: Veneroida: 
Cardiidae) shells. (A) Longitudinal section of shell stained with Calcofluor White. 
(B) Cross section of the same shell.  
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The enrichment of sulfides during degradation of soft tis-
sue may be the cause of the framboidal pyrite formation 
(Fig. 5; Berner 1984; Wilkin 1995) and for the decreasing 
δ34S ratio of shells after death. 

Lipids are another prominent group of biochemical 
markers, which are analyzed to identify symbiosis in mol-
luscs. Fatty acids as main building blocks of lipids have a 
characteristic distribution pattern. Short-chained monoun-
saturated fatty acids (MUFA) are of mainly prokaryotic 
origin (Bishop 1976) whereas the major component of 
eukaryotic lipids consist of long-chained polyunsaturated 
fatty acids (PUFA; Shaw 1974). Their specificity and 
structural diversity make them to important trophic bi-
omarkers in marine ecology (Gehron & White 1982; 
Parkes & Taylor 1983; Guckert et al. 1985; Sargent et al. 
1987; Wakeham & Canuel 1988; Findlay et al. 1990; Sar-
gent et al. 1990; Bradshaw et al. 1991; Hopkins et al. 1993; 
Rajendran et al. 1993).  

Lipids were also used to characterise symbiotic associ-
ations between prokaryotes and marine invertebrates 
(Berg et al. 1985; Conway & Capuzzo 1990, 1991; Ben-
Mlih et al. 1992; Zhukova et al. 1992; Cobabe & Pratt 
1995; Fullarton et al. 1995). In molluscs the lipid content 
depends on dietary lipid intake (Moreno et al. 1980; Piretti 
et al. 1987), thus lipid content of molluscs with auto-
trophic symbionts will reflect a diet based on the symbi-
onts. It is known from bivalve shells that they contain li-
pids like fatty acids, cholesterol, phytandienes, ketones 
and sometimes n-alkanes. Lipids are geologically stable 
which make them well-suited for paleontological ap-
proaches. In addition, lipids have low solubility in water at 
low temperatures; hence in early diagenesis the level of 
contamination from surrounding pore fluids and the mi-
gration of lipids out of the shell is low. As mentioned 
above, the carbon of symbiont-derived compounds is de-
pleted in δ13C, furthermore it is known that lipid carbon 
was found to be depleted by 3 ‰ relative to their dietary 
carbon (DeNiro & Epstein 1977; Crenshaw 1980). Con-
sequently, δ13C ratios of most molluscs shell-lipids may 
reflect if they are symbiont-bearing or not. Cobabe & 
Pratt (1995), Conway & Capuzzo (1991) and Dreier et al. 
(2012) found some fatty acids of chemotropic bivalves to 
be more depleted in δ13C relative to heterotrophic bivalve. 
Lipids from fossil shells of two bivalve species about 1.4 
million years old show a fatty acid distribution very similar 
to modern shells (with differences in their relative abun-
dance; Cobabe & Pratt 1995). However, δ13C values of 
fossil shell lipids have been not reported so far.  
 
 

Future perspectives 

In the light of recent climatic and global changes it will be 
more and more important to reconstruct environmental 
conditions of the past. Especially the marine environment  

represents an important climatic driving force and chang-
ing conditions could be recognised by a change in the 
benthic ecosystem. Today the stability of many ecosys-
tems is in danger, also because of the breakdown of sym-
biotic interactions, just considering e.g. bleaching events 
in coral reefs (Carpenter et al. 2008).  

Chemosymbiotic species are major players at oxic-
anoxic interfaces of the sediment or at seep and vent sites, 
for example at sites of methane-hydrate breakdown. The 
influence and importance of chemosymbiotic species at 
places with high eutrophication, leading to anoxic events, 
is not well-understood, though one may expect that eu-
trophication also leads to mass development of chemo-
symbionts (Hesselbo et al. 2000).  

If we even could identify the point where the lifestyle 
of a species switches from heterotrophic to symbiotic, we 
will be also able to find factors driving emergence of co-
operative microbial-host associations, which will foster 
our understanding of this evolutionary driving force. Mol-
luscs are very suitable model organisms, because they have 
a well-documented fossil history and provided mineralised 
tissue. 

In some cases original organic matrix is preserved in 
fossil shells. By analyzing the isotopic composition of the 
remaining original organic matrix and of separately ex-
tracted lipids of fossil molluscs shells, it is possible to dis-
tinguish between “primary consumers” (chemo- and pho-
totrophic) and molluscs from higher trophic levels. 

In order to get trustworthy data it is recommendable 
to analyze at least two species with different diets from 
the same habitat or location, otherwise the reliability of 
isotopic dates are questionable (Dreier et al. 2012). For 
instance, Dreier et al. (2012) found δ13C and δ15N values 
for the heterotrophic bivalve Venerupis (δ13C of -24.1 ‰ 
and δ15N of +4.2 ‰) in the same range as for chemo-
trophic bivalves from other sites. But in contrast, com-
pared to the values of the chemotrophic bivalves from the 
same site, the large differences between the isotopic signa-
tures allowed to distinguish between the two lifestyles. 
With this respect it is also important to keep in mind that 
some diets of endosymbiotic molluscs are not completely 
based on their symbionts. Some of the molluscs still use 
filter-feeding as an additional option (Duplessis et al. 
2004). To date no isotopic data are available for chemo- 
compared with phototrophic molluscs inhabiting the same 
site, so is not known if there is a resolution limit between 
the two different primary producer's lifestyles.  

Generally it should be possible to confirm either auto-
trophy or heterotrophy by comparing carbon and nitrogen 
isotopies of the organic matrices from different candidate 
shell specimens from the same location. This method is 
not limited to molluscs – all invertebrates with mineralised 
tissue and embedded organic matrix could be analyzed, 
for example also shells of brachiopods and perhaps even 
organic matrices of tubeworm tubes. 
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Fig. 6: Scanning electron micrographs of a Venerupis shell (Heterodonta: Veneroida: Veneridae) after 6 months incubation in sediment. (A) general view of the shell; 
(B) higher magnification, with framboidal pyrite [circle]; (C) higher magnification of left picture, with bacteria attached to the shell surface [arrow]. 
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